Task Group Status

Daniel Slaton Boeing Commercial Airplanes Material & Process Technology

July 12, 2004

Topics:

- Aging Artificial Aging Test Results
- Contamination CIC Flammability Testing
- In-service Sample Test Results
- Aging Wiring Information Summary (ATSRAC)
- Understanding Fleet Wide Issue Proposal
 - Situation Target Proposal
 - Data gathering & testing approach proposal

Aging/Contamination Task Group

Artificial Aging Test Status

Q-TIP Test Results on Aged PET Film (AN-36W)

Aging Method	Exposure Time	Q-Tip Results	Flame Propagation Behavior in Crease
CONTROL	Unaged	Passes	Film shrinks away vertically very quickly; 8" Length and 1.5" Width. Burn length <1".
Oven; 200F	100 Days	Passes	Similar to Control
	12 Months	Passes	Similar to Control
	16 Months	Passes	Film shrinks away vertically slower than control; 7" Length and 3.5" Width. Edges of film catch fire causing slight propagation and a burn length of ~ 4 inches. Discoloration in scrim adhesive.
Humidity	100 Days	Passes	Similar to Control
Chamber;	12 Months	Passes	Similar to Control
160F/100%RH	16 Months	Passes	Film shrinks away vertically slower than control; 5.5" Length and 2.5" Width. Edges of film catch fire causing slight propagation and a burn length of ~ 4 inches.

Red – New data since November 2003 Meeting

Artificial Aging Test Status

•Film Shrinkage - Fast •Burn Length < 1"

Film Shrinkage - Moderate
Burn Length ~ 3 - 4"
Discolored Scrim Adhesive

•Film Shrinkage - Moderate •Burn Length ~ 3 - 4"

Flammability of Corrosion Inhibiting Compound on Insulation Blankets

 Evaluated radiant panel performance of Cor-ban 35 (heavy duty, similar to AV-15) on all types of insulation blanket films.

• Evaluated a single spray pass (0.7 g/ft²) and a double spray pass (1.4 g/ft²).

Aging/Contamination Task Group

Corrosion Inhibiting Compound

Radiant Panel Test Results; Cor-Ban 35

	Corrosion Inhibiting Compound (CIC)					
	Un	coated	Single Pass	Double Pass	Coated	
	(T <u>)</u>	ypical)	0.7 g/ft2	1.4 g/ft2	(Aged)	
			(Unaged)	(Unaged)		
		Radiant	Radiant	Radiant	Radiant	
FILM TYPE	Q-tip	Panel	Panel	Panel	Panel	
PET, 0.5 oz/sq yd	Р	Marg. (P/F)	Р	F		
PET, 0.9 oz/sq yd	Р	Marg. (P/F)	F	F		
MPVF, 1.0 oz/sq yd	Р	Р	Р	Р	Results	
MPVF, 1.4 oz/sq yd	Р	Р	Р	Р	Oct 04	
PVF, 1.0 oz/sq yd	Р	Р	Р	Р		
Polyimide	Р	Р	Р	F		
Ceramic Paper	N/A	Р	Р	F		
Experimental	Р	Marg. (P/F)	Р	Р		

Q-Tip Test Requirement: No burn length shall exceed 8 inches (FAA Fire Test Handbook Chapter 22) **Radiant Panel Requirement:** FAR 25.856 **Aging Protocol:** Thermal Cycle; -65F to 160F, 2000 Cycles

P = Pass F = Fail Marg. (P/F) = Marginal results

CIC Radiant Panel Test Results Cor-Ban 35 on Polyimide Film

P A B CONTROL- PASS		SINGLE COAT	T-PASS	Develo Cont		
		Single	Coat	Doub	le Coat]
Polyimide Film	Control	Sample S1	Sample S2	Sample D1	Sample D2	
Afterburn (s)	0.00	0.00	0.00	0.00	0.00	
Burn Length (in)	0.50	0.75	0.75	5.00	10.50	
Pass/Fail	Р	Р	Р	F	F	

