UNITED STATES DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director

Nat. Bur. Stand. (U.S.), Tech. Note 708, 80 pages (Dec. 1971) CODEN: NBTNA

(CONDENSED)

Interlaboratory Evaluation of Smoke Density Chamber

T. G. Lee
Building Research Division
Institute for Applied Technology
National Bureau of Standards
Washington, D.C. 20234

Reprint No. 473-A
Distributed by:
American Instrument Company
Division of Travenol Laboratories, Inc.
8030 Georgia Avenue
Silver Spring, Maryland 20910

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

NOTE: The oringinal document is no longer available.

TABLE OF CONTENTS

Abstract 1 1. Introduction 2 2. Participants 5 3. Test Procedures 5 4. Test Materila 8 5. Results 10 Summary of Values 16 6. Statistical Analysis 17 6.1 Means and Standard Deviation 17 6.2 Variability 18 6.3 Ranking of Materials 27 7. Discussion 27 7.1 Variation between Laboratories 29 7.2 Materials 29 7.3 Results 31 7.4 Possible Sources of error 34 8. Conclusion and Recommendations 34 9. Acknowledgment 36 10. References 36			Page
2. Participants 5 3. Test Procedures 5 4. Test Materila 8 5. Results 10 Summary of Values 16 6. Statistical Analysis 17 6.1 Means and Standard Deviation 17 6.2 Variability 18 6.3 Ranking of Materials 27 7. Discussion 27 7.1 Variation between Laboratories 29 7.2 Materials 29 7.3 Results 31 7.4 Possible Sources of error 34 8. Conclusion and Recommendations 34 9. Acknowledgment 36	Abs	tract	. 1
3. Test Procedures 5 4. Test Materila 8 5. Results 10 Summary of Values 16 6. Statistical Analysis 17 6.1 Means and Standard Deviation 17 6.2 Variability 18 6.3 Ranking of Materials 27 7. Discussion 27 7.1 Variation between Laboratories 29 7.2 Materials 29 7.3 Results 31 7.4 Possible Sources of error 34 8. Conclusion and Recommendations 34 9. Acknowledgment 36	1.	Introduction	2
4. Test Materila 8 5. Results 10 Summary of Values 16 6. Statistical Analysis 17 6.1 Means and Standard Deviation 17 6.2 Variability 18 6.3 Ranking of Materials 27 7. Discussion 27 7.1 Variation between Laboratories 29 7.2 Materials 29 7.3 Results 31 7.4 Possible Sources of error 34 8. Conclusion and Recommendations 34 9. Acknowledgment 36	2.	Participants	5
5. Results 10 Summary of Values 16 6. Statistical Analysis 17 6.1 Means and Standard Deviation 17 6.2 Variability 18 6.3 Ranking of Materials 27 7. Discussion 27 7.1 Variation between Laboratories 29 7.2 Materials 29 7.3 Results 31 7.4 Possible Sources of error 34 8. Conclusion and Recommendations 34 9. Acknowledgment 36	3.	Test Procedures	5
Summary of Values 16 6. Statistical Analysis 17 6.1 Means and Standard Deviation 17 6.2 Variability 18 6.3 Ranking of Materials 27 7. Discussion 27 7.1 Variation between Laboratories 29 7.2 Materials 29 7.3 Results 31 7.4 Possible Sources of error 34 8. Conclusion and Recommendations 34 9. Acknowledgment 36	4.	Test Materila	8
6. Statistical Analysis .17 6.1 Means and Standard Deviation .17 6.2 Variability .18 6.3 Ranking of Materials .27 7. Discussion .27 7.1 Variation between Laboratories .29 7.2 Materials .29 7.3 Results .31 7.4 Possible Sources of error .34 8. Conclusion and Recommendations .34 9. Acknowledgment .36	5.	Results	10
6.1 Means and Standard Deviation .17 6.2 Variability .18 6.3 Ranking of Materials .27 7. Discussion .27 7.1 Variation between Laboratories .29 7.2 Materials .29 7.3 Results .31 7.4 Possible Sources of error .34 8. Conclusion and Recommendations .34 9. Acknowledgment .36		Summary of Values	16
6.2 Variability 18 6.3 Ranking of Materials 27 7. Discussion 27 7.1 Variation between Laboratories 29 7.2 Materials 29 7.3 Results 31 7.4 Possible Sources of error 34 8. Conclusion and Recommendations 34 9. Acknowledgment 36	6.	Statistical Analysis	17
6.3 Ranking of Materials		6.1 Means and Standard Deviation	17
7. Discussion 7.1 Variation between Laboratories 7.2 Materials 7.3 Results 31 7.4 Possible Sources of error 8. Conclusion and Recommendations 9. Acknowledgment		6.2 Variability	. 18
7.1 Variation between Laboratories		6.3 Ranking of Materials	27
7.2 Materials	7.	Discussion	27
7.3 Results		7.1 Variation between Laboratories	29
7.4 Possible Sources of error		7.2 Materials	29
8. Conclusion and Recommendations		7.3 Results	31
9. Acknowledgment		7.4 Possible Sources of error	34
9. Acknowledgment	8.		
10. References	9.	Acknowledgment	36
	LO.	References	36

