Halon-Replacement Testing in a Generic Nacelle Fire Simulator with Iodotrifluoromethane [CF₃I].

Errata. Three corrections made to this file 2aug2023, following the presentation of this material. [1] On page 31, removed text box containing "look for a more accurate picture" that should have not been there & add explanation about disagreeing photographic & schematic image details. [2] On page 75, change the sole superscript from "[a]" to "[M]" & provide attendant explanation. [3] Added missing pages numbers to pages 70-74.

Presented to: The Combined International Aircraft Materials Fire Test & International Aircraft Systems Fire Protection Forum Meeting

By: Doug Ingerson

Federal Aviation Administration WJ Hughes Technical Center / Fire Safety Branch Atlantic City Int'l Airport, NJ USA tel : 609-485-4945 email : Douglas.A.Ingerson@faa.gov

Date: 14jun2023

Federal Aviation Administration

There are no product nor service endorsements made within this presentation. Corporate identification is made for the sake of completeness & transparency.

Presentation Content

- Overview Halon-Equivalence Fire Testing^[A]
 - ★ Assessment concept & its circumstances
 - ★ Test fixture & associated environment

Describe the Accomplished CF₃I Testing

- ★ 2003-2006, MPSHRe/rev03
- ★ 2019-2021, MPSHRe/rev04
- ★ 2022, "cold" testing
- ★ proposed certification criteria

Overview, Assessment Concept

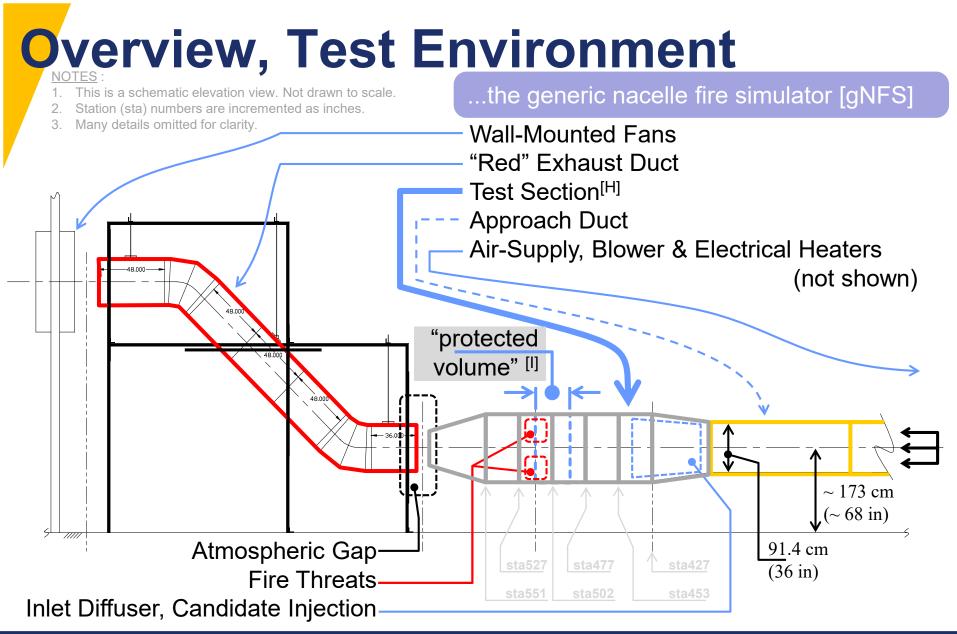
Alter a Fire Zone Perspective to a Generic One

- Used basic elements to generate applicable test results & minimize interfering with understanding them
- Included basic elements of :
 - forced-ventilation; 2 conditions^[B], "low" or "high"
 - representative types of fire; atomized spray^[C] & pool^[D]
 - "simple" flow-riling, flame-attaching, & "hot"-surface structures
 - representative fuels; turbine fuel, lubricant & hydraulic fluid
 - fire-extinguishing agent injection & migration; total-flooding
 - halon 1301 performance framed by its FAA certification criteria
 o concentration criterion is similar to a peak-inerting concentration^[E]

Overview, Assessment Concept

- Task Group Derived; Multiple Revisions
 - MPSHRe/rev03, 2003-2008, find equivalence
 - 4 primary test conditions; 2 ventilation x 2 fire threat
 - metrics :
 - reignition time delay [RTD], fire suppression
 - behavior of a candidate firex agent's concentration field at the respective flame front, without fire
 - empiricism created problems; related to candidate distribution; i.e. flooding versus streaming agents
 - MPSHRe/rev04, 2010-?, prove equivalence
 - retain much from rev03, but turn it into a proof-test^[F]

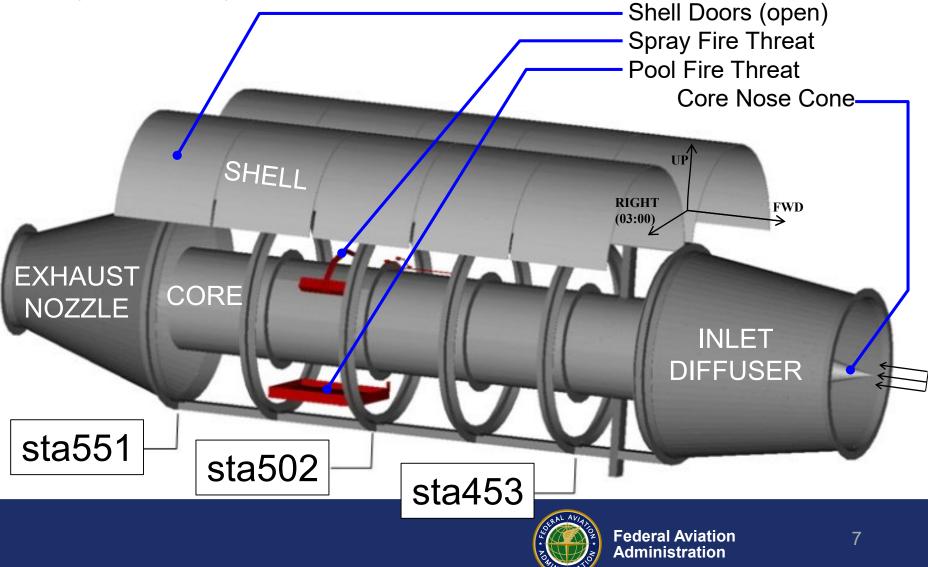
[F] any proposed design criteria require plausible definition first, testing will always occur in a generic fixture using those criteria, & subsequent real-scale demonstration testing maybe required contingent upon dissimilarity between halon 1301 & the proposed replacement candidate



Overview, Assessment Concept

General Procedure

- Define test condition
- Implicitly defines ventilation
- Establish firex agent concentration field
- Test the concentration field against the fire threats
- Record/observe behaviors, assess^[G] them, & aptly proceed


[H] Some idealized/clean dimensional information : inlet diffuser exit flange [sta427] to exhaust nozzle entrance flange [sta551], 3.1 m long x 1.22 m outside diameter x 0.6096 m inside diameter, annular volume \approx 2.74 m³ (96.6 ft³). [I] sta490 to sta514

Overview, Test Environment

- 1. This model view is not drawn to scale.
- 2. Station (sta) numbers are incremented as inches.
- 3. Many details omitted for clarity.

...the gNFS test section

CF3I Testing, MPSHRe/rev03, 2003-2006

- Accomplished by the FAA Fire Safety Branch
 - prioritized by external participants in the working group
- Finished all spray-fire & high-ventilation/pool-fire testing
- External interest faded, FAA Fire Safety reprioritized, & discontinued further work with it
 - toxicological uncertainty
 - external participants identified other interests : 2-BTP, FK-5-1-12

CF3I Testing, MPSHRe/rev03 [continued]

- High-ventilation/spray-fire results generally encouraging
- Low-vent/spray-fire indirectly discouraging & atypical
 - unexpectedly "large" quantity injected for each test
 - non-optimal injection produced "odd" concentration fields
 - CF3I supply depleted before satisfying test-count requirements
- High-vent/pool-fire generally encouraging but atypical
 - quantities like high-vent/spray-fire stop flames on fuel surface
 - but, fire persists aft of fuel pan, outside the MPSHRe "protected volume", & eventually reignited pool

CF3I Testing, MPSHRe/rev03 [continued]

- Per 2003-2006 testing, the largest interim HSRVC was 7.1%v/v CF3I
- Checked elsewhere for reported *peak-inertion* concentrations, paralleling the FAA rationale for CF₃Br
 - Purdue^[J], CF₃I in air/n-heptane : 6.8%v/v CF₃I
 - US NFPA, NFPA 2001, CF_3I in air/propane : 6.5%v/v CF_3I
 - ...7.1%v/v CF_3I considered a plausible concentration criterion
- Interim proposed criteria = 7.1%v/v CF3I for 1/2 second

• CF3I Testing, MPSHRe/rev04, 2018-2022

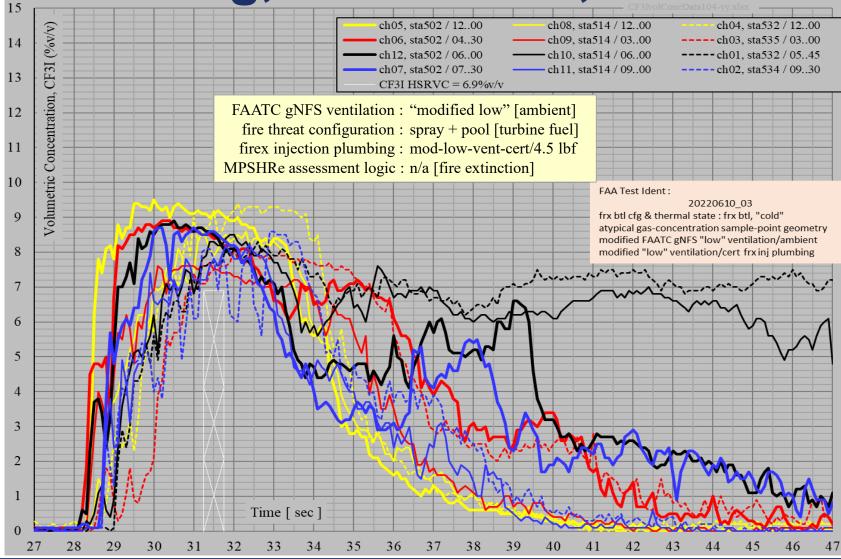
- Boeing/Parker-Meggitt initiative recognized by the FAA
- Rev04 a proof test; prove 7.1%v/v CF3I for 1/2 second
- Concentration field challenged low-ventilation/pool-fire
- CF3I low-vent/pool-fire testing proved acceptable
- Subsequent additional testing occurred; "cold" testing
 - incomplete MPSHRe/rev03 test counts
 - prior atypical test experiences
 - thermodynamic disparity
 - wanted to establish additional confidence in functionality

CF3I Testing, Rev03/04 Test Results

		Test Con	ditions	Assessment			
	Assessment Procedure	Internal Forced Ventilation	Fire Threat	Technique & Outcome			
	MPSHRe, rev03		spray, turbine fuel	direct equivalence	5.6%v/v		
		high	pool, turbine fuel	equivalence by bracket	2.7%v/v		
		low	spray, oil	equivalence by bracket	7.1%v/v ^[L]		
		IOW	spray, turbine fuel	equivalence by bracket	4.9%v/v		
	MPSHRe, rev04	low	pool, turbine fuel	shown acceptable by bracket ^[K]	7.1%v/v ^[L]		

[K] The interim proposed criteria were used to challenge the test environment & performed comparable to or better than halon 1301.

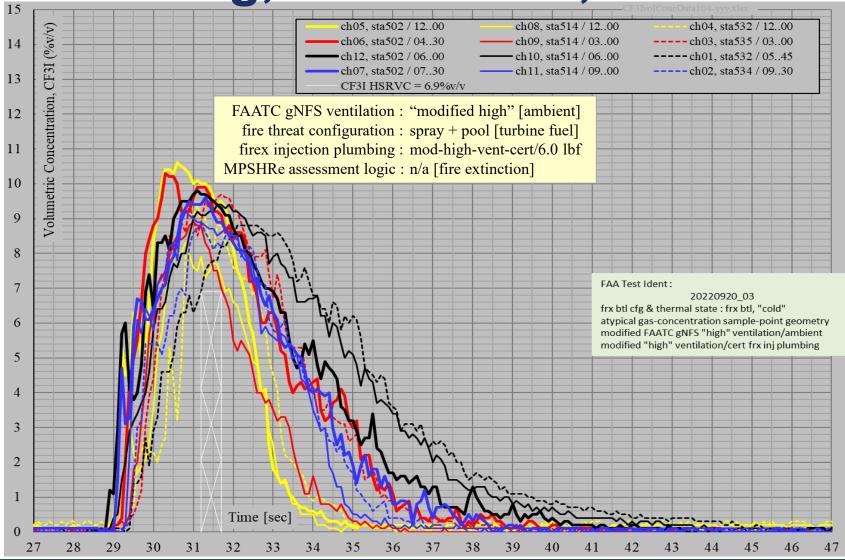
[L] Per MPSHRe/rev04, the largest equivalent concentration is the one recomended as the concentration criterion for the associated proposed certification criteria.


- Challenged CF3I further, given disparities & atypical experiences; "cold" testing
 - Used modified versions of the 2 gNFS ventilations
 - modified low & modified high
 - ambient air flow only; no heat addition to the ventilation stream
 - Created 2 concentration fields to satisfy proposed criteria
 - enlarged "protected volume"; included fire-related gNFS features
 - injected "cold" firex bottle contents with all else ambient

Test Condition	"cold"/n	nodified-LOW ve	ntilation	"cold"/modified-HIGH ventilation			
Test identification	20220608r07	20220609r03	20220610r03	20220919r03	20220920r03	20220922r03	
Average sta453 [°C]	29	22	27	28	26	28	
Firex bottle contents [°C]	-52	-51	-51 ^[M]	-54	-55	-56	
HSRVC [%v/v CF3I]	7.4	6.7	6.9	6.8	6.9	7.2	

Average temperature for the sta453 value is an 8-thermocouple measurement average & the bottle contents 1. The average is calculated with data spanning 2 seconds, sampled at 25 Hz, beginning approximately 5 seconds before CF3I injection. [M] Faulty institutional thermocouple. Temperature measured by hand-portable reader.