CIC Flammability Test Results Cor-Ban 35 on Ceramic Paper

Aging/Contamination Task Group

CIC Flammability Test Results Cor-Ban 35 on PET Films

PET Film		Single Coat		Double Coat	
0.5 oz/sq yd:	Control	Sample S1	Sample S2	Sample D1	Sample D2
Afterburn (s)	0.00	0.00	4.30	0.00	20.70
Burn Length (in)	0.50	0.50	3.50	0.50	4.75
Pass/Fail	Р	Р	F	Р	F
PET Film		Single Coat		Double Coat	
0.9 oz/sq yd:	Control	Sample S1	Sample S2	Sample D1	Sample D2
Afterburn (s)	15.30	20.40	70.70	25.80	56.80
Burn Length (in)	12.00	13.50	16.25	14.75	13.75
Pass/Fail	F	F	F	F	F

NOTE: Failures on PET are caused by reinforcing fibers and film residue sticking to the glass batting.

Aging/Contamination Task Group

CIC Flammability Test Results OBSERVATIONS

- CIC as a "contaminant" behaves as a fuel source on non-shrinkable materials such as polyimide film and ceramic paper.
- Scrim (reinforcement) and film residue can have a significant role in flame propagation results.
 - Different vendor materials may behave differently based on scrim material/configuration and CIC amount.
 - > Film type and weight may also likely have an influence on results.
 - More investigation is necessary.
- The results clearly indicate the need to better understand contamination effects on flammability performance. Improved understanding will determine criteria for future design and maintenance philosophy to ultimately improve continued airworthiness.
 - Design; evaluating/selecting insulation blanket films, CICs, etc...
 - Maintenance; cleaning approaches, material selection/usage, etc...

Aging/Contamination Task Group

Preventing Contamination

Updated Service Letters - 25 June 2004

PREVENTING CONTAMINATION THAT AFFECTS FLAMMABILITY OF INSULATION BLANKETS

727-SI-25-036-A 737-SI-25-077-A 747-SL-25-170-A 757-SL-25-064-A 767-SL-25-084-A 777-SL-25-018-A

707-SL-25-025-A 717-SL-25-105-A DC9-SL-25-103-A DC10-SI -25-101-A MD10-SI -25-101-A MD11-SL-25-103-A MD80-SL-25-104-A MD90-SL-25-102-A

The updated Service Letter includes information regarding contaminants that can support fire propagation, identifies Boeing SRP 25-0237 to address AN-26, and recommends airlines increase attention to periodic inspection and cleaning during maintenance.

Flammability Test Requirements for Cleaners/Disinfectants/Insecticides

Approval of Vendor Materials For Use in General Aircraft Maintenance

Service Letter 767-SL-20-2-B

This Service Letter outlines the recommended approach for airlines to verify vendor materials. Boeing recommends vendor materials not listed in the maintenance manuals be evaluated to the requirements of D6-7127 (Interior) & D6-17487 (Exterior). These documents identify testing protocol to evaluate the materials.

Aging/Contamination Task Group

In-service Blanket Test Status

(Update to November 2003 Presentation)

Film Cover	Film Weight (oz/sq yd)		Delivery Date	Blanket Descriptions	Contamination Level	Q-TIP Results	Approx. Burn Area (sq. inches)	Propagation Behavior	
PET	0.5	737-300		Behind sidewall	Low to moderate contamination levels including local areas of contamination.	FAIL 20" Burn Length	200	Fire consumed most of horizontal surface and part of vertical surface.	Q-Tip Test
PET	0.5	757-300	May-86	Aft bulkhead above floor	Low to moderate contamination levels including local areas of contamination.	FAIL. 10" Burn Length	80	Fire consumes part of both horizontal & vertical surfaces.	Requirement: No burn length shall exceed 8
PET	0.5	767-200	Nov-85	Unknown	Low to moderate contamination levels including local areas of contamination.	FAIL. 17" Burn Length	150	Fire consumes most of horizontal surface and part of vertical surface. Fire continued around to the backside.	inches. <i>(FAA Fire Test Handbook</i>
MPVF	0.85	767-200	Nov-85	Unknown	Moderate contamination levels including local areas of contamination.	PASS 5.5" Burn Length	40	Fire propagates slightly on horizontal & vertical surface.	Chapter 22) Note: 8" Radius =
MPET	0.95	DC-10	N310FE	Unknown	Moderate contamination levels including local areas of contamination.	FAIL. 14" Burn Length	285	Fire consumes entire horizontal surface and half of vertical surface. Fire continued around to the backside.	200 sq. inches
MPVF	1.05	DC-10	N310FE	Unknown	Moderate contamination levels including local areas of contamination.	PASS 5.5" Burn Length	40	Fire travels slightly left to right on both vertical horizontal surface.	
MPVF	1.4	DC-10	N310FE	Unknown	Moderate contamination levels including local areas of contamination.	PASS 6.5" Burn Length	25	Fire traveled up vertical surface.	