Interlaboratory Evaluation of Smoke Density Chamber

T. G. Lee

Results are reported of a interlaboratory (round-robin) evaluation of the smoke density chamber method for measuring the smoke generated by solid materials in fire. A statistical analysis of the results from 10 material-condition combinations and 18 laboratories is presented. For the materials tested, the median coefficient of variation of reproducibility was 7.2% under non-flaming exposure conditions and 13% under flaming exposure conditions. A discussion of errors and recommendations for improved procedures based on user experience is given. A tentative test method description is included as an appendix.

Key Words: Building materials; fire tests; interlaboratory tests; round-robin; optical density; smoke; smoke density chamber; statistical analysis.

Interlaboratory Evaluation of Smoke Density Chamber

1. Introduction

In January 1970, an interlaboratory comparison study on the measurement of the smoke generation characteristics of materials was initiated by the Fire Research Section, Building Research Division of the National Bureau of Standards (NBS).

ASTM Committee E-5 on Fire Tests of Materials and Constructions acted as an advisor to the study. The goal of the study was to evaluate the suitability of the test method for measuring and classifying specimens of materials according to their smoke generation potential.

A test method had been developed at NBS and reported in 1967 by Gross, Loftus and Robertson $[1]^{\frac{1}{2}}$. It was later used to evaluate the smoke properties of over 140 aircraft interior materials [2]. The laboratory method measures the smoke generation characteristic of solid specimens of given thickness under both flaming and non-flaming exposure conditions, which represents two parameters of fire hazard. All specimens are exposed to an irradiance level of 2.5 W/cm² (2.2 Btu/sec ft²) and, in the flaming exposure, also to the flames from a small propane-air pilot burner. In the test, smoke from a burning specimen in an enclosed chamber is monitored continuously by a photometer which measures the attenuation of light caused by the smoke.

Because of the general interest in the problem of smoke and the need for standardization of equipment, the American

2

Figures in brackets indicate the literature references at the end of this paper.

Instrument Company $(AMINCO)^{2/}$ decided to build a commercial model of the smoke chamber. These production models became available in the latter part of 1969; while some home-built units were made earlier.

In late 1969, NBS circulated a proposed test method to all known users of the Smoke Density Chamber for comments. Many constructive suggestions were received and were incorporated in a revised draft of the test method. All laboratories having a Smoke Density Chamber were then invited to participate in a interlaboratory evaluation of the method. Two samples each of two materials (pure alpha-cellulose paper and a PVC-PVA copolymer) were distributed for a preliminary screening and general familiarization with the test procedure. The reported results and comments indicated the need to provide better alighment of the burner in the flaming exposure; and to correct for smoke deposits on the windows of the photometer. The results of these initial studies were considered reasonable for tests of this type.

A meeting, attended by representatives from some of the participating laboratories in the round-robin was held to discuss the preliminary test results and test procedures.

A more comprehensive interlaboratory evaluation of the test method followed.

The test results from the 22 participating laboratories are summarized in this report. A statistical analysis of the

3

^{2/}Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose.

Table 1

Participants of Interlaboratory Evaluation of Smoke Density Chamber.