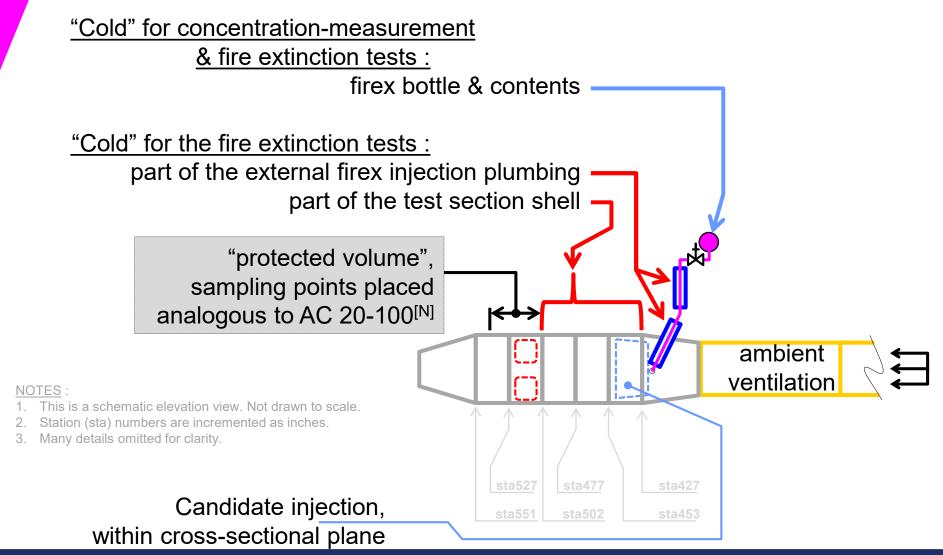
CF3I Testing, Conc. Field, "cold"/lv



Volume concentration data recorded & provided by Parker-Meggitt

Federal Aviation Administration

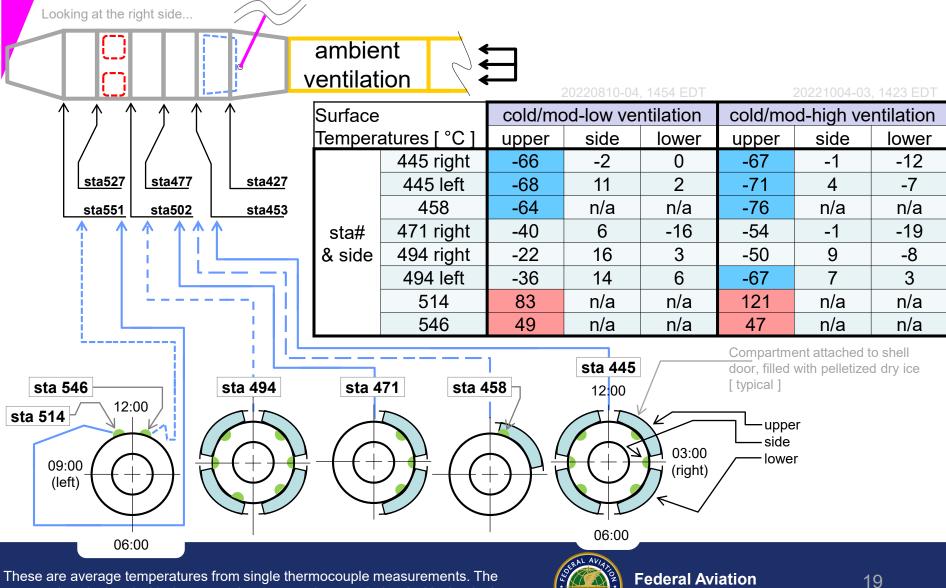
CF3I Testing, Conc. Field, "cold"/hv


Volume concentration data recorded & provided by Parker-Meggitt

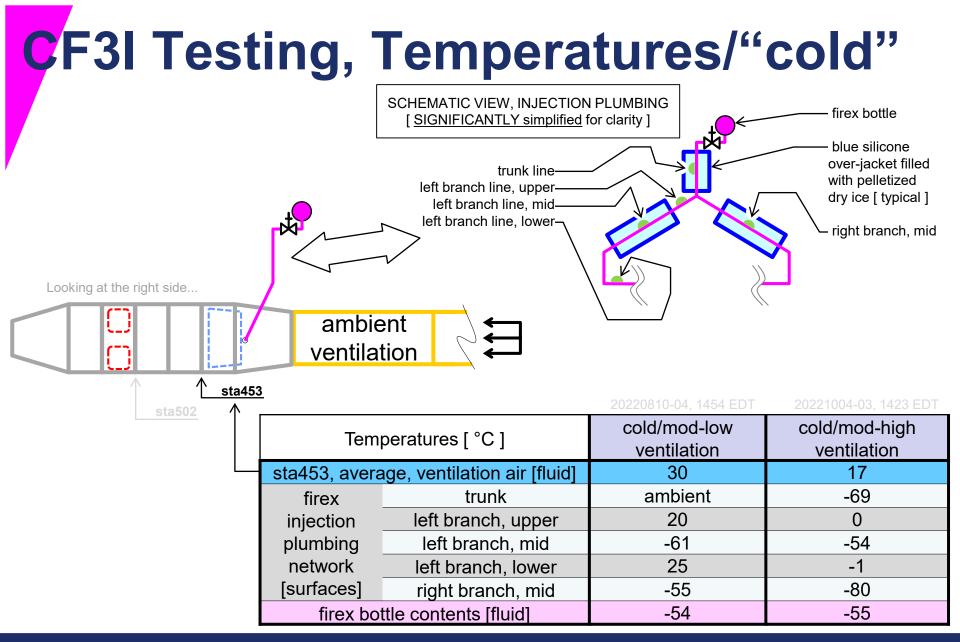
Federal Aviation Administration

- Challenged CF3I further, given disparities & the atypical experiences; "cold" testing [continued]
 - Stressed CF3I further...delivered each concentration field against fire...expected fire extinction
 - injected "cold" firex bottle contents
 - additional "cold" features in the test environment; portions of the :
 - firex injection plumbing; external to the test section
 - test section shell; 5 of 10 doors chilled
 - ignited dual/simultaneous spray & pool fires; fuel above flashpoint
 - needed to extinguish all fire
 - turned electrical ignition sources off post-ignition; all else as is
 - spray-fire fuel flow stopped following CF_3I transit

[N] The "protected" volume spanned sta502 to approximately sta535 for "cold" testing. This differs from that for MPSHRe/rev03 & 04 testing, which spans sta490 to sta514.



Federal Aviation Administration


- Each f_ext^[O] test was 180 seconds long
 - captured "flat-line" pre-fire ambient ≈ 20 seconds
 - pool fire had 90-sec pre-burn, spray pre-burn 45 sec
 - firex bottle discharge t ≈ 110 sec
 - fuel sprayed 10+ seconds after injection to assure CF3I adequately extinguished the fire, not fuel starvation

CF3I Testing, Temperatures/"cold"

average is calculated with data spanning 2 seconds, sampled at 25 Hz, beginning approximately 5 seconds before CF3I injection.

These are average temperatures from single thermocouple measurements, except the sta453 value is an average of 8. The average is calculated with data spanning 2 seconds, sampled at 25 Hz, beginning approximately 5 seconds before CF3I injection.

CF3I Testing, Results/"cold"

All fire extinguished, without ambiguity

- performed post-test reviews on the numerical/visual data to assure defined constraints were satisfied
- took 4 attempts to perform an acceptable mod-lowventilation test; 1 for the mod-high-ventilation test

CF3I Testing, Conclusion

- An applicable amount of investigation & testing occurred with CF3I per MPSHRe/rev03 & 04^[P]
 - sole focus here is defining proposed certification criteria
 - MPSHRe/rev03 => 7.1%v/v interim concentration criterion
 - literature review affirmed 7.1%v/v as plausible
 - MPSHRe/rev04 => retained 7.1%v/v as plausible
 - local "cold" testing demonstrated 7.1%v/v as plausible
- Proposed FAA certification criteria for CF₃I :
 - -7.1%v/v CF₃I for 1/2 second

[P] All activity regarding the search for a set of proposed certification per MPSHRe/rev04 implies consistence with the historically-defined residence time of 1/2 second for any given concentration. An alternate residence time is always a possiblity, however advance coordination with the appropriate organizations is strongly advised.

Project Acknowledgements

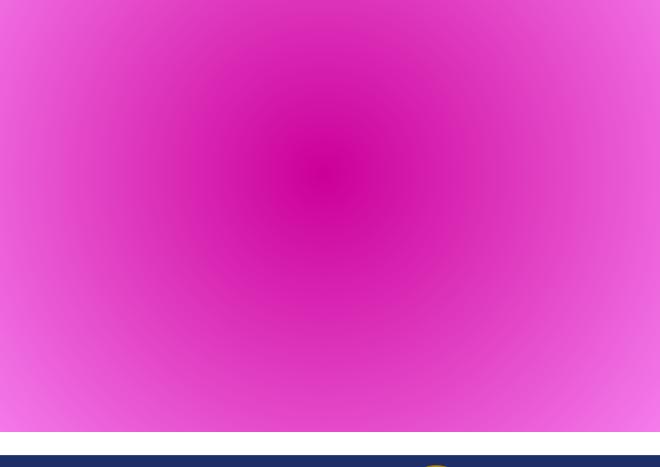
...my apologies to those I overlooked, as this work sporadically occurred across a span of 20 years & my memory likely is not 100% correct.

FAA Technical Center, Fire Safety Branch

FAA Fire Safety Branch : Dave Blake, Dick Hill, Gus Sarkos, Larry Fitzgerald, Tim Smith, Tom Carmen, Wayne Eichner, Louise Speitel, Rob Morrison

Diakon Solutions : Ed Sica, Mark Materio, Gino Zazenski, Jason Fleming

Boeing


Alan Macias, Robert Wright, Dan Baisley, Jade Miller, Connie Phung, Sham Hariram

• Parker-Meggitt (Pacific Scientific HTL KinTech)

Chris Sevilla, Samir Tambe, William "Bill" Meserve

APPENDIX SLIDES

Appendix/ references

Advisory Circular 20-100, 1977, "General Guidelines for Measuring Fire-Extinguishing Agent Concentrations in Powerplant Compartments," United States Department of Transportation, Federal Aviation Administration, Washington, D.C., U.S.A.

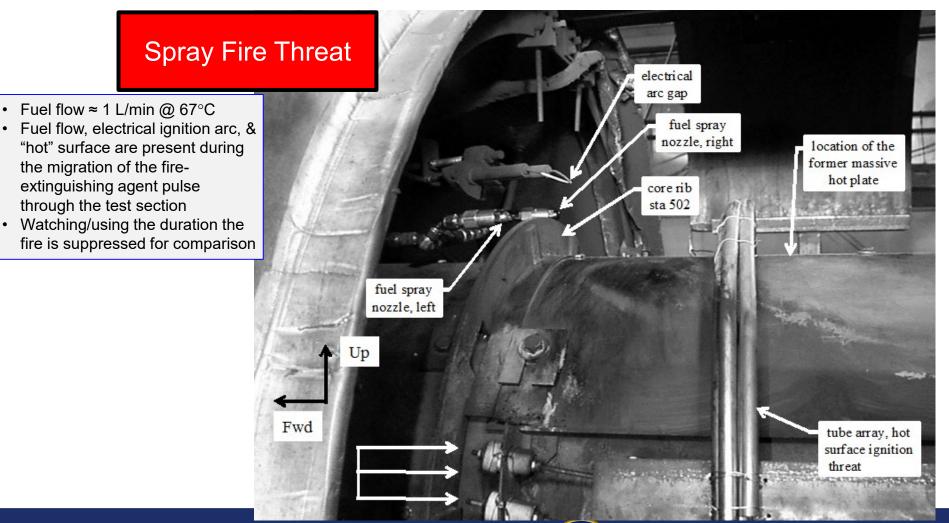
Chamberlain, G., 1970, "Criteria for Aircraft Installation and Utilization of an Extinguishing Agent Recorder", Report No. FAA-DS-70-3, Federal Aviation Administration, National Aviation Facilities Experimental Center, Atlantic City, New Jersey, U.S.A.

Demaree, J.E., and Dierdorf, P.R., 1959, "Aircraft Installation and Operation of an Extinguishing Agent Recorder", Technical Development Report No. 403, Federal Aviation Administration, National Aviation Facilities Experimental Center, Atlantic City, New Jersey, U.S.A.

E.I. DuPont de Nemours & Company, 1966, "Thermodynamic Properties DuPont Halon 1301 Fire Extinguishant", technical manual T-1301, Wilmington, Delaware, U.S.A.

Huber, M., 16Sep2013, personal communication, National Institute of Standards and Technology, Material Measurement Laboratory, Boulder, Colorado , U.S.A.

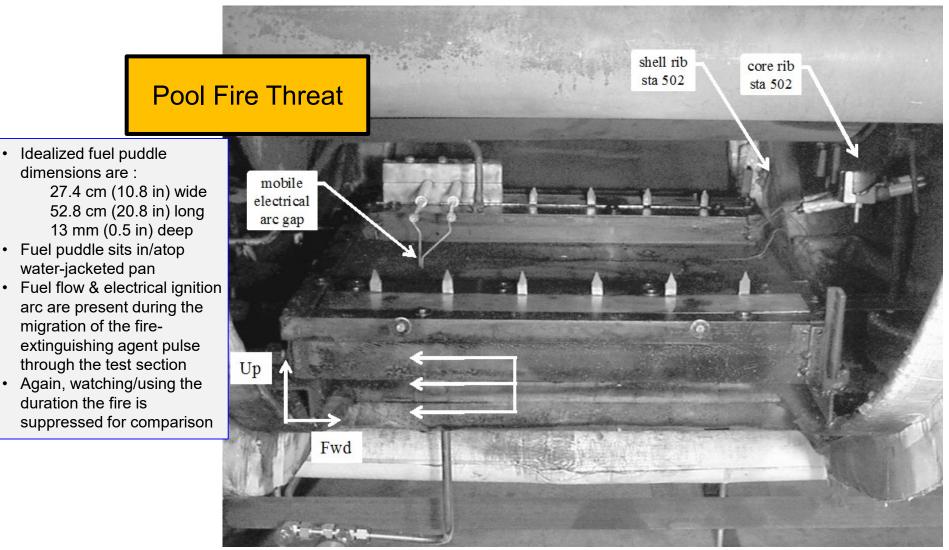
Ingerson, D., 2010, "Minimum Performance Standards for Halon 1301 Replacement in the Fire Extinguishing Agents/Systems of Civil Aircraft Engine and Auxiliary Power Unit Compartments, revision 04", draft/working document, United States Department of Transportation, Federal Aviation Administration, W.J. Hughes, Technical Center, Atlantic City, New Jersey, U.S.A. AIChtEEtEEpEs://www.fire.tc.faa.gov/pdf/systems/MPSErev04_MPSeRev04doc-02submtd.pdf


McBee, E.T., et al, 1950, "Final Report on Fire Extinguishing Agents for the Period September 1, 1947 to June 30, 1950 Covering Research Conducted by the Purdue Research Foundation and the Department of Chemistry under Contract W44-009eng-5057 with Army Engineers Research and Development Laboratories, Fort Belvoir."

National Fire Protection Association, 2007, "NFPA 2001 Standard on Clean Agent Fire Extinguishing Systems," 2008 Edition, Quincy, MA, U.S.A.

Yang J.C., Manzello S.L., Nyden, M.R., Connaghan, M.D., "Discharge of CF3I in a Cold Simulated Aircraft Engine Nacelle", National Institute of Standards and Technology, Building and Fire Research Laboratory, Gaithersburg, Maryland, U.S.A.

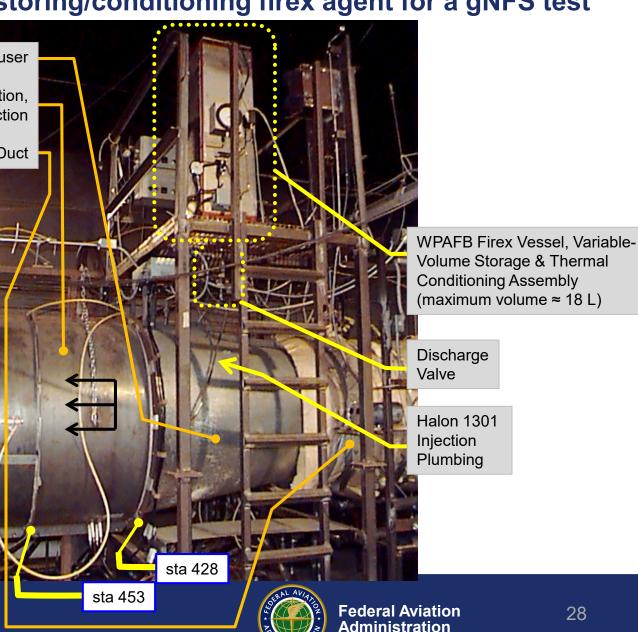
Appendix/ the SPRAY Fire Threat in the FAATC gNFS



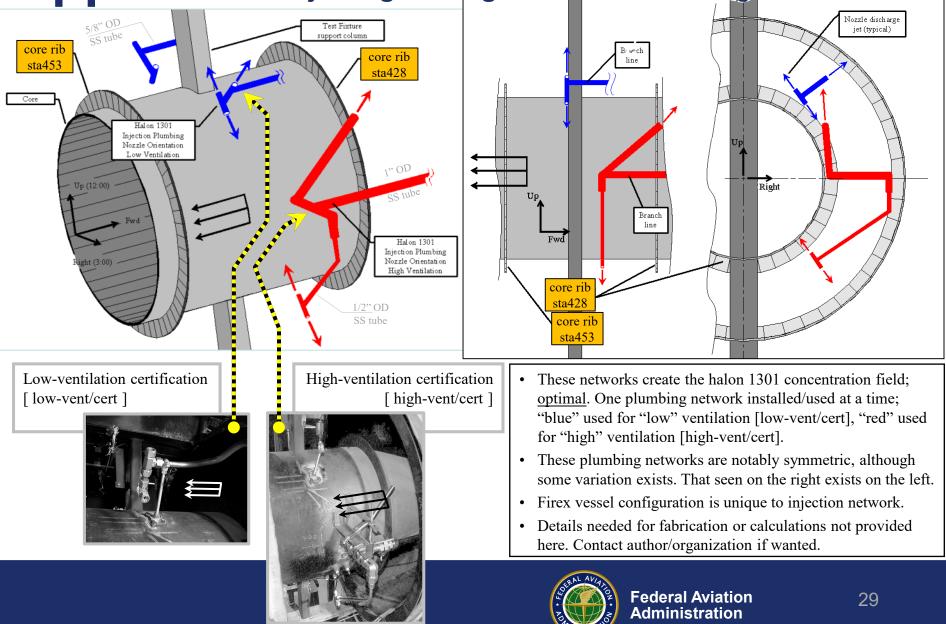
FAATC = Federal Aviation Administration WJ Hughes Technical Center gNFS = generic nacelle fire simulator