Aging/Contamination Task Group

In-service Q-tip Test Results

PET In-service Blanket Weight = 0.5 oz/sq yd

Q-Tip Result: **PASS** Burn Length = 6.5" Burn Area = 80 sq in.

PET In-service Blanket Weight = 0.5 oz/sq yd

Q-Tip Result: **FAIL** Burn Length = 17" Burn Area = 150 sq in.

In-service Q-tip Test Results

PET In-service Blanket Weight = 0.5 oz/sq yd

Q-Tip Result: **FAIL** Burn Length = 10" Burn Area = 80 sq in.

In-service Q-tip Test Results

PET In-service Blanket Weight = 0.5 oz/sq yd

Q-Tip Result: **FAIL** Burn Length = 20" Burn Area = 200 sq in.

In-service Q-tip Test Results

MPVF In-service Blanket Weight = 0.85 oz/sq yd

Q-Tip Result: PASS Burn Length = 5.5" Burn Area = 40 sq in.

In-service Q-tip Test Results

MPET In-service Blanket Weight = 0.95 oz/sq yd

Q-Tip Result: FAIL Burn Length = 14" Burn Area = 285 sq in.

In-service Q-tip Test Results

MPVF In-service Blanket Weight = 1.0 oz/sq yd

Q-Tip Result: PASS Burn Length = 5.5" Burn Area = 40 sq in.

In-service Q-tip Test Results

MPVF In-service Blanket Weight = 1.4 oz/sq yd

Q-Tip Result: PASS Burn Length = 6.5" Burn Area = 25 sq in.

Aging Wiring Results Summary (ATSRAC)

http://www.mitrecaasd.org/atsrac/index.html

Aging Wiring Results Summary (ATSRAC)

I. The Approach for Gathering and Reviewing Data FINAL REPORT Task 1 & 2

REPORT: http://www.mitrecaasd.org/atsrac/final_reports/Task_1&2_Final%20_August_2000.pdf

II. Intrusive Inspection Final report

REPORT: http://www.mitrecaasd.org/atsrac/intrusive_inspection.html

Understanding Overall Fleet Safety

Commercial Airplane Flammability Safety Risk Evaluation – An approach for evaluating flame propagation on aged/contaminated insulation blankets in the commercial airplane fleet.

I. Situation – Target - Proposal

Understanding Overall Fleet Safety

SITUATION

- I. Flammability test results on some types of in-service insulation films indicate a degradation in flame propagation resistance.
 - Flammability data exists only on a limited number of cover film products. Data consists primarily of single blanket tests, and "Intermediate Scale" installation configurations have not been performed for correlation.
 - Flammability data does not exist on <u>most</u> cover film products that have been qualified/used in the fleet over the last 20 years.
 - Unknown whether degradation is due to changes in material composition/morphology, contamination or a combination. Testing todate has not been successful in determining quantifiable effects or understanding the interactions between aging and contamination.

Aging/Contamination Task Group

Understanding Overall Fleet Safety SITUATION (Cont)

- II. Rules and requirements do not clearly define the aging/contamination issue.
 - Industry requirements/criteria do not exist to evaluate aging/contamination effects on new materials.
 - Artificial aging on some materials have shown a change in flame propagation behavior.
 - Controlled testing of CICs as a contamination type indicates a change in flame propagation behavior on some materials.
 - Standardized test methods do not exist to evaluate aging effects on new materials.
 - Standardized test methods do not exist to evaluate effects of different types & quantities of contamination on new materials.

Understanding Overall Fleet Safety SITUATION (Cont)

- Criteria are not defined on what constitutes an unsafe condition, in accordance with FAR 39. Need Industry consensus.
- No consensus that flame spread and arc-and-spark are the only criteria that determine fleet safety levels.
- AC guidance does not exist regarding aging/contamination.
- Existing maintenance information is not well defined.
- FAR 28.856 does not address aging/contamination of new materials.