Laboratory	Location	Rep	presentative
Allied Chemical (Plastics Div.)	Morristown, N.J.	к.	G. Smack
Armstrong Cork (R & D Center)	Lancaster, Pa.	Z.	Zabawsky
DuPont (Engineering Test Center)	Newark, Del.	F.	Thompson
DuPont (Plastics Dept.)	Wilmington, Del.	J.	Blair
Federal Aviation Adm. (NAFEC)	Atlantic City, N.J.		F. Marcy Nicholas
Forest Products Lab.	Madison, Wisc.		W. Eickner Brenden
General Electric Co. (Plastics Dept.)	Mt. Vernon, Ind.	c.	Bialous
General Tire & Rubber Co. (Chemical Plastic Dept.)	Akron, Ohio	G.	Wear
Johns-Manville Research Center	Manville, N.J.	Ε.	Davis
Koppers Co., Inc.	Monroeville, Pa.	c.	Dzik
Lawrence Radiation Laboratory	Livermore, Calif.	J.	Gaskill
Mobay Chemical Co.	Pittsburgh, Pa.	R.	Hagins
National Bureau of Standards	Gaithersburg, Md.	т.	Lee
National Research Council (Canada)	Ottawa, Canada	J.	McGuire
Olin (Research Center)	New Haven, Conn.	Α.	Cianciola
Owens Corning Fiberglas Corp.	Granville, Ohio	P.	Hays
Union Carbide (Plastics Dept.)	S.Charlestown, W.Va.	C.	Hilado
Uniroyal Inc. (Research Center)	Wayne, N.J.	M.	Jacobs
Uniroyal Inc.	Mishawaka, Ind.	G.	Jablonski
Rohm & Haas Co.(Redstone Res.Lab.)	Huntsville, Ala.	т.	Pratt
Underwriters Laboratory, Inc.	Northbrook, Ill.	J.	Thiel
Weyerhaeuser Co.	Longview, Wash.	D.	Craw fo rd

data and comments on possible sources of errors are also included.

2. Participants

A total of 22 laboratories, three with home-built and 19 with commercial chambers participated in the study. The list is given in Table 1. The laboratories are identified in the report by code letters only. The cooperation, comments and suggestions from the participating laboratories, are gratefully acknowledged.

3. Test Procedures

Detail test procedures were supplied to the participants in a tentative test method standard. Slight modification in procedures were subsequently (after the test) made, but these are not expected to appreciably change the precision estimate based on the reported results. The latest version of the test method standard is given in Appendix II.

Supplementary notes, instructions, data sheets, and a total of 26 specimens were distributed to the participants after they reported their preliminary test results.

There were a total of 8 materials and 10 test conditions. Two materials were tested under both flaming and non-flaming conditions. The instructions requested that duplicate tests be performed for each of the test conditions, and an additional six replicates for one designated test condition. This arrangement was selected to permit good statistical estimates to be made of (within-laboratory) repeatability and (between-laboratory) reproducibility with a reasonably small number of tests.

Table 2 Type and Number of Tests Performed by Each Laboratory

	-					LABO	LABOKATOKIES	IES										
ndi	conditions	N N	В	o	Ω	ਜ਼ ਜ਼ ਜ਼	E4	9	#	H	ה	₩	LI R	Z	0 8	Д.	0	<u>م</u>
z		∞	2	2	2	2	2	2	2	2	∞	5	2 2	2	2	2	2	2
z		2	8	2	2	2	2	2	61	2	2	2	2 2	2	2	2	2	2
z	Total And Services	2	2	∞	2	2	2	2	2	2	2	2	∞	2 2	2	2	2	2
Z		2	2	ري	∞	2	2	2	7	2	2	2	2 8	2	2	2	2	2
ᅜ	amili Láqu Q.	2	2	2	2	8	3	r	m	3	3	3	3	00	2	2	2	2
Z	, 1 10, 120, 120, 120, 120, 120, 120, 120, 1	2	2	2	2	2	2	2	7	2	2	2	2 2	2	2	2	2	2
z	Marigon J., Alder, S. Alder	2	2	2	2	2	∞	2	7	2	2	2	2 2	2	∞	2	2	2
দ	10,000	2	2	2	2	2	2	∞	7	2	2	2	2 2	2	2	∞	2	2
Z	******	2	2	2	2	2	2	2	∞	2	2	2	2 2	2	2	2	8	2
ξ±		2	2	2	2	2	2	2	2	∞	2	2	2 2	2	2	2	2	∞