Federal Aviation Administration

Appendix/ the POOL Fire Threat in the FAATC gNFS

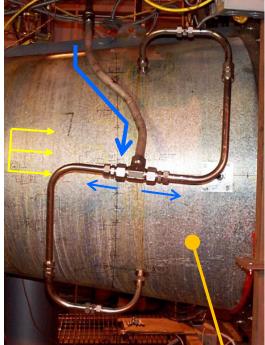

Appendix/ storing/conditioning firex agent for a gNFS test

Test Section's Inlet Diffuser

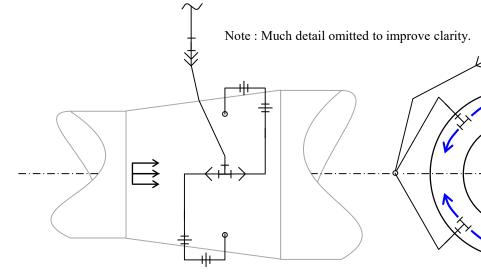

Test Section's Annular Section. Constant Cross Section

Approach Duct

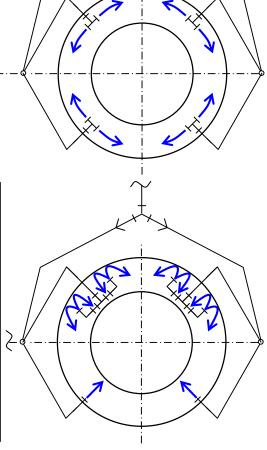
- This assembly & its variations were used for all halon 1301 & CF3I MPSHRe/rev03 testing. Firex agent & nitrogen are introduced as needed into a pre-determined storage volume & then thermally conditioned as needed for test; contents were heated during MPSHRe/rev03 testing.
- A Parker-Meggitt aircraft firex bottle & its preparations for test replaced the WPAFB firex vessel during MPSHRe/rev04 & /"cold" testing. The firex bottle was heated in an FAAowned oven for MPSHRe/rev04 testing & immersed in a pelletized dry ice bath for the "cold" testing.



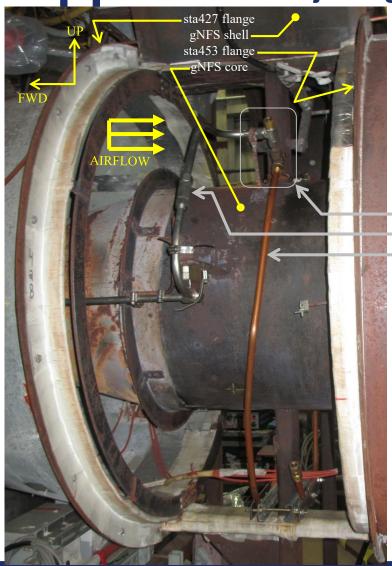
Appendix/ injecting firex agent into the FAATC gNFS

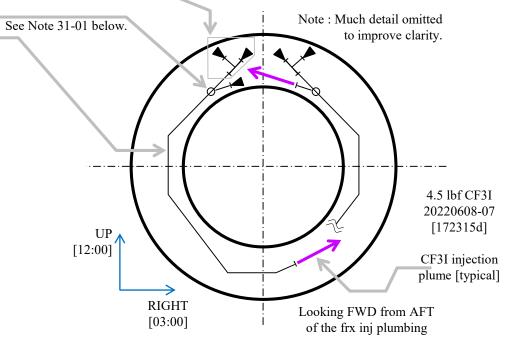


Appendix/ injecting firex agent into the FAATC gNFS


Generic Candidate Injection Plumbing, [exterior, "non-optimal"]

Test Section's Inlet Diffuser

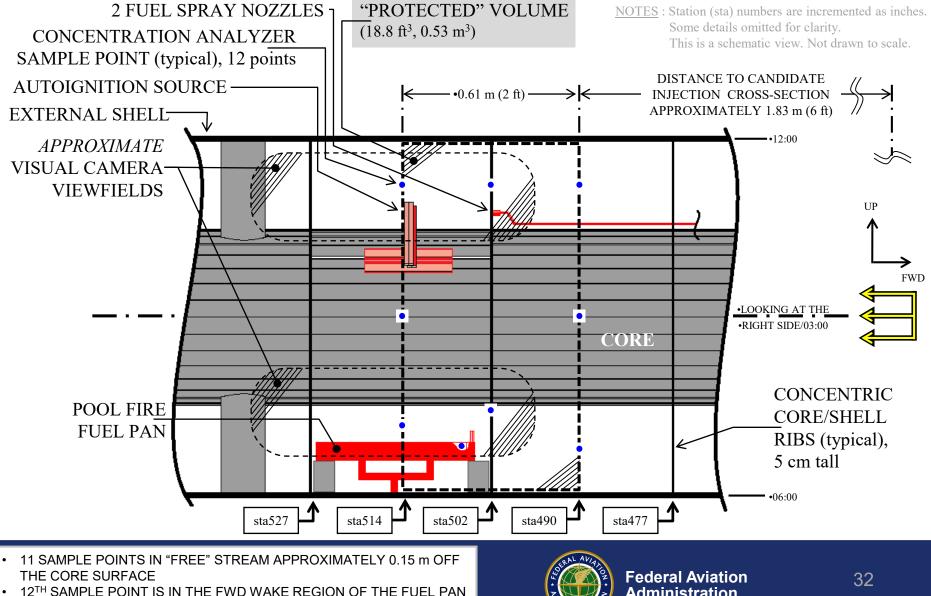

- Firex agent injection plumbing networks used during MPSHRe/rev03 testing to create the CF3I concentration fields; <u>non-optimal</u>. Providing conceptual views here.
- Used [a] a variant of the low-vent/cert injection plumbing network during CF3I's MPSHRe/rev04 & [b] variants of the low- & high-vent/cert injection plumbing networks during "cold" testing.
- One plumbing network installed/used at a time.
- Firex vessel/bottle configuration is unique to injection network.
- Details needed for fabrication or calculations not provided here. Contact author/organization if wanted.



Federal Aviation Administration

Appendix/ injecting firex agent into the FAATC gNFS

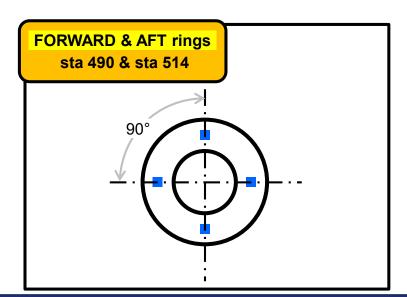
- This is the firex agent injection plumbing network used to create the CF3I concentration field in the modified-low ventilation during "cold" testing.
- Firex bottle configuration is unique to this injection network.
- Details needed for fabrication or calculations not provided here. Contact author/organization if wanted.
- The firex injection plumbing network used for CF3I "cold" testing at modifiedhigh ventilation was a variant of the high-vent/cert network. This plumbing network inside the gNFS test section was not altered, thus is not illustrated here. Variation outside the test occurred & is illustrated elsewhere in this file.

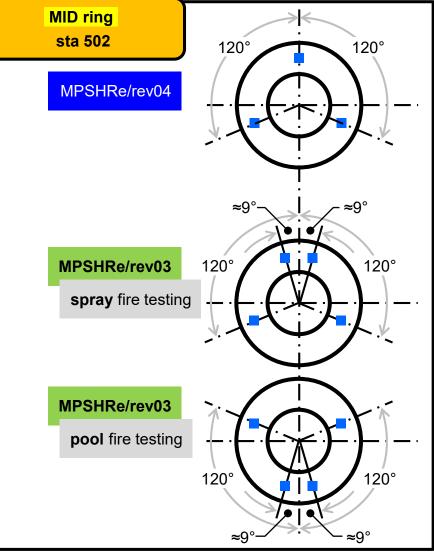


Note 31-01. The time when this image was captured preceded the plumbing configuration indicated in the associated schematic image. The image does not capture the schematically-indicated installation details for the identified tee included in the left branch line nor its peer in the right branch line.

Federal Aviation Administration

Appendix/ Gas Sampling Geometry, MPSHRe/rev04

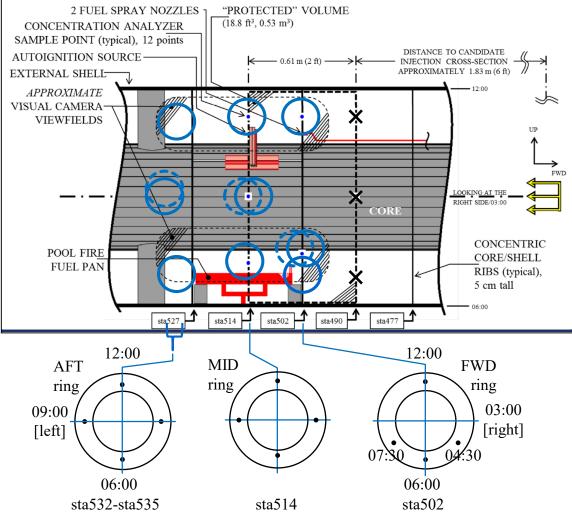



"PROTECTED" VOLUME : ≈ 0.61 m LONG x 0.61 m ID x 1.2 m OD

Appendix/ Gas Sampling Geometry, MPSHRe/rev04 Versus rev03

NOTES :

- 1. Sample-point geometry on the forward [sta490] & aft [sta514] sample rings remains consistent for both MPSHRe revisions; 12:00, 03:00, 06:00, & 09:00.
- 2. MPSHRe/rev04's wake-region sample point nonexistent for MPSHRe/rev03 testing; point is aft of & below the fuel pan's forward lip
- 3. Sample points on the mid ring [sta502] changed between MPSHRe/rev04 & /rev03, & during MPSHRe/rev03 testing, this ring's orientation related to the type of fire threat present when testing.



Appendix/ Gas Sampling Geometry, "cold" testing

Protected Volume & View-field

ch#	gNFS sta #	clok pos	stream pos
01	532	0545	freestream
02	534	0930	freestream
03	535	0300	freestream
04	532	1200	freestream
05	502	1200	freestream
06	502	0430	freestream
07	502	0730	freestream
08	514	1200	freestream
09	514	0300	freestream
10	514	0600	freestream
11	514	0900	freestream
12	502	0600	freestream

...length of sample-point geometry approx 33" [sta535 – sta502 = 33 inches ...all sample points are in the "free stream"

Appendix/ CF₃I test results, table of basic individual test results

Grouping	FAA Test	MPSHRe	Test	Firex	Ventilation	Fire	MPSHRe		EVC	HSRVC	RTD
	Identification	Revision	Туре	Agent		Threat	bracket type	Weight [lbf]	[%v/v CF3I]	[%v/v CF3I]	[sec]
A_01	20020045 40	2	fast	halan 1201		anna (tunkina fual	h a n a h na a nl r	2.6	E C		1.46
A01	20030915-10	3	f_ext	halon 1301	high	spray/turbine fuel	benchmark	3.6	5.6	n/a	
A02	20030915-11	3	f_ext	halon 1301	high	spray/turbine fuel	benchmark	3.6	5.6	n/a	1.55
A03	20030916-10	3	f_ext		high	spray/turbine fuel	benchmark	3.6	5.6	n/a	1.20
A04	20030916-11	3	f_ext	halon 1301	high	spray/turbine fuel	benchmark	3.6	5.6	n/a	1.35
A05	20030916-12	3	f_ext	halon 1301	high	spray/turbine fuel	benchmark	3.6	5.6	n/a	1.27
A06	20030917-10	3	f_ext	CF3I	high	spray/turbine fuel	equivalent	4.5	5.6	n/a	1.33
A07	20030917-11	3	f_ext	CF3I	high	spray/turbine fuel	equivalent	4.5	5.6	n/a	1.23
A08	20030917-12	3	f_ext	CF3I	high	spray/turbine fuel	equivalent	4.5	5.6	n/a	1.53
A09	20030917-13	3	f_ext	CF3I	high	spray/turbine fuel	equivalent	4.5	5.6	n/a	1.58
A10	20030918-10	3	f_ext	CF3I	high	spray/turbine fuel	equivalent	4.5	5.6	n/a	1.51
A11	20030922-10	3	f_ext	CF3I	high	spray/oil	equivalent	4.5	5.6	n/a	1.66
A12	20030923-10	3	f ext	CF3I	high	spray/oil	equivalent	4.5	5.6	n/a	1.78
A13	20030923-11	3	f ext	CF3I	high	spray/oil	equivalent	4.5	5.6	n/a	1.62
A14	20031002-12	3	f ext	CF3I	high	spray/hyd fluid	equivalent	4.5	5.6	n/a	1.56
A15	20031002-13	3	f ext	CF3I	high	spray/hyd fluid	equivalent	4.5	5.6	n/a	1.78
A16	20031002-14	3	f ext	CF3I	high	spray/hyd fluid	equivalent	4.5	5.6	n/a	1.57
A17	20031008-13	3	a dis	CF3I	high	n/a	equivalent	4.5	5.6	n/a	n/a
A18	20031009-10	3	a dis	CF3I	high	n/a	equivalent	4.5	5.6	n/a	n/a
A19	20031009-11	3	a_dis	CF3I	high	n/a	equivalent	4.5	5.6	n/a	n/a

EVC = equivalent volume concentration, resulting from MPSHRe/rev03 procedure HSRVC = half-second resident volume concentration

a dis = firex agent distribution test, to measure concentration field

f_ext = fire extinguishment test, to measure reignition time delay

Appendix/ CF₃I test results, table of basic individual test results

Grouping	FAA Test	MPSHRe	Test	Firex	Ventilation	Fire	MPSHRe	Injected	EVC	HSRVC	RTD
Crooping	Identification	Revision	Туре	Agent	v on alation	Threat	bracket type	Weight [lbf]	[%v/v CF3I]	[%v/v CF3I]	[sec]
B01	20060809-10	3	f_ext	halon 1301	high	pool/turbine fuel	benchmark	3.6	2.7	n/a	2.89
B02	20060809-11	3	f_ext	halon 1301	high	pool/turbine fuel	benchmark	3.6	2.7	n/a	2.81
B03	20060810-10	3	f_ext	halon 1301	high	pool/turbine fuel	benchmark	3.6	2.7	n/a	3.25
B04	20060810-11	3	f_ext	halon 1301	high	pool/turbine fuel	benchmark	3.6	2.7	n/a	3.45
B05	20060810-12	3	f_ext	halon 1301	high	pool/turbine fuel	benchmark	3.6	2.7	n/a	3.04
B06	20060823-10	3	f_ext	CF3I	high	pool/turbine fuel	inferior	2	2.7	n/a	2.63
B07	20060823-11	3	f_ext	CF3I	high	pool/turbine fuel	inferior	2	2.7	n/a	1.94
B08	20060823-12	3	f_ext	CF3I	high	pool/turbine fuel	inferior	2	2.7	n/a	2.41
B09	20060824-10	3	f_ext	CF3I	high	pool/turbine fuel	inferior	2	2.7	n/a	2.44
B10	20060824-11	3	f_ext	CF3I	high	pool/turbine fuel	inferior	2	2.7	n/a	2.30
B11	20060824-12	3	f_ext	CF3I	high	pool/turbine fuel	superior	3.5	2.7	n/a	4.63
B12	20060824-13	3	f_ext	CF3I	high	pool/turbine fuel	superior	3.5	2.7	n/a	3.97
B13	20060824-14	3	f_ext	CF3I	high	pool/turbine fuel	superior	3.5	2.7	n/a	4.21
B14	20060825-11	3	f_ext	CF3I	high	pool/turbine fuel	superior	3.5	2.7	n/a	4.38
B15	20060825-12	3	f_ext	CF3I	high	pool/turbine fuel	superior	3.5	2.7	n/a	4.44
B16	20060829-14	3	a_dis	CF3I	high	pool/turbine fuel	superior	3.5	2.7	n/a	n/a
B17	20060829-15	3	a_dis	CF3I	high	pool/turbine fuel	superior	3.5	2.7	n/a	n/a
B18	20060829-17	3	a_dis	CF3I	high	pool/turbine fuel	superior	3.5	2.7	n/a	n/a
B19	20060829-18	3	a_dis	CF3I	high	pool/turbine fuel	inferior	2	2.7	n/a	n/a
B20	20060829-19	3	a_dis	CF3I	high	pool/turbine fuel	inferior	2	2.7	n/a	n/a
B21	20060830-11	3	a_dis	CF3I	high	pool/turbine fuel	inferior	2	2.7	n/a	n/a