Understanding Overall Fleet Safety SITUATION (Cont)

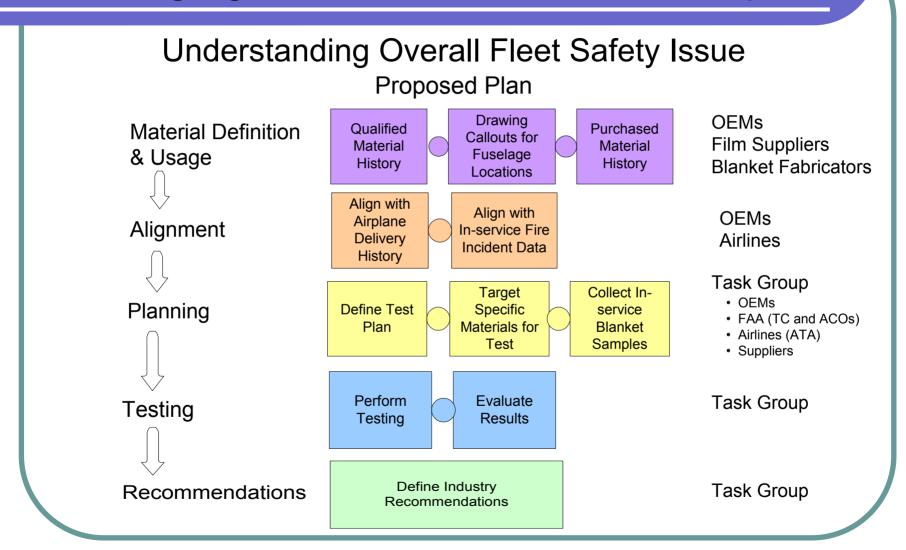
- III. Current focus is at an "AN-26 level", and as a result, an overall understanding of the fleet issue relative to contamination and aging is not moving forward very quickly.
 - Based on Boeing fire incident data, there is no statistical difference of in-service insulation fire events except when moderate contamination was involved.

Aging/Contamination Task Group

Understanding Overall Fleet Safety TARGET

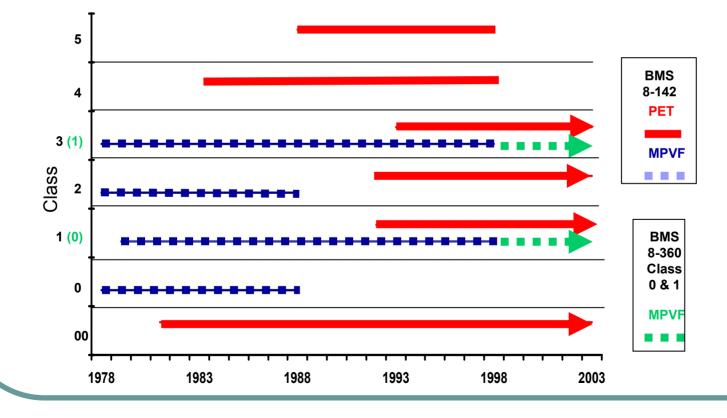
- Chartered harmonization working group (Like ATSRAC). Integrate with Structures Maintenance Conference?
- Industry defined and committed plan to work 'aging and contamination' across the commercial fleet for all insulation blanket materials to balanced approach and solutions.
- Industry criteria that defines aging/contamination "level of magnitude" that creates an airplane level safety threat.
- Industry adopted standardized test methods for evaluating aging and contamination effects on new insulation blanket material.
- Industry recommendations for appropriate cost effective safety improvements and mitigating solutions.
- Industry defined SOW for academia support of aging contamination research and secured funding (FAA-TC).

Understanding Overall Fleet Safety PROPOSAL


- Aging/Contamination Working Group chartered and supported.
- Define and implement a data collection plan to collect in-service blanket samples from across the fleet (all models and ages).
- Evaluate flammability performance on all types, thicknesses, and ages of in-service blanket samples. Samples should be selected from all fuselage locations and should include typical ranges of contamination.
- Support the FAATC to perform small/intermediate scale tests to further quantify fleet safety issue and correlate with single blanket test results.