a/ F = Flaming; N = Non-flaming

Table 3 Test Materials $\frac{a}{}$

Material	Thickness inch	Dens	g/cm ³	Color	Description
Linoleum	0.125	87	1.4	Green	"battleship" linoleum with burlap backing
Polypropylene Rug	0.22	17	0.28	Light Brown	Twist, loop weave, burlap backing
Red Oak	0.25	43	0.69	Natural	Uniform grain, wood, smooth finish
ABS	0.022	66	1.05	Créam	Rigid plastic opaque
lpha-cellulose	0.030	41	0.66	White	Pure cotton linter matting,(blotter paper)
PVC-Gypsum PVC veneer Paper (S) Gypsum	0.010 0.015 0.5	51	0.82	Dark Brown	PVC Veneer, simulating wood grain over gypsum board
Acoustic ceiling	g 0.75	20	0.32	Painted White	Mineral type, random and irregular shaped holes
Polystyrene Foam	1.03	1.8	0.03	Blue	Rigid low density insulating foam, fire retardant treated
PVA/PVC	0.047	7 5	1.2	Brown	Flexible
ABS	0.032	66	1.05	Cream	Rigid Plastic

 $[\]underline{\mathbf{a}}$ / All specimens were 3 x 3 inches

The experimental design is shown in Table 2. It was suggested that tests be made in random order, but some laboratories tested duplicates in sequence. A few did not condition the specimens to moisture equilibrium prior to tests because of the lack of facility or time.

Some laboratories used the previously suggested flowmeter settings based on an air to fuel ratio of 3 to 1, for their pilot burners; whereas the procedure had been modified to require a ratio of 10 to 1 (500 cm³/min air and 50 cm³/min propane). This discrepancy introduced a relatively large systematic error in the flaming results in those laboratories.

4. Test Material

The materials selected (Table 3) represent common interior finish and construction materials, including simple and composite plastic, cellulosic and inorganic-base materials with thickness ranging from 0.022 to 1.03 in (0.5 to 26 mm). These materials exhibit different forms of physical response to fire exposure: such as slow melting, fast shrinking, rapid decomposition and nearly non-reactive. The smoke levels from the materials span the full range of the test instrument as well as a very narrow region to show the degree of resolution. Most materials were obtained from commercial sources without special controls on uniformity. All the specimens were cut and randomized before distribution. Because of an unanticipated addition of laboratories to the study, a second batch of some materials were prepared.

Since small quantities of fillers, pigments and additives, and other chemical and physical properties affect the smoke potential of materials, it should not be assumed that all materials of the same generic type, density, and thickness will produce the same quantity of smoke under the same conditions.