EVC = equivalent volume concentration, resulting from MPSHRe/rev03 procedure

HSRVC = half-second resident volume concentration

a_dis = firex agent distribution test, to measure concentration field

f_ext = fire extinguishment test, to measure reignition time delay

Grouping	FAA Test	MPSHRe	Test	Firex	Ventilation	Fire	MPSHRe	Injected	EVC	HSRVC	RTD
Crouping	Identification	Revision	Туре	Agent	Ventilation	Threat	bracket type	Weight [lbf]	[%v/v CF3I]	[%v/v CF3I]	[sec]
C01	20040323-10	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	1.47
C02	20040323-11	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	2.15
C03	20040324-10	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	1.80
C04	20040324-11	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	2.12
C05	20040324-12	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	1.62
C06	20040408-10	3	f_ext	CF3I	low	spray/oil	superior	13	7.1	n/a	3.14
C07	20040408-11	3	f_ext	CF3I	low	spray/oil	superior	13	7.1	n/a	3.24
C08	20040408-12	3	f_ext	CF3I	low	spray/oil	superior	13	7.1	n/a	3.17
C09	20040421-10	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	1.57
C10	20040421-11	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	3.12
C11	20040422-10	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	3.57
C12	20040422-11	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	3.19
C13	20040422-12	3	f_ext	halon 1301	low	spray/oil	benchmark	2.5	7.1	n/a	2.85
C14	20040427-10	3	f_ext	CF3I	low	spray/oil	inferior	12.5	7.1	n/a	3.29
C15	20040427-11	3	f_ext	CF3I	low	spray/oil	inferior	12.5	7.1	n/a	2.35
C16	20040428-10	3	f_ext	CF3I	low	spray/oil	inferior	12.5	7.1	n/a	2.10
C17	20040428-11	3	f_ext	CF3I	low	spray/oil	inferior	12.5	7.1	n/a	2.75
C18	20040429-12	3	a_dis	CF3I	low	spray/oil	inferior	12.5	7.1	n/a	n/a
C19	20040429-13	3	a_dis	CF3I	low	spray/oil	inferior	12.5	7.1	n/a	n/a
C20	20040429-14	3	a_dis	CF3I	low	spray/oil	inferior	12.5	7.1	n/a	n/a
C21	20040429-15	3	a_dis	CF3I	low	spray/oil	superior	13	7.1	n/a	n/a
C22	20040429-16	3	a_dis	CF3I	low	spray/oil	superior	13	7.1	n/a	n/a
C23	20040429-17	3	a_dis	CF3I	low	spray/oil	superior	13	7.1	n/a	n/a

EVC = equivalent volume concentration, resulting from MPSHRe/rev03 procedure

HSRVC = half-second resident volume concentration

a_dis = firex agent distribution test, to measure concentration field

f_ext = fire extinguishment test, to measure reignition time delay

Grouping	FAA Test	MPSHRe	Test	Firex	Ventilation	Fire	MPSHRe	Injected	EVC	HSRVC	RTD
Grouping	Identification	Revision	Туре	Agent	, on a dom	Threat	bracket type	Weight [lbf]	[%v/v CF3I]	[%v/v CF3I]	[sec]
D01	20060830-14	3	f_ext	halon 1301	low	spray/turbine fuel	benchmark	2.5	n/a	n/a	3.57
D02	20060831-10	3	f_ext	halon 1301	low	spray/turbine fuel	benchmark	2.5	n/a	n/a	3.64
D03	20060831-11	3	f_ext	halon 1301	low	spray/turbine fuel	benchmark	2.5	n/a	n/a	3.80
D04	20060831-12	3	f_ext	halon 1301	low	spray/turbine fuel	benchmark	2.5	n/a	n/a	3.27
D05	20060831-13	3	f_ext	halon 1301	low	spray/turbine fuel	benchmark	2.5	n/a	n/a	4.10
D06	20060905-11	3	f_ext	CF3I	low	spray/turbine fuel	inferior	13	4.9	n/a	3.33
D07	20060905-12	3	f_ext	CF3I	low	spray/turbine fuel	inferior	13	4.9	n/a	3.33
D08	20060906-11	3	f_ext	CF3I	low	spray/turbine fuel	inferior	13	4.9	n/a	3.32
D09	20060906-12	3	f_ext	CF3I	low	spray/turbine fuel	inferior	13	4.9	n/a	3.50
D10	20060906-13	3	f_ext	CF3I	low	spray/turbine fuel	inferior	13	4.9	n/a	2.63
D11	20060906-14	3	f_ext	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	4.20
D12	20060907-11	3	f_ext	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	4.34
D13	20060907-12	3	f_ext	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	3.04
D14	20060907-14	3	f_ext	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	2.67
D15	20060907-15	3	f_ext	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	3.87
D16	20060908-11	3	f_ext	CF3I	low	spray/turbine fuel	superior	13.5	4.9	n/a	1.84
D17	20060908-12	3	f_ext	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	2.51
D18	20060912-11	3	f_ext	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	2.87
D19	20060913-15	3	a_dis	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	n/a
D20	20060913-16	3	a_dis	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	n/a
D21	20060913-17	3	a_dis	CF3I	low	spray/turbine fuel	superior	14.5	4.9	n/a	n/a
D22	20060913-18	3	a_dis	CF3I	low	spray/turbine fuel	inferior	13	4.9	n/a	n/a
D23	20060914-12	3	a_dis	CF3I	low	spray/turbine fuel	inferior	13	4.9	n/a	n/a
D24	20060914-13	3	a_dis	CF3I	low	spray/turbine fuel	inferior	13	4.9	n/a	n/a

EVC = equivalent volume concentration, resulting from MPSHRe/rev03 procedure

HSRVC = half-second resident volume concentration

a_dis = firex agent distribution test, to measure concentration field

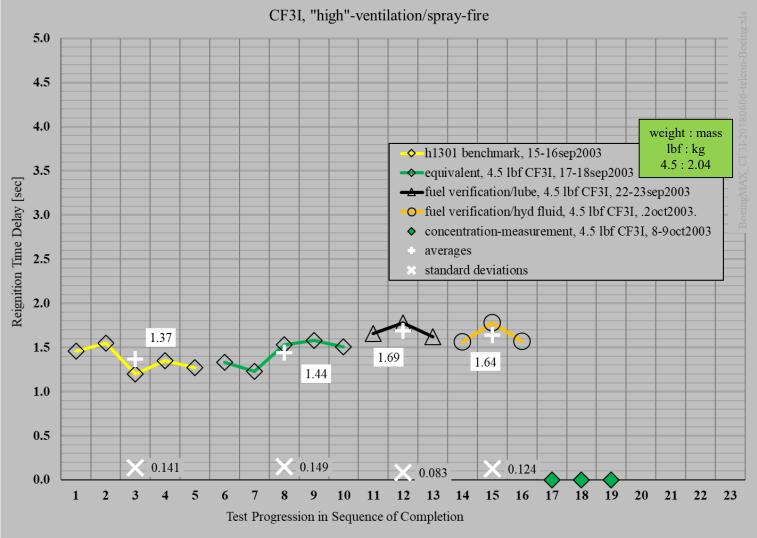
f_ext = fire extinguishment test, to measure reignition time delay

Grouping	FAA Test	MPSHRe	Test	Firex	Ventilation	Fire	MPSHRe		EVC	HSRVC	RTD
	Identification	Revision	Туре	Agent		Threat	bracket type	Weight [lbf]	[%v/v CF3I]	[%v/v CF3I]	[sec]
F 04	00040000 44	4	6	h alam 4004		n a al /4la ina a fial		0.5			E 04
E01	20040622-11	4	f_ext		low	pool/turbine fuel	benchmark	2.5	n/a	n/a	5.34
E02	20040622-12	4	f_ext		low	pool/turbine fuel	benchmark	2.5	n/a	n/a	4.77
E03	20040623-10	4	f_ext		low	pool/turbine fuel	benchmark	2.5	n/a	n/a	4.87
E04	20040623-11	4	f_ext		low	pool/turbine fuel	benchmark	2.5	n/a	n/a	5.77
E05	20040623-12	4	f_ext		low	pool/turbine fuel	benchmark	2.5	n/a	n/a	7.23
E06	20040714-10	4	f_ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	5.12
E07	20040714-11	4	f_ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	4.74
E08	20040714-12	4	f_ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	5.24
E09	20040715-10	4	f_ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	4.23
E10	20040715-11	4	f_ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	5.70
E11	20060620-11	4	f_ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	5.89
E12	20060620-12	4	f ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	5.81
E13	20060620-13	4	f ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	6.27
E14	20060621-11	4	f ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	5.74
E15	20060621-12	4	f_ext	halon 1301	low	pool/turbine fuel	benchmark	2.5	n/a	n/a	5.55

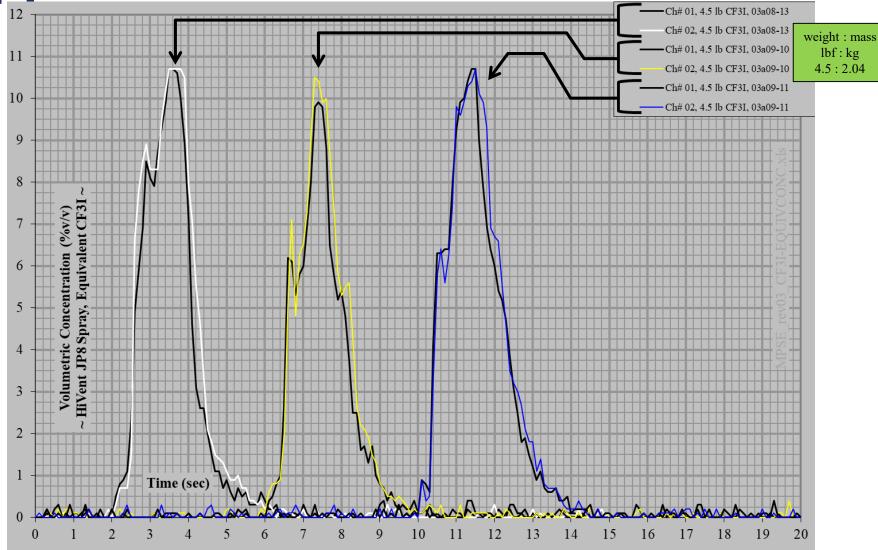
EVC = equivalent volume concentration, resulting from MPSHRe/rev03 procedure HSRVC = half-second resident volume concentration a_dis = firex agent distribution test, to measure concentration field

f_ext = fire extinguishment test, to measure reignition time delay

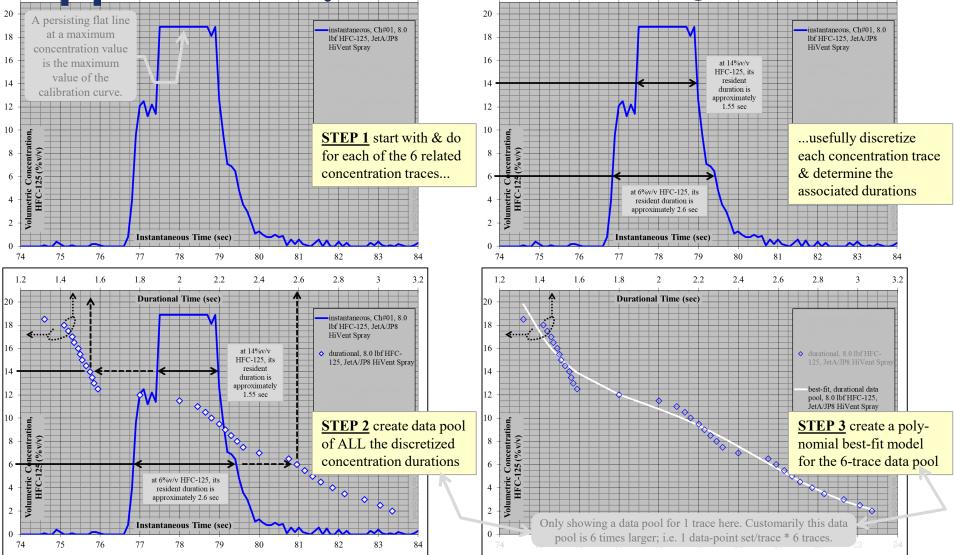
Grouping	FAA Test Identification	MPSHRe Revision	Test Type	Firex Agent	Ventilation	Fire Threat	MPSHRe bracket type	Injected Weight [lbf]	EVC [%v/v CF3I]	HSRVC [%v/v CF3I]	RTD [sec]
	Identification	TCEVISION	туре	Agent		Theat	bracket type				ျဒငပျ
E16	20191002-03	4	a dis	CF3I	low	pool/turbine fuel	inferior	3.1	n/a	7.5	n/a
E17	20191003-07	4	a dis	CF3I	low	pool/turbine fuel	inferior	3.1	n/a	6.8	n/a
E18	20191004-03	4	a dis	CF3I	low	pool/turbine fuel	inferior	3.1	n/a	5.9	n/a
E19	20191106-04	4	a dis	CF3I	low	pool/turbine fuel	inferior	3.1	n/a	6.3	n/a
E20	20191114-03	4	f ext	CF3I	low	pool/turbine fuel	inferior	3.1	n/a	n/a	4.87
E21	20191115-03	4	f_ext	CF3I	low	pool/turbine fuel	inferior	3.1	n/a	n/a	5.67
E22	20191119-03	4	f_ext	CF3I	low	pool/turbine fuel	inferior	3.1	n/a	n/a	5.08
E23	20191120-03	4	f_ext	CF3I	low	pool/turbine fuel	inferior	3.1	n/a	n/a	5.50
E24	20191120-05	4	f_ext	CF3I	low	pool/turbine fuel	inferior	3.1	n/a	n/a	5.53
E25	20211105-03	4	a_dis	CF3I	low	pool/turbine fuel	superior	3.6	n/a	6.8	n/a
E26	20211208-05	4	a_dis	CF3I	low	pool/turbine fuel	superior	3.6	n/a	7.4	n/a
E27	20211209-03	4	a_dis	CF3I	low	pool/turbine fuel	superior	3.6	n/a	6.7	n/a
E28	20191121-03	4	f_ext	CF3I	low	pool/turbine fuel	superior	3.6	n/a	n/a	5.47
E29	20191203-04	4	f_ext	CF3I	low	pool/turbine fuel	superior	3.6	n/a	n/a	6.11
E30	20191204-03	4	f_ext	CF3I	low	pool/turbine fuel	superior	3.6	n/a	n/a	7.24
E31	20191205-03	4	f_ext	CF3I	low	pool/turbine fuel	superior	3.6	n/a	n/a	5.63
E32	20211214-06	4	f_ext	CF3I	low	pool/turbine fuel	superior	3.6	n/a	n/a	5.10

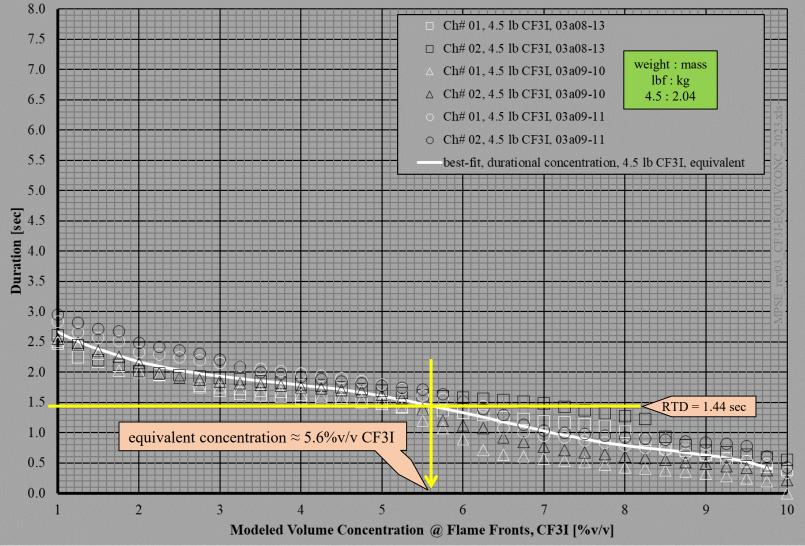

EVC = equivalent volume concentration, resulting from MPSHRe/rev03 procedure HSRVC = half-second resident volume concentration a dis = firex agent distribution test, to measure concentration field