Understanding Overall Fleet Safety PROPOSAL (Cont)

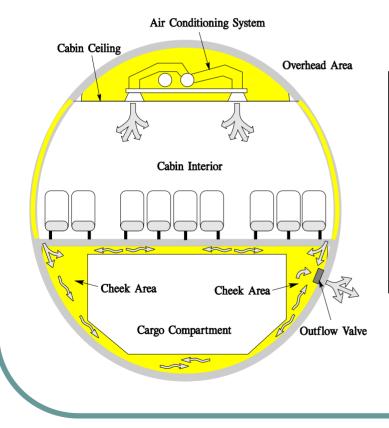
- Identify data to be used to determine "safety risk" criteria.
 - > Heat release a criteria? Heat release must play a role to safety threat?
 - Medium scale test results? Need data to support understanding? Pass/Fail criteria?
 - Location important?
 - Material classifications?
- Incorporate criteria, test methods, etc... into AC to provide guidance for new rule FAR 25.856.
- Develop mitigation options; remove and replace, cleaning, spray-on fire retardants, barriers, etc...


Understanding Overall Fleet Safety Issue

II. Data Gathering and Evaluation Approach for Assessing the Flammability Safety Risk of In-service Insulation Blankets Across the Commercial Airplane Fleet

Understanding Overall Fleet Safety Issue

Material Timeline for BMS 8-142 & BMS 8-360


Understanding Overall Fleet Safety Issue

BMS 8-142 Material Types (1978 – Present)

Material	Specification	Weight; oz/sq.yd	Suppliers	Number of Formulations	Active Dates
PET	BMS 8-142 Class 00	0.5 -0.65	3	16	1981 - Present
	BMS 8-142 Class 1	0.9 Max	3	11	1992 - Present
	BMS 8-142 Class 2	1.3 Max	3	6	1992 - Present
	BMS 8-142 Class 3	1.8 Max	3	5	1993 - Present
MPVF	BMS 8-142 Class 0	0.9 Max	2	3	1978 - 1988
	BMS 8-142 Class 1	0.9 Max	2	3	1978 - 1998
	BMS 8-142 Class 2	1.3 Max	2	2	1978 - 1988
	BMS 8-142 Class 3	1.8 Max	1	1	1978 - 1998

Understanding Overall Fleet Safety Issue

Fuselage Locations

Notional Example Data Collection

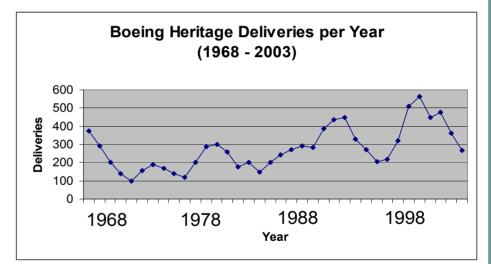
(Specific Time Frame for Model X)

	Percentage	Engineering	Purchased
Fuselage Location	Area	Definition	Material
Above Floor	60%		
Crown	15%	Class 00	Product X
Main Cabin	40%	Class 00	Product X
Flight Deck	5%	Class 1	Product Y
Below Floor	40%		
Cheek Area	20%	Class 00	Product X
Below Lavs/Galleys	10%	Class 1	Product Y
Below Cargo (Bilge)	10%	Class 3	Product Z

Usage; % of Fuselage Area: Product X; 75% Product Y; 15% Product Z; 10%

Aging/Contamination Task Group

Understanding Overall Fleet Safety Issue Other Information


• Airplane Deliveries (timeline and active status)

Boeing:

http://active.boeing.com/commercial/orders/ displaystandardreport.cfm?cboCurrentModel =&cboAllModel=&optReportType=HistAnnD el&ViewReportS=View+Report

Airbus:

http://www.airbus.com/media/orders_n_deliv eries.asp

Incident Data Review – Statistically Significant Factors

Understanding Overall Fleet Safety Issue

Testing

- Small Scale Fuselage Section
 - 40" x 60"
 - 3 Frames/2 Bays
 - Cotton Swab Ignition Source

Flammability Safety Risk of In-service Insulation Blankets Across the Commercial Airplane Fleet

We are all here to evaluate and improve safety.

Are you ready for action?

ACTION: Provide formal response & comments to the STP and Data Gathering Plan