

Prototype HR2 Heat Release Apparatus Under Development

International Aircraft Materials & Systems Forums September 24-26, 2024, Atlantic City, New Jersey

HR2 Heat Transfer Model

Rich Lyon and Mike Burns FAA Fire Safety Branch

Temperature Histories in HR2

HR2 Standard Operation According to the Fire Test Handbook

Calibration Factor (Static)

$$k_h = \frac{\dot{Q}_{CH_4}}{\Delta T_{CH_4}} = \frac{\left(H_c \rho \dot{V}\right)_{CH_4}}{\Delta T_{CH_4}} \approx 20 \frac{W}{K}$$

Heat Release Rate (Static Calibration)

$$\operatorname{HRR}\left(\frac{W}{m^2}\right) = \frac{Combustion\ Rate}{Sample\ Area} = \frac{\dot{Q}(t)}{A} = k_h \frac{\Delta T(t)}{A}$$

Methane Calibration

Problem Statement

The standard procedure with static methane calibration doesn't tell us anything about how the dynamics of the HR2 affect the HRR results

Potential Solution

Develop and validate a heat transfer model for the HR2

Heated Air Out HR2 (+ Combustion Products) $(\rho, \dot{V}, T)_{out}$ Heat **Transfer** Model Heat loss to apparatus by convection Radiant Heaters + Pilot Burner (Baseline) Flaming Combustion (Sample = Methane) $(\rho, \dot{V}, T)_{in}$ Ambient Air In

Mass Balance

$$(\rho \dot{V})_{out} = (\rho \dot{V})_{in}$$

Energy Balance ($\theta = T_{out} - T_{in}$)

Sample heat Release rate

$$\frac{d}{dt}(mc_P\theta)_{air} = mc_P\frac{d\theta}{dt} + \rho c_P \dot{V}\theta = \dot{Q} - hS\theta$$
Heat losses by convection

$$\frac{d\theta}{dt} + \frac{\theta}{\tau} = \frac{\dot{Q}}{mc_P}$$

Governing Equation HR2 Dynamics

Energy Balance Allows for Automatic (In Situ) Calibration

HR2 Automatic Calibration Factor

$$k_{auto} \equiv \frac{\dot{Q}_{BL} + \dot{Q}_{sample}(t)}{\theta_{BL} + \Delta T_{sample}} = \frac{\dot{Q}_{BL} + \dot{Q}_{sample}(t)}{\theta(t)}$$

Baseline Combustion Rate

$$\dot{Q}_{BL} = \left(\rho c_P \dot{V} + hS\right)_{air}$$

Standard
Combustion Rate
(Methane Equivalent)

$$\dot{Q}_{test} = \begin{cases} \left(\rho H_c \dot{V}\right)_{CH_4} \\ \Delta T_{CH_4} \end{cases} \Delta T(t) = k_h \Delta T(t)$$

Static

Heat Release Rate (Dynamic Calibration)

$$HRR\left(\frac{W}{m^2}\right) = \frac{\dot{Q}(t)}{A} = \left\{\frac{\dot{Q}_{BL}}{\theta} + \frac{\dot{Q}_{sample}}{\theta}\right\} \frac{\Delta T(t)}{A}$$

$$= \left\{ \frac{\left(\rho c_P \dot{V} + hS\right)_{air} + k_h \Delta T(t)}{\theta(t)} \right\} \frac{\Delta T(t)}{A}$$

$$= \left\{ \frac{c_1 + c_2 \Delta T(t)}{\theta(t)} \right\} \frac{\Delta T(t)}{A}$$
 Constants
Measured
$$\longleftarrow k_{auto} \longrightarrow$$

Baseline (BL) has all info needed for Dynamic Calibration

$$\theta_{BL} = T_{BL} - T_{in} = \frac{1}{k_{BL}} \left(\dot{Q}_{glowbars} + \dot{Q}_{pilot} \right) = \frac{Q_{BL}}{k_{BL}}$$

From static energy balances,

$$k_{BL} = \frac{\dot{Q}_{BL}}{\theta_{BL}} = \frac{6900W}{613K - 295K} = (\rho \dot{V} c_P + hS)_{air} = 20 \frac{W}{K} = k_h$$

Calibration constant is independent of energy source,

$$k_{auto} = \left(\frac{c_1 + c_2 \Delta T(t)}{\theta(t)}\right)_{c_2 = k_{BL}} = k_h$$

$k_{\text{auto}} = k_{\text{h}} \text{ only}$ at Maximum Heat Release Rate (HRR_{max})

$$\frac{d}{dt}\left(\frac{d\theta}{dt} + \frac{\theta}{\tau} = \frac{\dot{Q}}{mc_P}\right) = \dot{\beta} + \frac{\dot{\theta}}{\tau} = \dot{\beta} = 0$$

$$\dot{\beta} = 1 d\theta = 1 dAT$$

$$\frac{\theta}{\tau} = \frac{1}{\tau} \frac{d\theta}{dt} = \frac{1}{\tau} \frac{d\Delta T}{dt} = 0$$

Only at \dot{Q}_{max}

$$\Delta T = Constant = \frac{\dot{Q}_{max}}{k_{auto}} = \frac{\dot{Q}_{CH_4}}{k_h} \qquad \Longrightarrow \qquad \frac{\dot{Q}_{max}}{\dot{Q}_{CH_4}} = \frac{k_{auto}}{k_h} = 1$$

Conclusions

Position of heat sources (glowbars, pilots, sample) and sinks (sample fixture) in HR2 determine how much heat will be lost to apparatus and the value of $k_{\rm auto}$ and $k_{\rm h}$ used to measure HRR.

$$\text{HRR}\left(\frac{kW}{m^2}\right) = \begin{cases} \frac{\left(\rho c_P \dot{V} + hS\right)_{air} + k_h \Delta T(t)}{\theta(t)} \\ \frac{\Delta T(t)}{A} \end{cases}$$

$$\text{Dynamic Calibration Factor}$$

$$k_{auto} = \begin{cases} \frac{c_1 + c_2 \Delta T(t)}{\theta(t)} \\ \frac{\partial T(t)}{\partial t} \end{cases}$$

$$\text{Constants}$$

$$\text{Measured}$$

$$c_1 = (\rho c_P \dot{V} + hS)_{air} = Heat transfer contribution to kauto$$