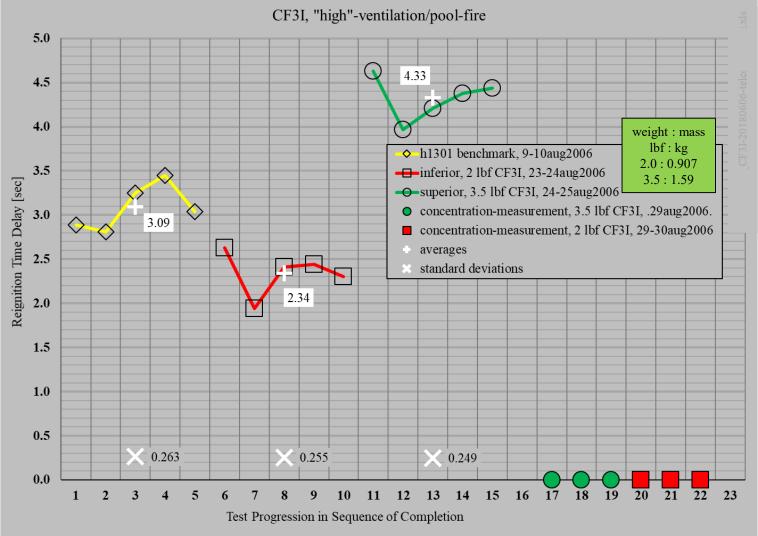
f ext = fire extinguishment test, to measure reignition time delay



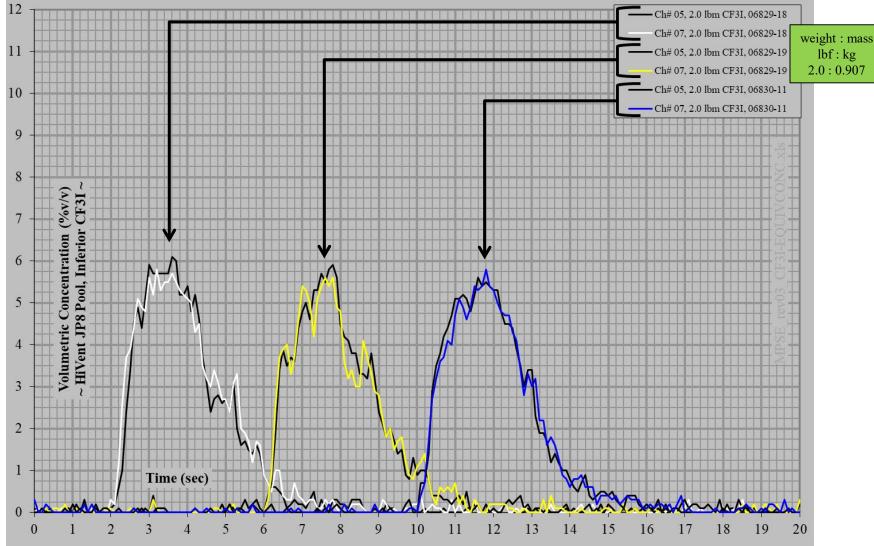
	high vent / spray fire				high-			
firex agent	CF ₃ Br CF ₃ I			CF ₃ Br	CF ₃ I			
dates of testing		15sep-2	oct2003		9.	9-30aug2006		
fuel	turbine	turbine turbine oil hyd						
firex injection plumbing configuration	high- vent/cert	generic			high- vent/cert	generic		weight : mass lbf : kg
injected weight [lbf]	3.6		equivalent 4.5	-	3.6	inferior 2.0	superior 3.5	3.6 : 1.63 4.5 : 2.04 2.0 : 0.907
RTD 01 [sec]	1.46	1.33	1.66	1.56	2.89	2.63	4.63	3.5 : 1.59
02	1.55	1.23	1.78	1.78	2.81	1.94	3.97	
03	1.20	1.53	1.62	1.57	3.25	2.41	4.21	
04	1.35	1.58	-	-	3.45	2.44	4.38	
05	1.27	1.51	-	-	3.04	2.30	4.44	
RTD, average	1.37	1.44	1.69	1.64	3.09	2.34	4.33	
RTD, standard deviation	0.141	0.149	0.083	0.124	0.263	0.255	0.249	
effective equivalent CF ₃ I volume concentration		5.6			2.7			
comments		none			ignored flame attachment in the fuel pan's wake region			

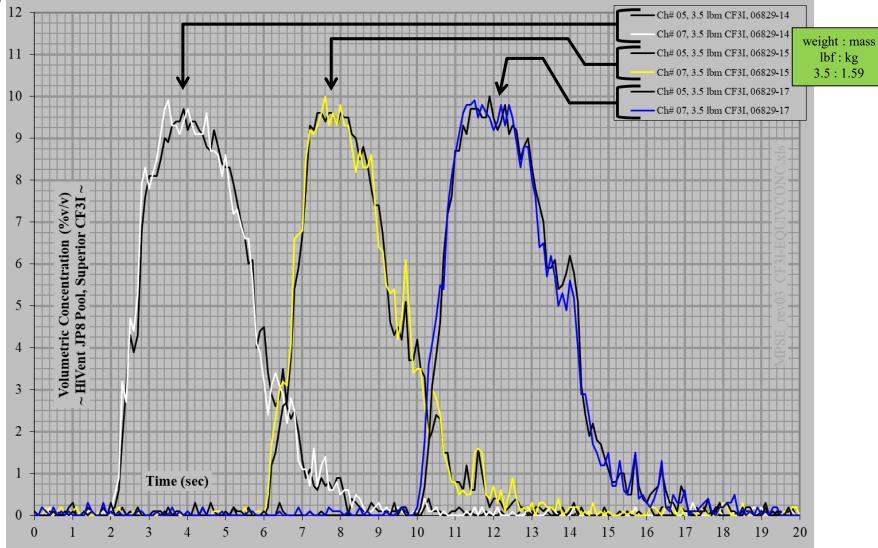




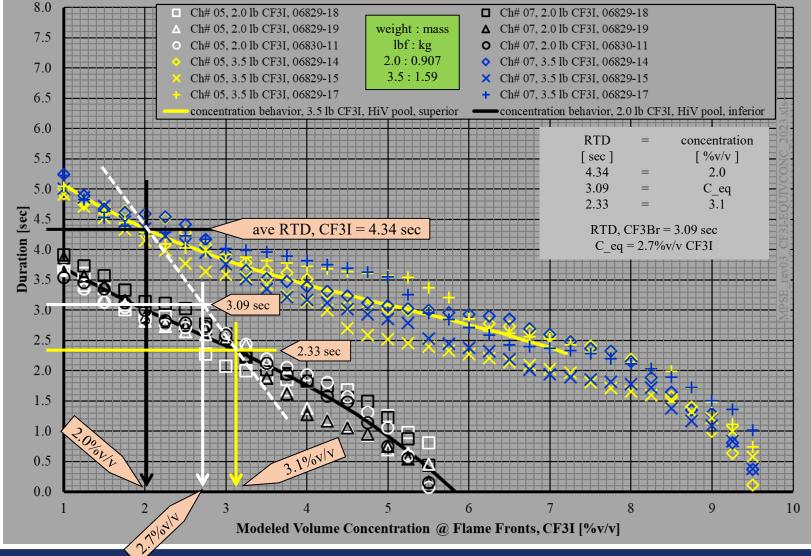


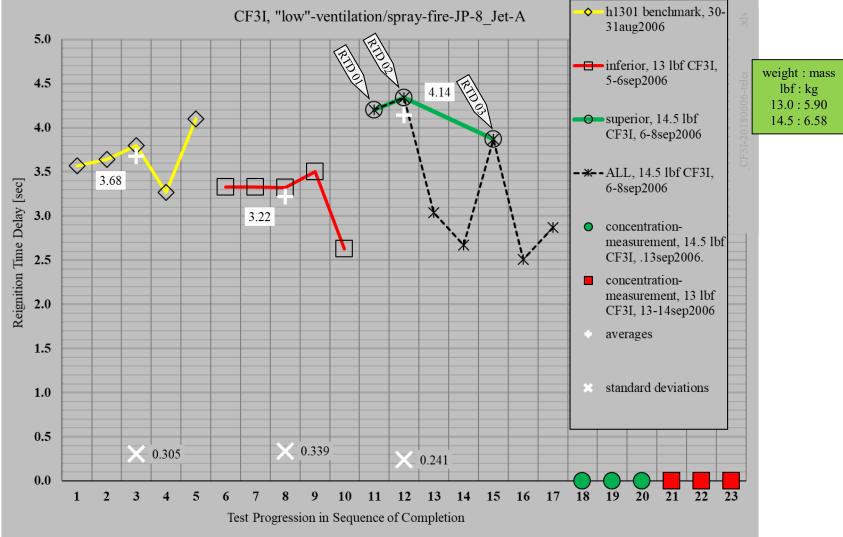
Notes : An arbitrarily-chosen, single concentration trace is used here to illustrate the concentration transformation process of MPSHRe/rev03. This procedure starts by transforming each of 6 concentration traces, 3 pairs resulting from 3 repeated tests, then representing them with a single best-fit polynomial equation. The transformed concentration behavior is then used with the associated fire suppression behavior [RTD] to determine an equivalent concentration.



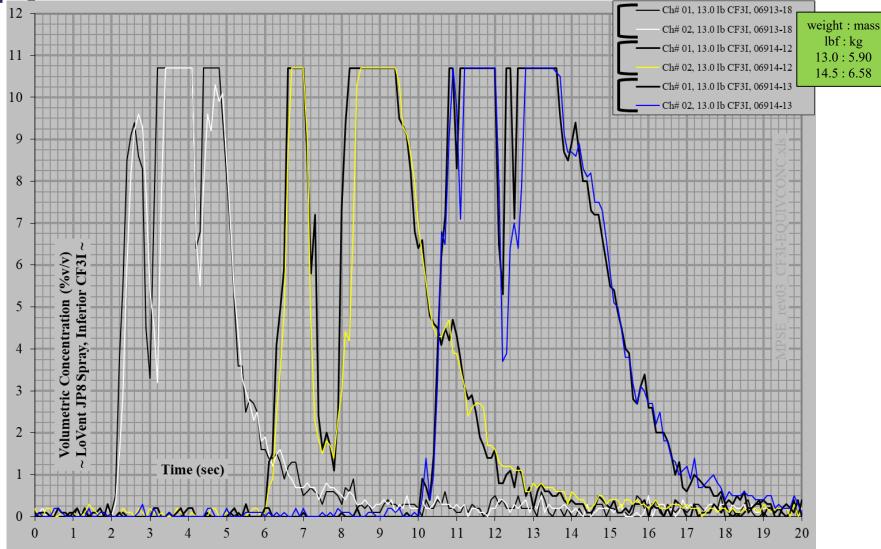


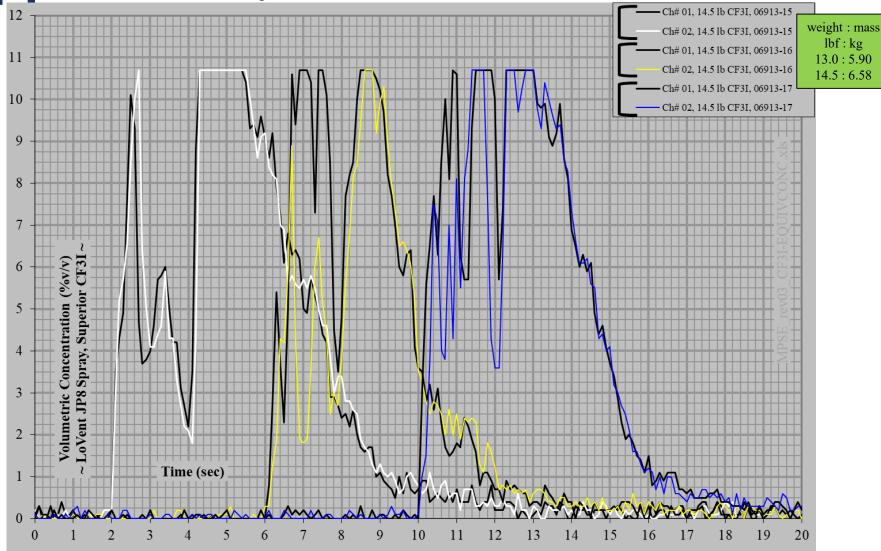
NOTE : During this testing flames remained present in the wake region of the fuel pan, outside of & downstream from the protected volume. Doubling the injected CF3I quantity did not eliminate them. Flames on the pan's fuel surface were completely extinguished.



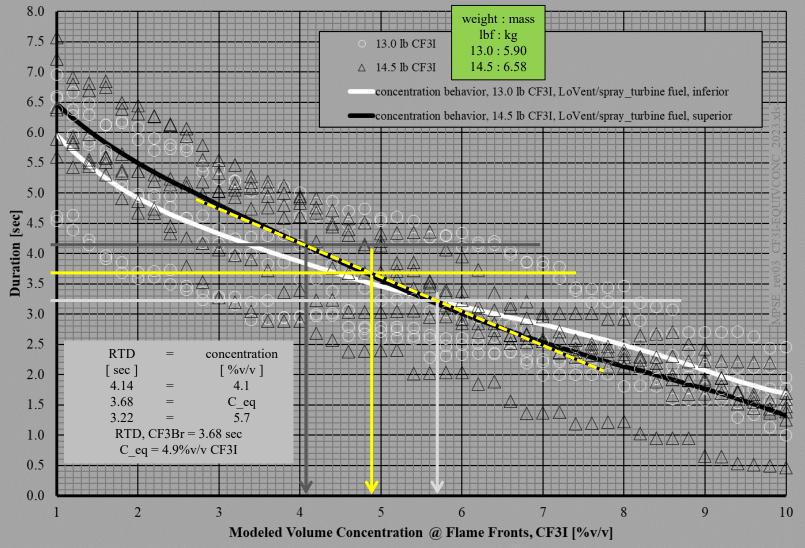

NOTE : During this testing flames remained present in the wake region of the fuel pan, outside of & downstream from the protected volume. Doubling the injected CF3I quantity did not eliminate them. Flames on the pan's fuel surface were completely extinguished.