TABLE 4 SUMMARY OF SELECTED TEST PARAMETERS

Sompletion Conditioning Test Sequence		ment of the second	CONTRACTOR OF STREET	The Party of the P	Contraction of the last of							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lab	Completion Date (1970)	Condition Predry	oing 50%RH		equence Du p licate	Pr. Dynamber	Flowmete Air $\frac{c}{c}$	r Reading Propane mm d/	Photometer Lamp, Volt	an	ce, <u>e</u> , Horiz.
Secondary Seco	В	3-31	Y	Y a/	Y		33+36	150	75	2.5		
S-08	D	6-10	Y	Y		Y	36	131	75	2.4	1	
5-14 Y Y Y 34-37 (150) 68 (s) 3/8 3-19 Y Y Y Y 33-36 150 75 -	EE	2-08	Y	Y	Y		33-37	140	*09	2.7	ı	,
3-19 Y Y Y Y 33-36 150 75 (s)* 5-14 Y Y Y Y 33-36 150 75 (s)* 6-25 Y Y Y Y 34-35 150 70 * 4.2 1/2 - 6.05	ഥ	5-14	Y	Y		Y	34-37	(150)	(s) 89		3/8	,
5-14 Y Y Y Y 33-36 150 75 (s)* 4.2 1/2 - 6-25 Y Y Y X 34-35 150 70 * 4.2 1/2 - 6-25 Y Y Y X 34-36 150 75 3.5 - 6-26 Y Y Y X 34-36 135 45 (s)	g	3-19	Y	Y	Y		33	150	75.		ı	Н9-
5-06 N Y Y Y 34-35 150 70 * 4.2 1/2 - 6-25 Y Y Y 31-34 150 75 2.4 - 1/2 - 6-15 Y Y Y 35-37 140 55 2.4 - 6-15 Y Y Y 38-39 140 55 2.7 - 6-15 Y Y Y Y 35-36 150 75 2.7 - 6-15 Y Y Y Y 35-36 150 75 2.7 - 6-15 Y Y Y Y 35-36 150 75 2.7 - 6-15 Y Y Y Y 33-37 150 75 2.4 - 6-15 Y Y Y X 33-37 150 75 2.4 - 6-15 Y Y Y Y X 33-37 150 75 2.4 - 6-15 Y Y Y Y X 33-37 150 75 2.4 - 6-15 Y Y Y Y X 33-37 150 75 2.4 - 6-15 Y Y Y Y X 33-37 150 75 2.4 - 6-15 Y Y Y Y Y X 33-37 150 75 2.4 - 6-15 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Н	5-14	A	Y	Y		33-36	150	75 (s)*		,	-ен
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	н	5-0 8	z	Y		Ż₩	34-35	150	* 02	4.2	1/2	ı
4-16 Y Y 35-37 140 52 3.5 - <	r,	6-25	¥	Y	¥		31-34	150	75	2.4	ı	Н9-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	×	4-16	¥	Y		Y	35-37	140	52	3.5	1	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3-06	¥	Y	Y		34-36	135	_	3.5	ı	Н9-
3-06 4-17 Y Y Y Y Y X 4-17 Y Y X 4-17 Y X 35-36 150 75 3.1	ΓΓ	2-06			Y		38-39	140	_		5/16	,
4-17 Y Y Y 35-36 150 75 3.1 - - 6-15 75 2.7 -	æ	3-06				Y	36			2.7	ı	Н9-
6-15 Y Y Y 34 150 75 2.7 - 6 6-02 Y Y Y Y 33-37 150 75 2.4 6 6-22 Y Y Y Y 35 132 70 (s)* 4.7 6 6-22 Y Y Y Y 34-36 120 80 (s) * 4.2 6 4-16 N Y Y Y 34-36 150 75 6 3-17 Y Y Y 34-35 150 75 6 3-18 Y Y Y 33-35 not applicable >90 3 3-19 Y Y Y 33-37 not applicable >90 3 3-23 N Y Y Y 33-35 methane >90 15/64	Z	4-17	Y	Y		Y	35-36	150	75	3.1	ı	ı
6-02 Y Y Y Y 34-36 142 75 2.4 4 4-29 Y Y Y 33-37 150 75 4.7 6 6-22 Y Y Y Y 35 132 70 (s)* 4.2 6 4-16 N Y Y Y 34-36 120 80 (s) 75 6 3-17 Y Y Y 34-35 150 75 6 3-10 Y Y Y 33-36 not applicable > 90 3-23 N Y Y Y Y 33-35 methane > 90 15/64	0	6-15	¥	Y		Y	34	150	75	2.7	1	н9-
4-29 Y Y Y Y 33-37 150 75 4.7	00	6-02	Y	¥	Y		34-36	142	75	2.4	ı	ı
6-22 Y Y Y 34-36 132 70 (s)* 4.2 - 6 4-16 N Y Y 34-36 120 80 (s)	Ъ	4-29	Ϋ́	Y	¥		33-37	150	7.5	4.7	ı	ı
4-16 N Y Y 34-36 120 80 (s) 4.2 - 6 3-17 Y Y Y 34-35 150 75 3-26 Y Y Y 33-36 not applicable > 90 3-10 Y Y Y 33-37 not applicable > 90 3-23 N Y Y Y 33-35 methane > 90 15/64 -	0	6-22	X	Y		Y	35	132			ı	Н9-
3-17 Y Y 34-35 150 75	~	4-16	z	Y	¥		34-36	120		4.2	ŧ	Н9
3-26 Y Y Y 33-36 not applicable >90 3-10 Y Y Y 33-37 not applicable >90 3-23 N Y Y Y 33-35 methane >90 15/64 -	S	3-17	Y	Y	Y		34-35	150			1	1
3-10 Y Y 33-37 not applicable >90 3-23 N Y Y 33-35 methane >90 15/64 -	Ą	3-26	Y	Y		Y	33-36	not appl	icable	>30	,	
3-23 N Y Y 33-35 methane >90 15/64 -	S	3-10	Y	Y	Y		33-37	not appl	icable	>90	ı	н9 -
	E	3-23	Z	Y	Y		33-35	methane		>30	15/64	н9 -

