International Aircraft Materials & Systems Forum Atlantic City, New Jersey September 24-25, 2024

Measuring the Fire Growth Potential of a Combustible Solid in the Cone Calorimeter*

*DOT/FAA/TC-INT-24/1 August 2024

Richard E. Lyon

Aviation Research Division

Federal Aviation Administration

W.J. Hughes Technical Center

Atlantic City International Airport, NJ 08405

Email: <u>richard.e.lyon@faa.gov</u> Web Site: <u>www.fire.tc.faa.gov</u>

Objective

Determine the Full-Scale Fire Hazard of a Combustible Material From a Single Cone Calorimeter Experiment

Hypothesis

Fire Growth of a Combustible Solid is a Continuous and Coupled Process of Ignition and Burning

Approach

- Parameterize Cone Test Data
- Define Physically-Based Fire Growth Parameters
- Compare Fire Growth Parameters to Fire Test Results

The 1-D Burning Process (e.g., in the Cone Calorimeter)

Non-Charring Polymer

Charring Polymer

Metrology

Energy Diagram for High Density Polyethylene (HDPE)

Energy Diagram for Nylon 66 (PA66)

Energy Diagram for Polycarbonate of Bisphenol-A (PC)

Energy Diagram for Fire Retardant Polystyrene (PS FR)

Available from Standard Cone Calorimeter Experiments

Physical Quantity	Engineering Notation	Acronym
External Heat Flux/Irradiance (kW/m ²)	$\dot{q}_{ext}^{\prime\prime}$	EHF
Time to Piloted Ignition (s)	$t_{ m ign}$	TTI
Nominal Ignition Energy (MJ/m ²)	$\dot{q}_{ext}''t_{ign}$	$E_{ m ign}$
Peak Heat Release Rate (kW/m ²)	$\dot{Q}_{max}^{\prime\prime}$	PHRR
Test Average Heat Release Rate (kW/m ²)	$\dot{Q}^{\prime\prime}_{avg}$	HRR _{avg}
Heat of Combustion/Fire Load (MJ/m ²)	$H_c^{\prime\prime}$	$H_{\rm c}$
Sample Thickness (m)	b	b

Calculate Fire Growth Potential λ from Energy Diagram

$\lambda = \left(\frac{1}{E_{ign}}\right) \left(\frac{\Delta Q}{\Delta E}\right) \approx \left(\frac{1}{\dot{q}_{ext}^{\prime\prime} t_{ign}}\right) \left(\frac{\dot{Q}_{max}^{\prime\prime}}{\dot{q}_{ext}^{\prime\prime}}\right) = \frac{PHRR/TTI}{EHF^2} , \frac{m^2}{MJ}$ Intercept

 $EHF = External Heat Flux = \dot{q}_{ext}^{\prime\prime} (MW/m^2)$

$$TTI = Time \ to \ Ignition = t_{ign} \ (s)$$

PHRR = Peak Heat Release Rate = $\dot{Q}_{c,max}^{\prime\prime}$ (MW/m²)

Calculate Product Fire Hazard, Π from λ and H_c

$$\Pi = \lambda H_{c} = \frac{PHRR/TTI}{EHF^{2}} H_{c}, \qquad \frac{m^{2}}{MJ} * \frac{MJ}{m^{2}} = Dimensionless$$
$$H_{c} = Areal \ Heat \ of \ Combustion = \int_{0}^{\infty} \dot{Q}_{c}''(t)dt, \quad MJ/m^{2}$$

Calculate Material Fire Hazard, π from λ and $H_{c,v}$

$$\pi = \lambda H_{c,v} = \frac{\Pi}{b}, \quad m^{-1}$$

 $H_{c,v}$ = Volumetric Heat of Combustion, MJ/m³; b = Sample Thickness, m

Fire Growth Potential λ_{NRG} From Energy Diagrams

λ Is Independent of Sample Thickness, but Π is Proportional to Thickness

Material Fire Hazard From Published Cone Data

Fire Hazard at Bench Scale (λ , Π and π) Correlates With Fire Hazard at the Molecular Scale (Chemical, FGC) ...

... but What About Small- and Full-Scale?

λ is Consistent With Flame Test Results *Within* Chemical Types

Full-Scale Fire Tests of Televisions and Computer Monitors Show That Rapid Fire Growth Commences at Π > 760 \pm 8

Full-Scale Room Fire Tests (ISO 9705) of Building Products and Wall Linings Show that Fire Growth is Slow When Π < 75

VFP Burn Length versus Product Fire Hazard Π

Conclusions

The potential of a material to grow a fire,

$$\lambda \equiv Ignitability * Combustibility \equiv \left(\frac{1}{E_{ign}}\right) \left(\frac{H_c}{L_g}\right), \qquad \frac{m^2}{MJ}$$

The potential of a product to be a fire hazard is only realized if the total heat released by the burning product (fire load) is sufficient to sustain the fire,

Product Fire Hazard, $\Pi \equiv \lambda H_c$ dimensionless

The fire hazard of the material in a product depends on the heat of combustion of the product per unit volume, $H_{c,V}$ (MJ/m³)

Material Fire Hazard,
$$\pi \equiv \lambda H_{c,V} = rac{\Pi}{b}$$
, m^{-1}