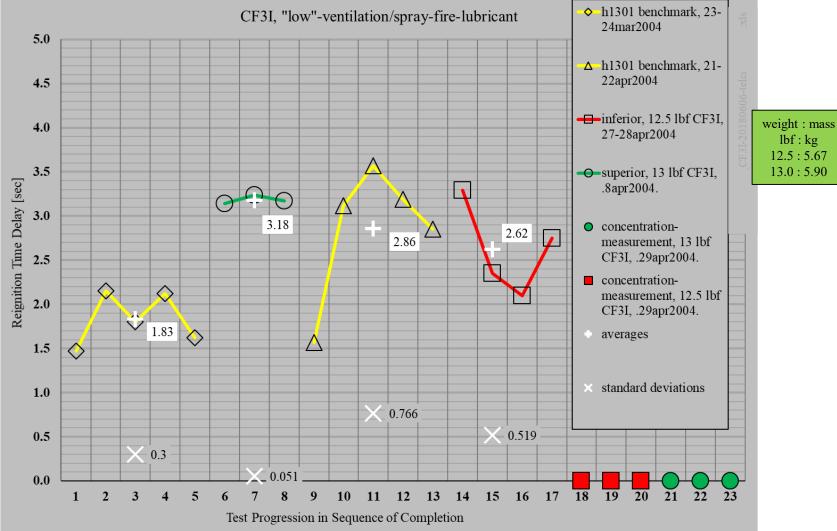
	low vent / spray fire								
firex agent	CF ₃ Br CF ₃ I		CF ₃ Br	CF ₃ I	CF ₃ Br	CF ₃ I			
dates of testing	30a	ug-14sep2	2006	23mar-29apr2004		21-29apr2004			
fuel	t	urbine fue	-1	oil [lubricant]					
firex injection plumbing configuration	low- vent/cert	gen	eric	low- vent/cert	generic	low- vent/cert	generic		
injected weight [lbf]	2.5	superior 14.5	inferior 13.0	2.5	superior 13.0	2.5	inferior 12.5		
RTD 01 [sec]	3.57	4.20 *	3.33	1.47	3.14	1.57	3.29		
02	3.64	4.34 *	3.33	2.15	3.24	3.12	2.35		
03	3.80	3.04	3.32	1.80	3.17	3.57	2.10		
04	3.27	2.67	3.50	2.12	-	3.19	2.75		
05	4.10	3.87 *	2.63	1.62	-	2.85	-		
06	-	2.51	-	-	-	-	-		
07	-	2.87	-	-	-	-	-		
RTD, average	3.68	3.86 *	3.22	1.83	3.18	2.86	2.62		
RTD, standard deviation	0.305	0.241 *	0.339	0.300	0.051	0.766	0.529		
effective equivalent CF ₃ I volume concentration	4.9			7.1					
comments	severa	several atypical situations addressed during this collection of work							

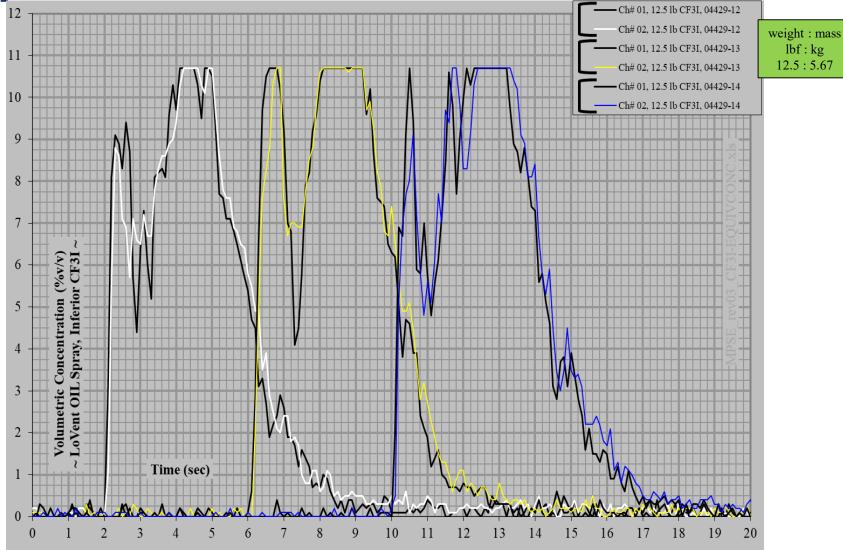

Note: The 3 asterisked [*] values were used to calculate the RTD average & standard deviation. Done so to create a conservative equivalent concentration given the observed scatter in the test results.

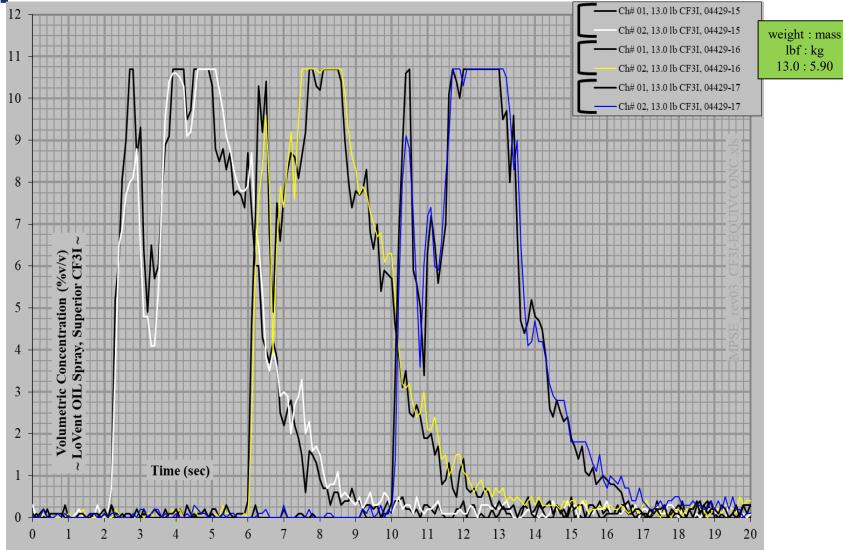


Note: The 3 values retained & used to calculate the RTD average & standard deviation are pointed out on this graph by arrows. Done so to create a plausible equivalent concentration given the observed scatter in the test results.

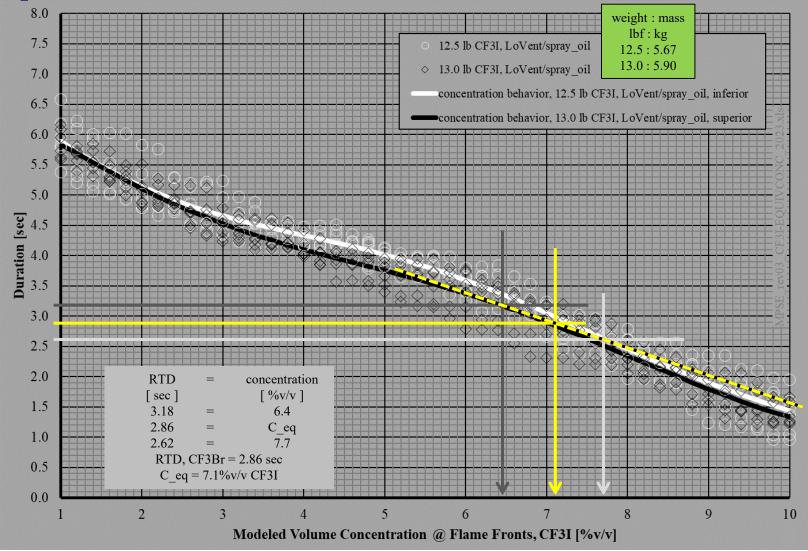




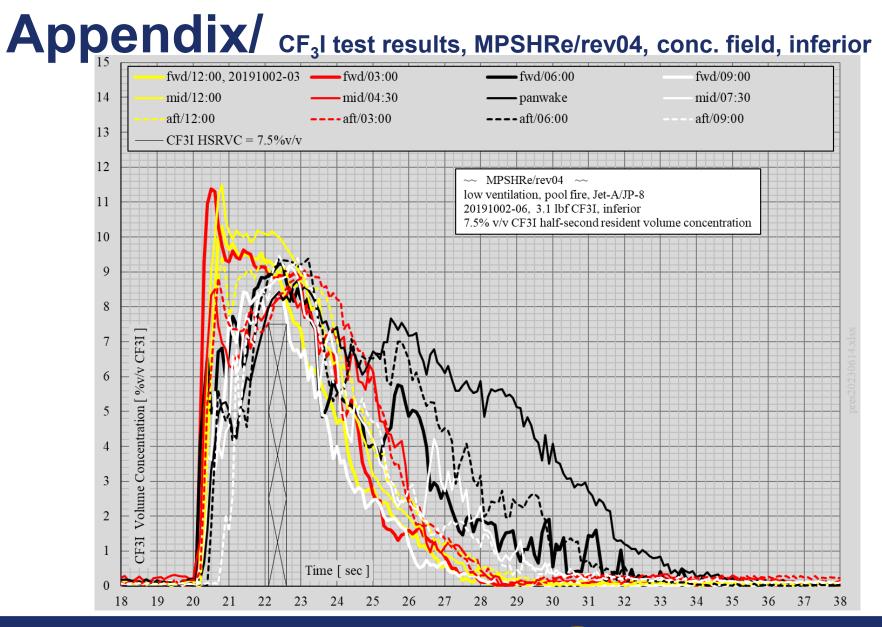


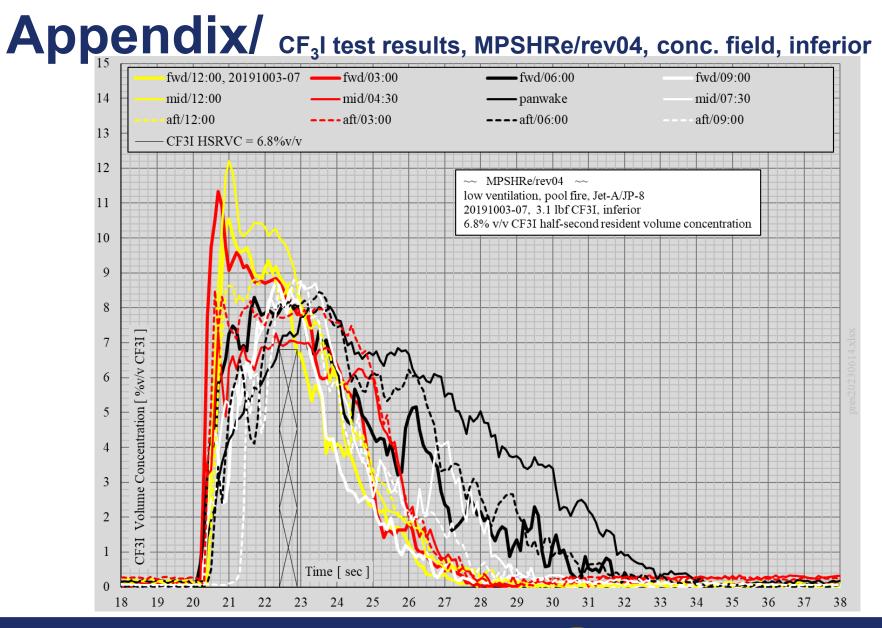


No obvious faulty equipment, faulty procedure[s] nor explanation found to explain the shift in the halon 1301 performance. Basis for the outcome regarding CF3I here utilized the second benchmark grouping due to it apparently fitting better to the CF3I behaviors.

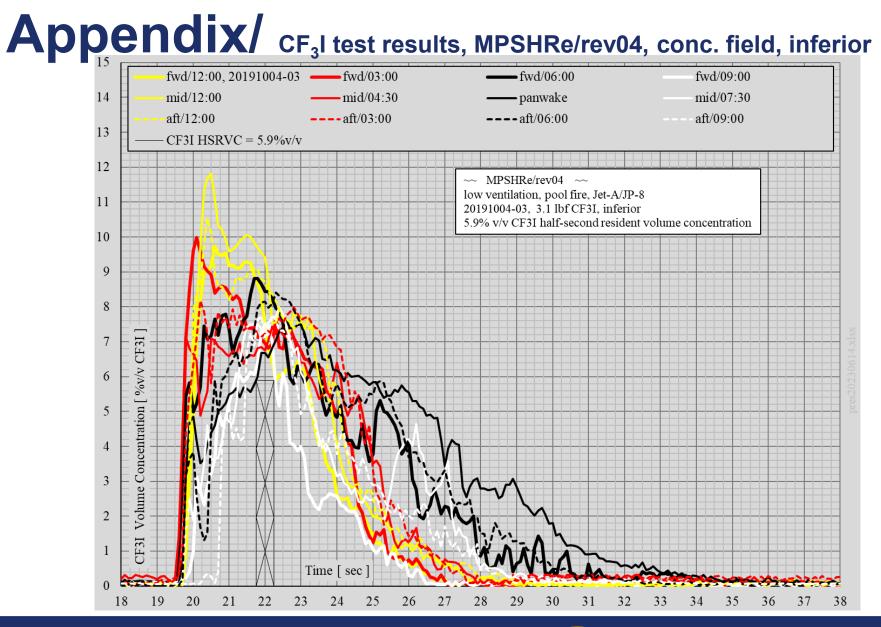


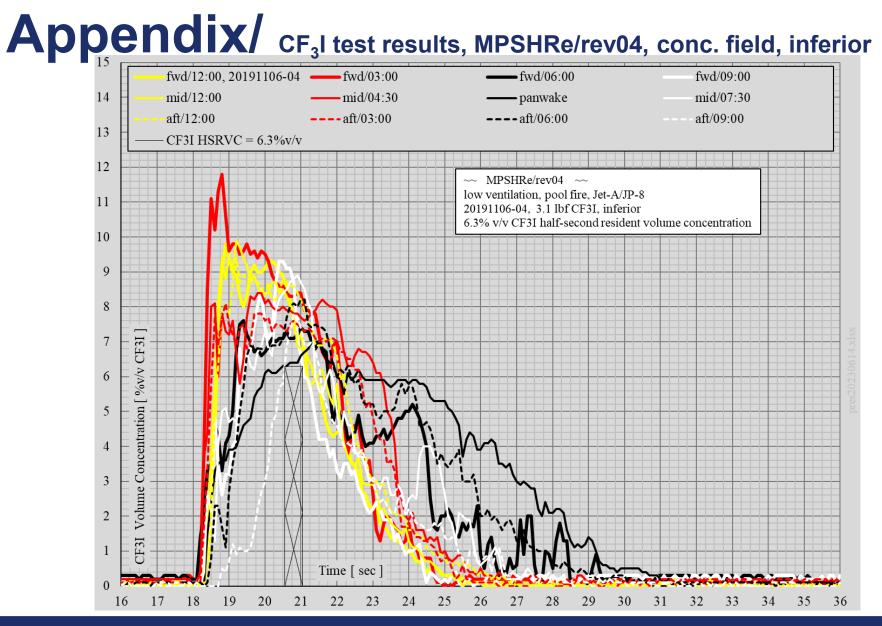
firex agent	CF ₃ Br	Cl		
dates of testing	2004, 2006	2oct-5dec2019,		
fuel				
firex injection plumbing configuration	low-vent/cert	modified lo	weight : mass lbf : kg	
injected weight [lbf]	2.5	3.1 [inferior]	3.6 [superior]	2.5 : 1.13 3.1 : 1.41
HSRVC 01 [%v/v]	n/a	7.5	6.8	3.6 :1.63
02	n/a	6.8	7.4	
03	n/a	5.9	6.7	
04	n/a	6.3	none	
average, HSRVC	n/a	6.6	7.0	
standard deviation	n/a	0.69	0.38	
RTD 01 [sec]	5.34 ^[i] , 5.12 ^[ii] , 5.89 ^[iii]	4.87	5.47	
02	4.77, 4.74, 5.81	5.67	6.11	
03	4.87, 5.24, 6.27	5.08	7.24	
04	5.77, 4.23, 5.74	5.50	5.63	
05	7.23, 5.70, 5.55	5.53	5.10	
average, RTD	5.48	5.33	5.91	
standard deviation	0.725	0.339	0.827	

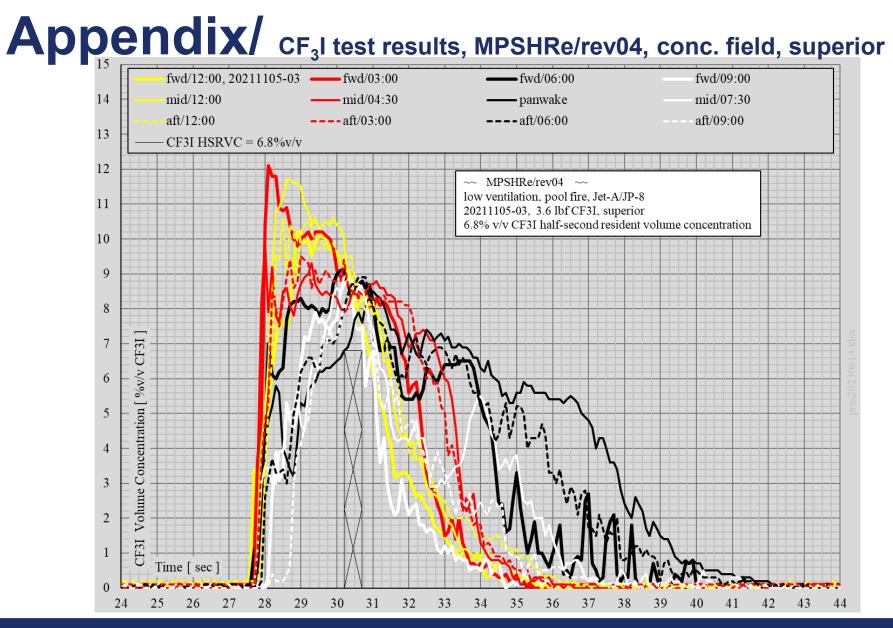

HSRVC = half-second resident volume concentration RTD = reignition time delay, the duration fire was suppressed NOTE : The CF₃BR benchmark data shown in this table represent a collection of 15 tests, 5 each completed [i] 22-23jun2004, [ii] 14-15jul2004, & [iii] 20-21jun2006