 $\frac{a}{b}/$ y=yes, n=no, blank=no data. $\frac{a}{b}/$ duplicate pāir means 2 specimens of a material measured sequentially. $\frac{c}{c}/$ steel ball. $\frac{c}{a}/$ all use plastic ball except (s), steel ball; * denotes propane of commerical grade. $\frac{c}{c}/$ all use plastic ball except (s), steel ball; * denotes burner in contrast to 6-tubes burner. $\frac{c}{c}/$ - denotes 1/4", otherwise given; 6H denotes 6-holes burner in contrast to 6-tubes burner.

5. Results

Table 4 lists the relevant test conditions under which each laboratory performed the tests.

The data on lamp voltage were based on the mid-range sensitivity setting of 25 and were recorded by AMINCO during the check-out tests. A voltage of $4\pm$ 0.2 volts ac or dc has since been adopted in the revised test method following completion of this study.

Flowmeter settings and burner-to-specimen distances were that reported by the individual laboratory. Laboratories with flowmeter settings much above 30 mm (steel ball) or 75 mm (plastic ball) inadvertently used propane at a higher than required rate.

Because of its shorter service life, the 6-hole tee burner was replaced with a heavier 6-tube burner of similar flaming characteristics on chambers originally shipped in the spring of 1970. As a result, both types of burners were used in the flaming tests. In addition to this, a modified specimen holder with trough and burner with flamelets pointing in three directions were distributed to test participants for use only in the flaming test on the polystyrene sample. This holder and burner combination retains the melted portion of the specimen under test and exposes it directly to the burner flamelets. The modified burner and holder were subsequently used by 12 laboratories to evaluate the 0.032 in. ABS (acrylonitrile butadiene styrene) specimens. It has since been adopted in the revised test method for all flaming tests.