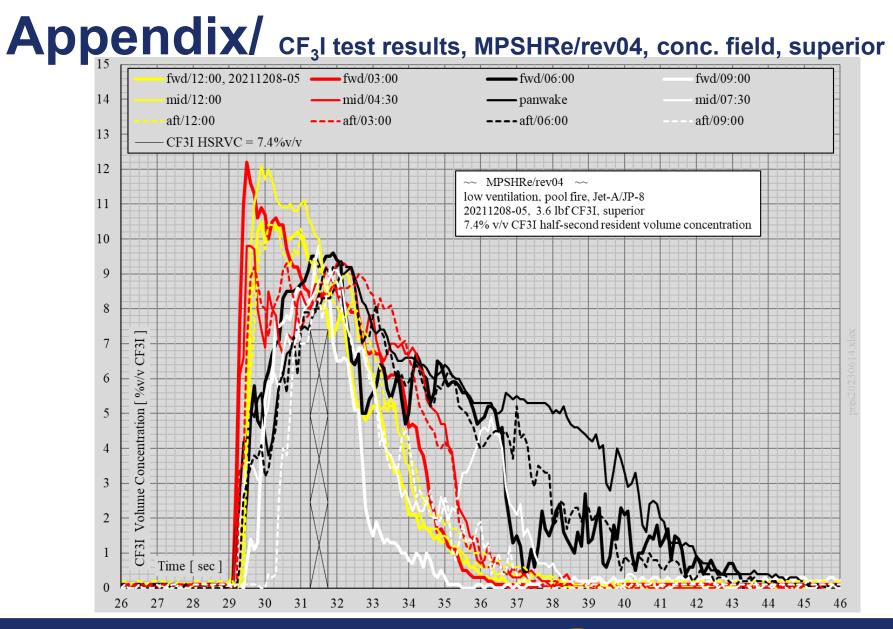


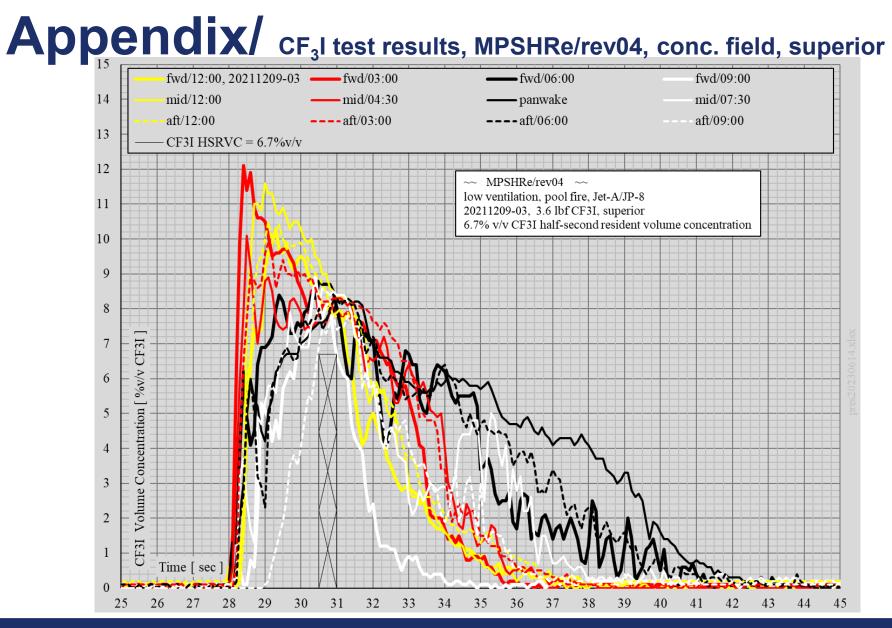
NOTE : The CF₃BR benchmark data shown in this graph represent a collection of 15 tests, 5 each completed 22-23jun2004, 14-15jul2004, & 20-21jun2006

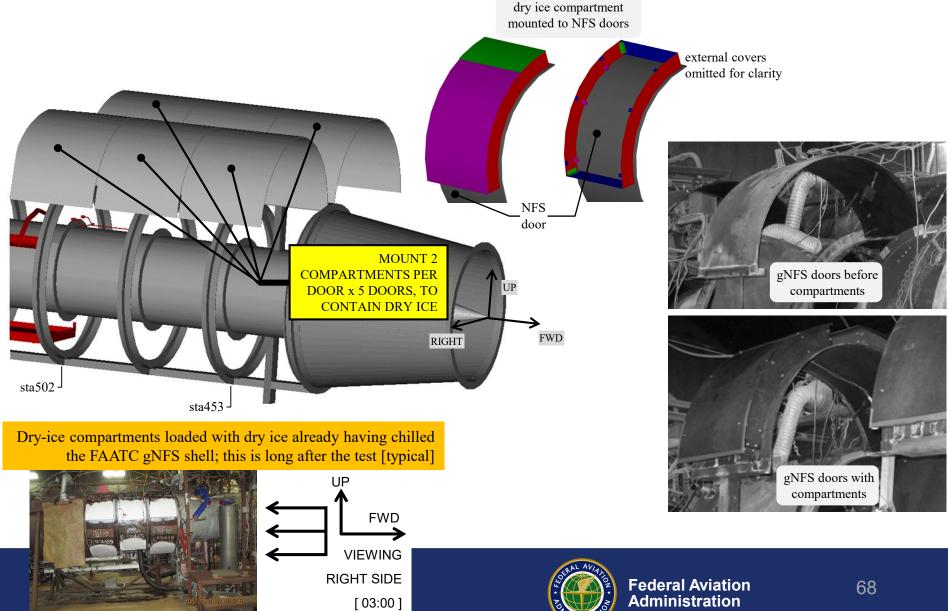


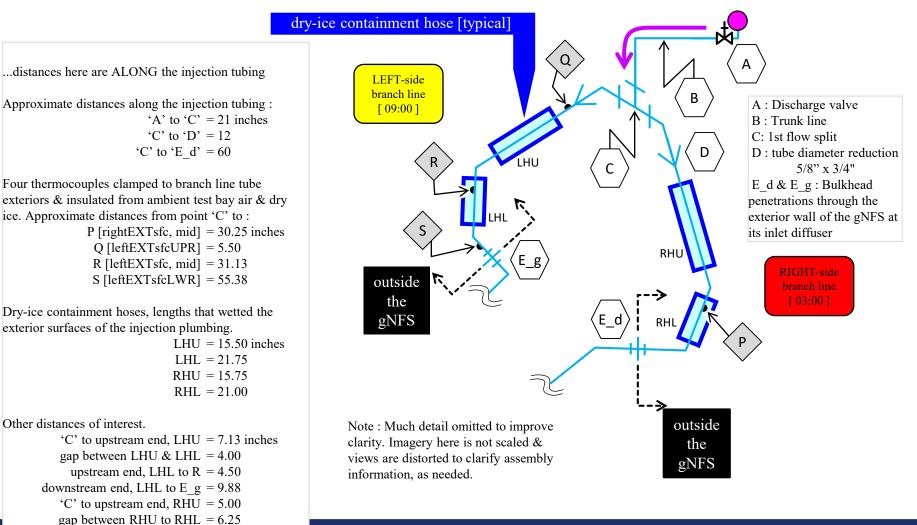






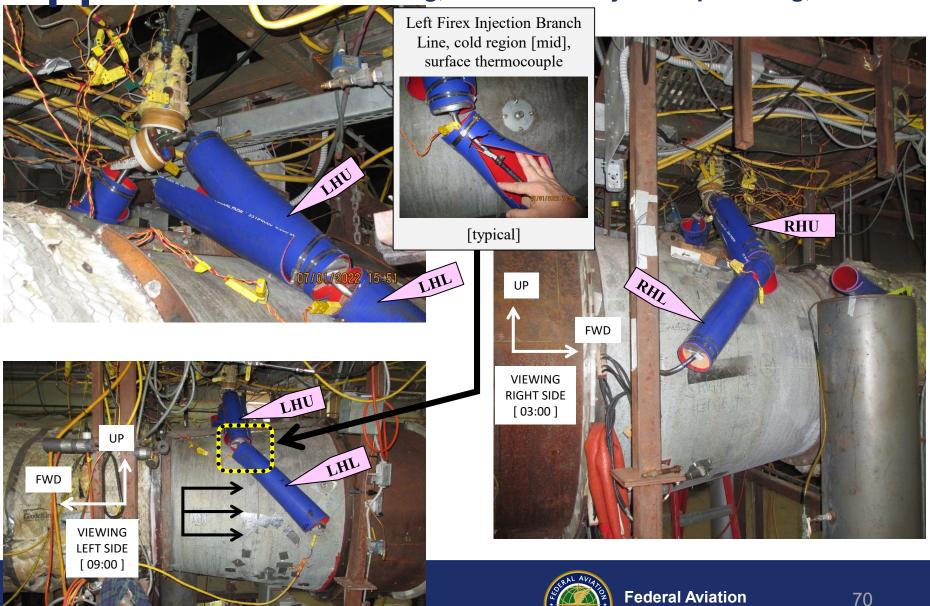






Appendix/ "cold" testing, chilling the gNFS test section shell

Appendix/ "cold" testing, chilled firex injection plumbing, lo-vent



- gap between RHU to RHL = 6.25upstream end, RHL to P = 3.25
- downstream end, RHL to 'E d' = 11.00

Federal Aviation

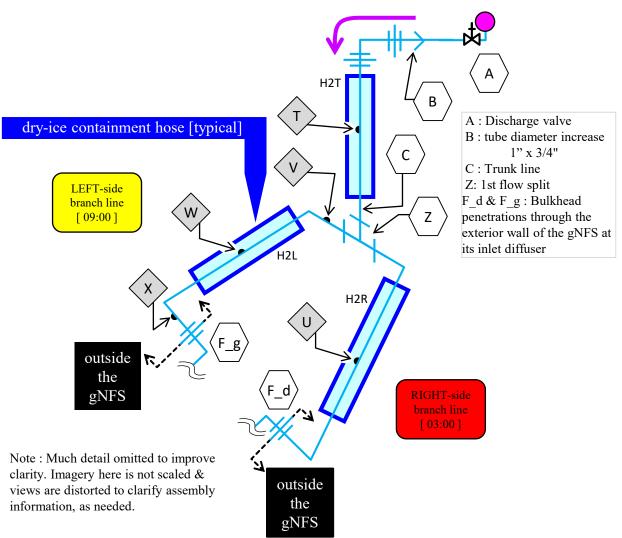
Administration

Appendix/ "cold" testing, chilled firex injection plumbing, lo-vent

Administration

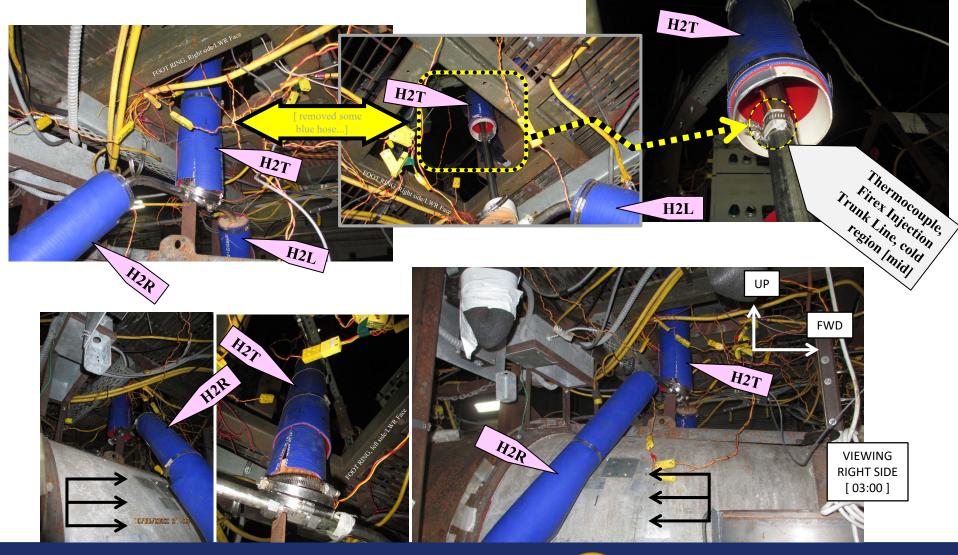
Appendix/ "cold" testing, chilled firex injection plumbing, hi-vent

...distances here are ALONG the injection tubing

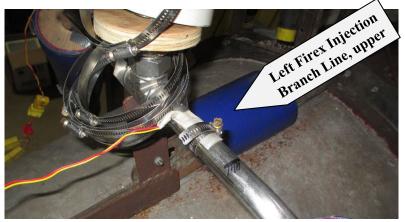

Approximate distances along the injection tubing : 'A' to 'Z' = 44 inches 'Z' to 'F_g' = 55 'Z' to 'F_d' = 54

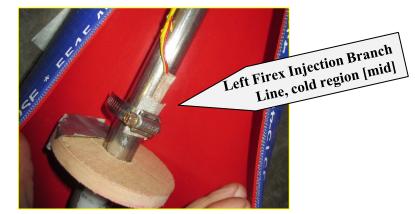
Five thermocouples clamped to branch line tube exteriors & insulated from ambient test bay air & dry ice. Approximate distances from point 'Z' to :

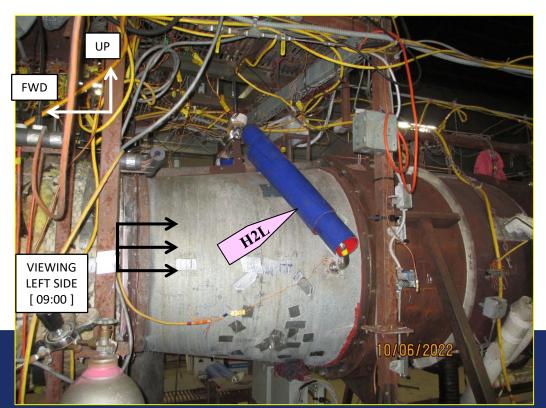
T [trunkEXTsfc, mid] = 18.00 inches U [rightEXTsfc, mid] = 27.00 V [leftEXTsfcUPR] = 4.00 W [leftEXTsfc, mid] = 26.00 X [leftEXTsfcLWR] = 51.50

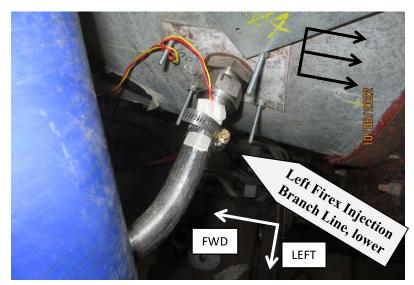

Dry-ice containment hoses, lengths that wetted the exterior surfaces of the injection plumbing.

H2T = 29.50 inches H2L = 32.00H2R = 31.00

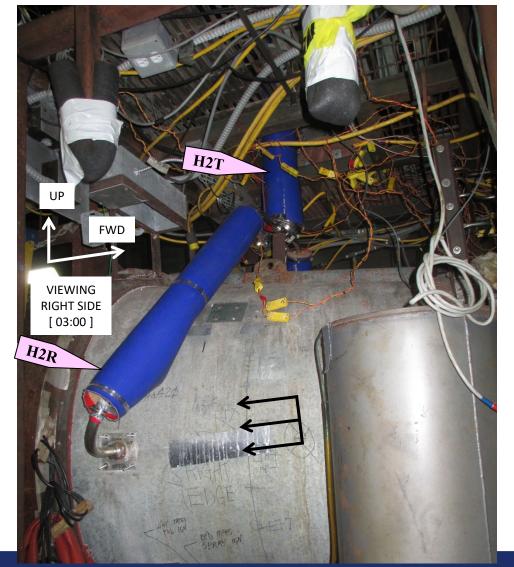



Appendix/ "cold" testing, chilled firex injection plumbing, hi-vent

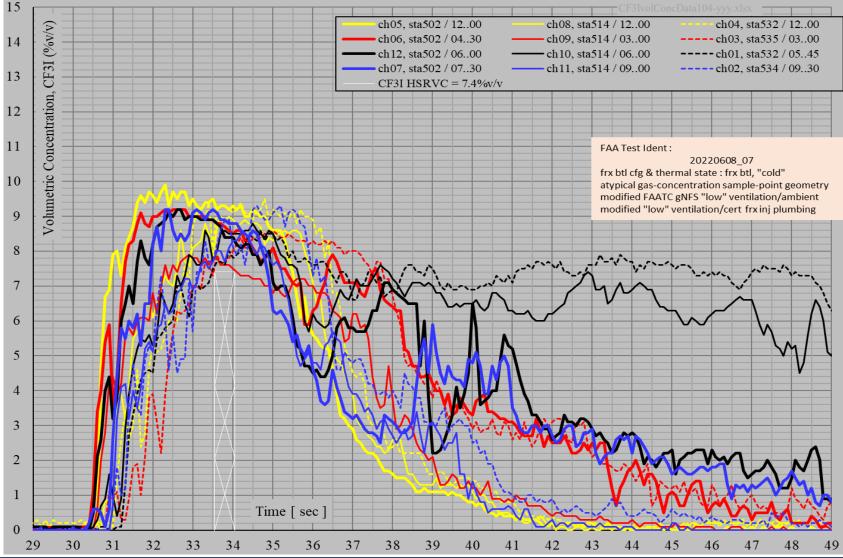




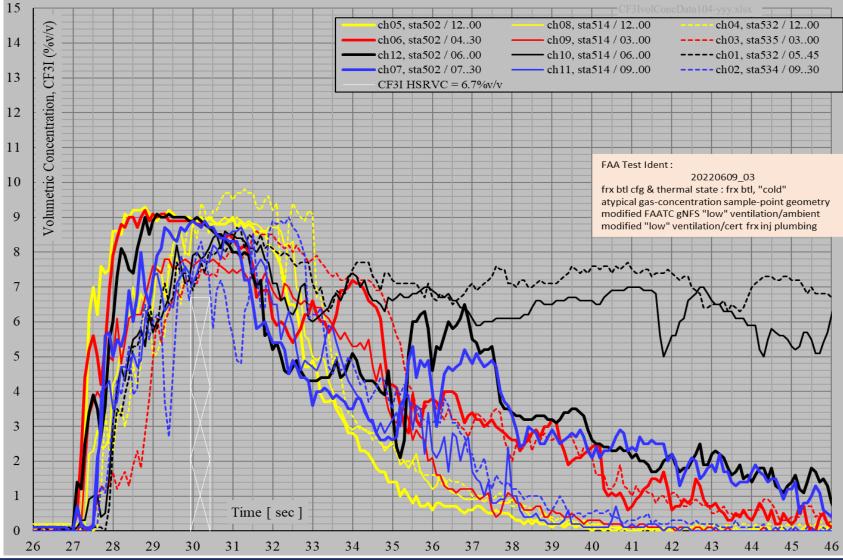
Appendix/ "cold" testing, chilled firex injection plumbing, hi-vent

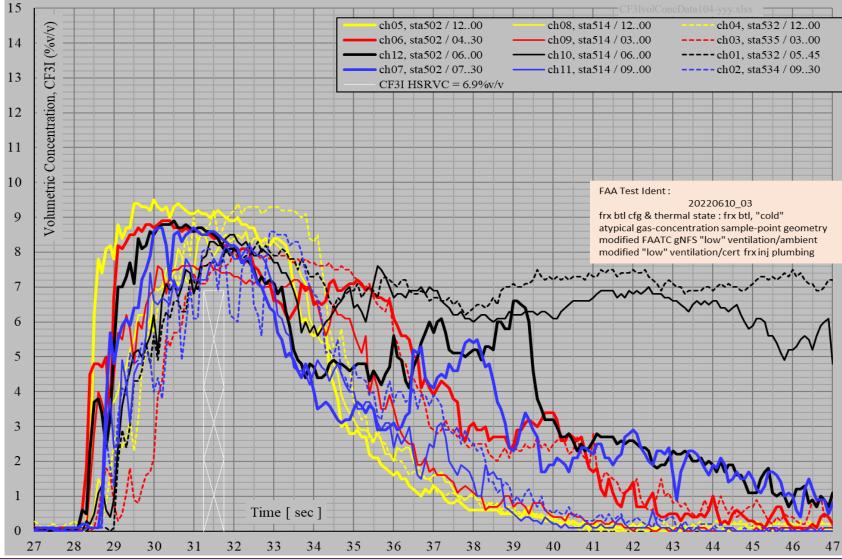


Appendix/ "cold" testing, chilled firex injection plumbing, hi-vent

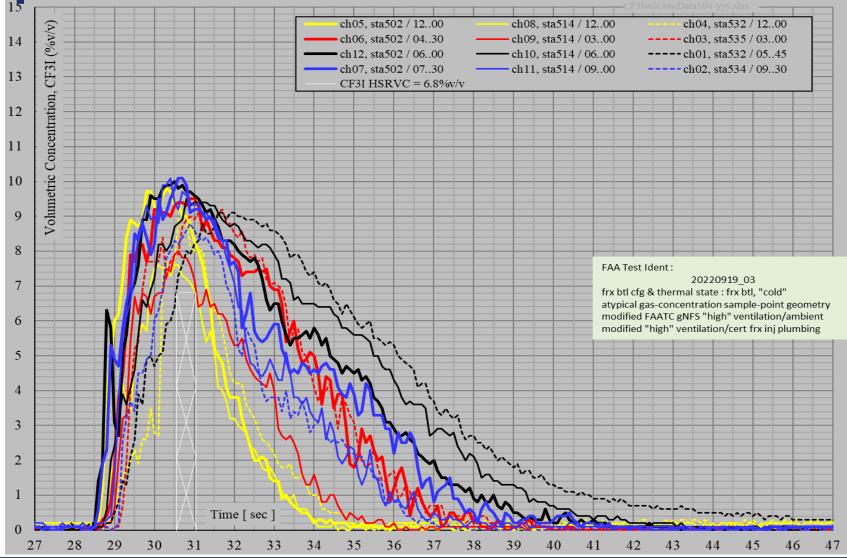


Test Condition	"cold"/modified-LOW ventilation		
Test identification	20220608r07	20220609r03	20220610r03
Average sta453 [°C]	29	22	27
Firex bottle contents [°C]	-52	-51	-51 ^[M]
HSRVC [%v/v CF3I]	7.4	6.7	6.9

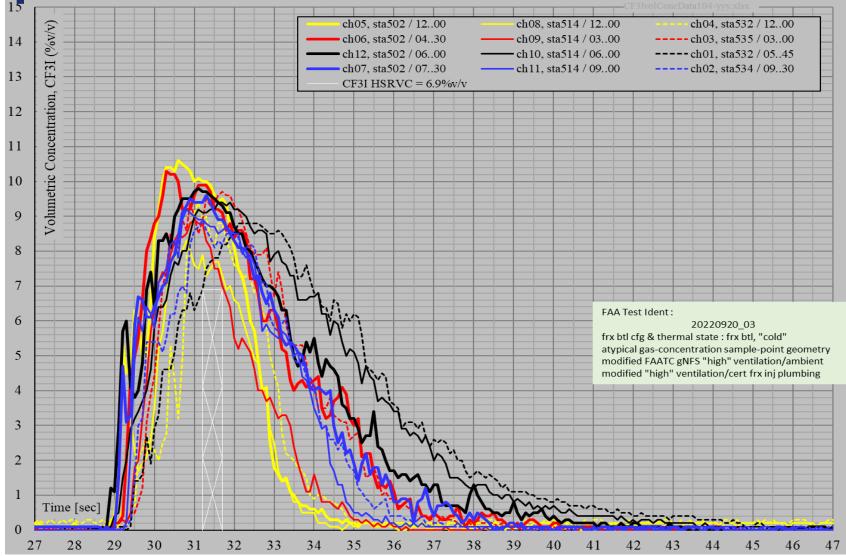

[M] Faulty institutional thermocouple. Temperature measured by hand-portable reader.

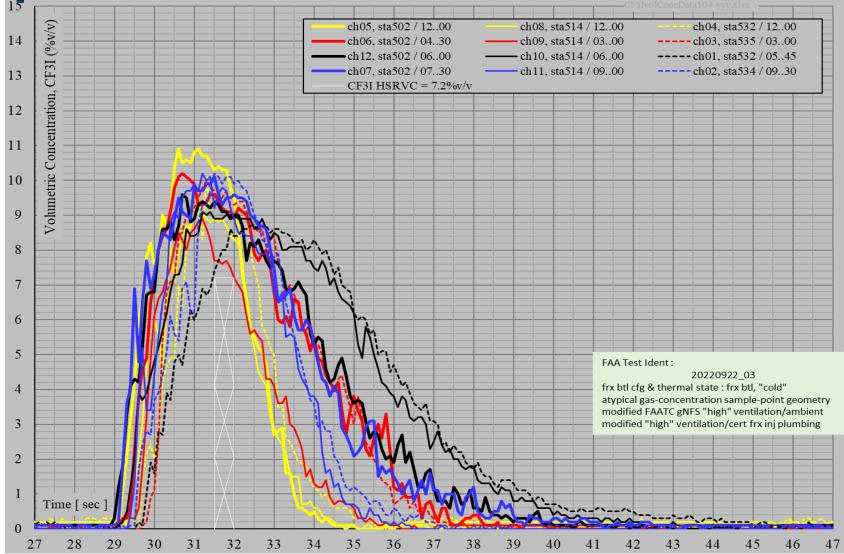

Volume concentration data recorded & provided by Parker-Meggitt

Volume concentration data recorded & provided by Parker-Meggitt

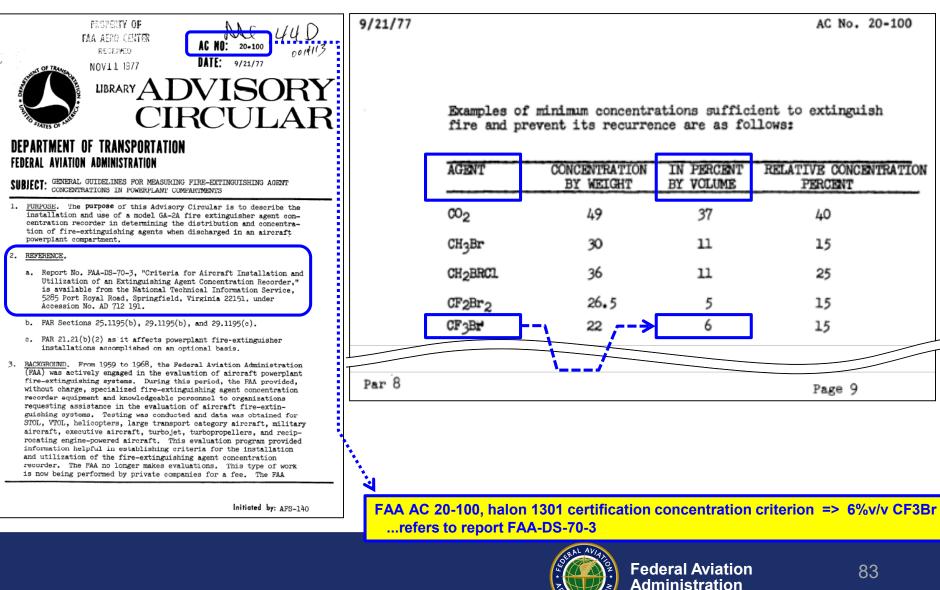


Volume concentration data recorded & provided by Parker-Meggitt


Test Condition	"cold"/modified-HIGH ventilation		
Test identification	20220919r03	20220920r03	20220922r03
Average sta453 [°C]	28	26	28
Firex bottle contents [°C]	-54	-55	-56
HSRVC [%v/v CF3I]	6.8	6.9	7.2

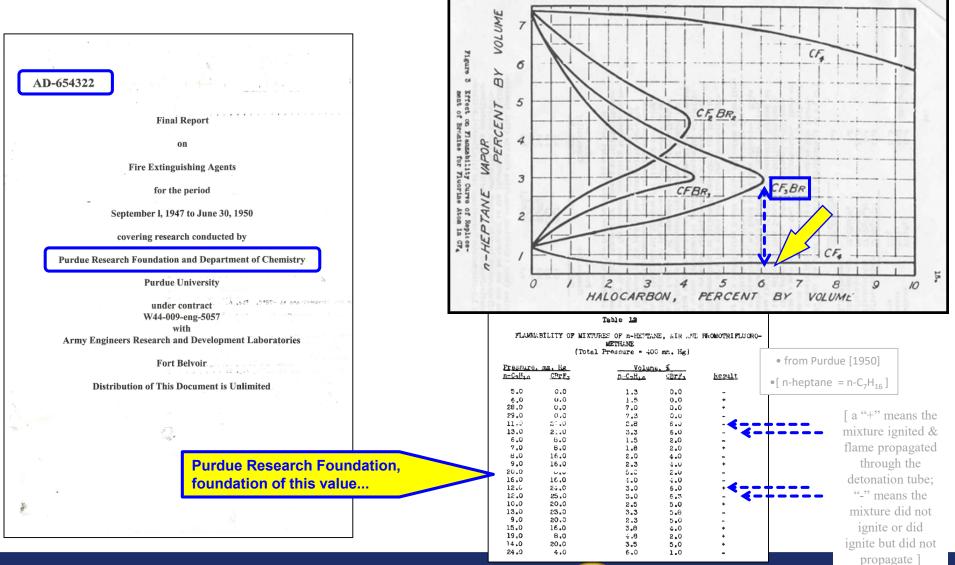

Volume concentration data recorded & provided by Parker-Meggitt

Volume concentration data recorded & provided by Parker-Meggitt

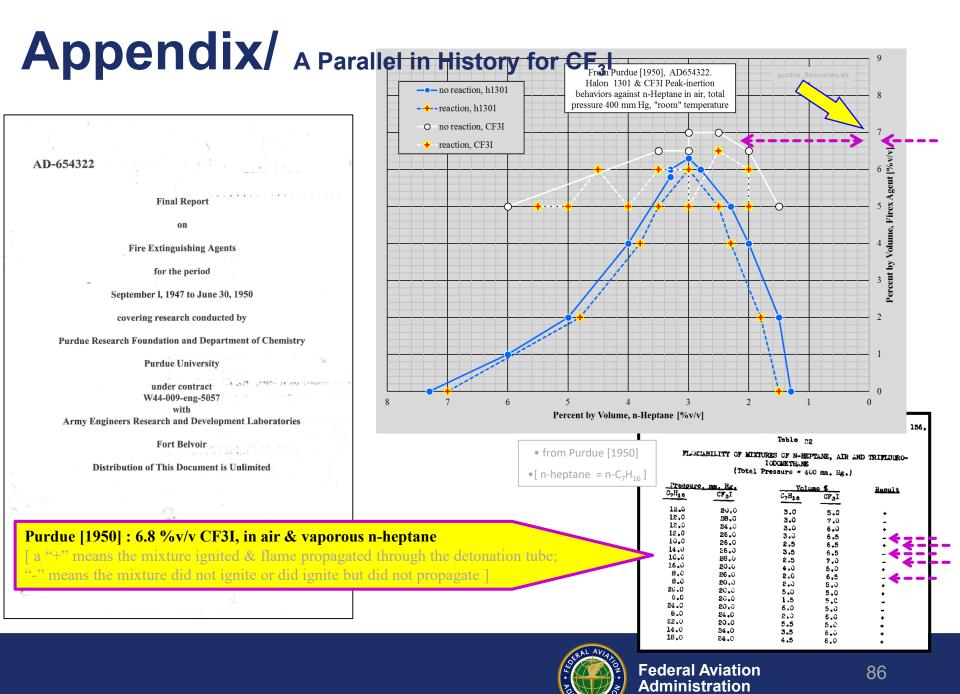



Volume concentration data recorded & provided by Parker-Meggitt

Appendix/ Brief History of 6%v/v CF₃Br relative to the FAA



Appendix/ Brief History of 6%v/v CF₃Br relative to the FAA


Appendix/ Brief History of 6%v/v CF₃Br relative to the FAA

Federal Aviation Administration

85