TABLE 5 Mean Dm (corr.) For Each Material and Laboratory

LAB.	LINOLEUM	POLY. RUG	RED OAK	ABS	POLYSTYRENE
В	748.5	739.5	54840	201.0	21.0
D	703.0	629.5	513.0	201.0	25.5
EE	783.5	663.5	555.5	202.5	28.0
F	790.0	613.0	624.0		
G	704.5	580 • 0		206.5	23 • 0
н	684.0		524.0	146.5	21.5
Ï	700 5	590 • 0	574.0	157.5	22.5
J	728.5	597•5	502.0	192.5	11.0
	737.5	701.5	595.0	175.5	14.5
K	719.5	586•0	5 7 6•0	179. 0	28•5
L	802.0	656 • 0	622.5	226.0	2 3 •5
M	604.5	582 • 0	550.0	202.5	23.0
N	743.5	501.5	495.0	205.5	15.5
0	674.5	616.0	601.5	197.0	18.5
00	690.5	629.0	514.0	170.0	15.0
P	722.0	608.5	516.0	162.0	24.0
R	718.5	617.5	544.5	177.5	30.0
S	776.0	668.5	558.5	198.0	
LL	568.0	564 • 0	538.5		37.0
Q	480.0	449•5		182.0	24.5
A	524.0	489.5	381.5	197. 0	10.0
•	324.0	407+3	473.0	184.5	30 • 0
С	495.5	522.0	383.0	86.5	11.0
E	560.5	484•5	491.0	131.0	19.5
LAB.	CFLLULOSE	PÝC	TILE/FL.	Dylo /Fr	4-
	CFLLULOSE	PÝC	TILE/FL.	PVC/FL.	P. STYR./FL.
В	159.0	PÝC 111•5			
B D	159.0 167.5		16.5	59.0	273.0
B D EE	159.0 167.5 159.5	111.5	16.5 19.0	59.0 61.0	273.0 353.5
B D EE F	159.0 167.5	111.5 105.5	16.5 19.0 19.5	59.0 61.0 75.5	273.0 353.5 326.5
B D EE	159.0 167.5 159.5	111.5 105.5 110.5 110.0	16.5 19.0 19.5 6.5	59.0 61.0 75.5 24.5	273.0 353.5 326.5 405.5
B D EE F	159.0 167.5 159.5 165.0	111.5 105.5 110.5 110.0 107.0	16.5 19.0 19.5 6.5 19.5	59.0 61.0 75.5 24.5 57.0	273.0 353.5 326.5 405.5 322.0
B D EE F G H	159.0 167.5 159.5 165.0 165.0	111.5 105.5 110.5 110.0 107.0 102.5	16.5 19.0 19.5 6.5 19.5	59.0 61.0 75.5 24.5 57.0 37.5	273.0 353.5 326.5 405.5 322.0 418.0
B D EE F G H I	159.0 167.5 159.5 165.0 165.0 157.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0	16.5 19.0 19.5 6.5 19.5 16.5 33.0	59.0 61.0 75.5 24.5 57.0 37.5 87.5	273.0 353.5 326.5 405.5 322.0 418.0 428.0
B D EE F G H I	159.0 167.5 159.5 165.0 165.0 157.5 164.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5	59.0 61.0 75.5 24.5 57.0 37.5 87.5	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5
B D EE F G H I J	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0	59.0 61.0 75.5 24.5 57.0 37.5 87.5 69.0 83.0	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0
B D EE F G H I J K L	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5	59.0 61.0 75.5 24.5 57.0 37.5 87.5	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5
B D EE F G H I J K L	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0	59.0 61.0 75.5 24.5 57.0 37.5 87.5 69.0 83.0	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0
B D EE F G H I J K L	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5 157.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5 112.0	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0	59.0 61.0 75.5 24.5 57.0 37.5 87.5 69.0 83.0 48.5	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0 409.0
B D EE F G H I J K L M N	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5 157.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5 112.0	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0 15.0	59.0 61.0 75.5 24.5 57.0 37.5 87.5 69.0 83.0 48.5	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0 409.0
B D EE F G H I J K L	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5 157.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5 112.0	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0 15.0	59.0 61.0 75.5 24.5 57.0 37.5 69.0 83.0 48.5	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0 409.0 406.0 438.0 425.5
B D EEE F G H I J K L M N O O O P	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5 157.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5 112.0	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0 15.0	59.0 61.0 75.5 24.5 57.0 37.5 69.0 83.0 48.5 79.0 62.0 92.5 46.0	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0 409.0 406.0 438.0 425.5 416.0
B D EEE F G H I J K L M N O	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5 157.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5 112.0 118.0 124.5 114.0 97.0 105.5	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0 15.0 27.5 21.0 27.0 15.0 23.0	59.0 61.0 75.5 24.5 57.0 37.5 69.0 83.0 48.5 79.0 62.0 92.5 46.0 69.0	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0 409.0 406.0 438.0 425.5 416.0 435.5
B D EEE F G H I J K L M N O O O P	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5 157.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5 112.0 118.0 124.5 114.0 97.0 105.5	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0 15.0 27.5 21.0 27.0 15.0 23.0	59.0 61.0 75.5 24.5 57.0 37.5 69.0 83.0 48.5 79.0 62.0 92.5 46.0 69.0 31.0	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0 409.0 406.0 438.0 425.5 416.0 435.5
B D EEE F G H I J K L M N O O O P R S	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5 157.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5 112.0 118.0 124.5 114.0 97.0 105.5 107.5	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0 15.0 27.5 21.0 27.0 15.0 23.0	59.0 61.0 75.5 24.5 57.0 37.5 69.0 83.0 48.5 79.0 62.0 92.5 46.0 69.0 31.0 55.0	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0 409.0 406.0 438.0 425.5 416.0 435.5 486.0 418.5
B D EEE F G H I J K L M N O O O P R	159.0 167.5 159.5 165.0 165.0 157.5 164.5 169.5 153.5 157.5	111.5 105.5 110.5 110.0 107.0 102.5 105.0 103.0 102.5 112.0 118.0 124.5 114.0 97.0 105.5	16.5 19.0 19.5 6.5 19.5 16.5 33.0 26.5 27.0 15.0 27.5 21.0 27.0 15.0 23.0	59.0 61.0 75.5 24.5 57.0 37.5 69.0 83.0 48.5 79.0 62.0 92.5 46.0 69.0 31.0	273.0 353.5 326.5 405.5 322.0 418.0 428.0 334.5 377.0 409.0 406.0 438.0 425.5 416.0 435.5

16.0

20.5

13.0

114.5

92.0

92.0

155.0

150.5 138.0

С

105.0

27.0

33.0

355.0

421.5

22.5

TABLE 6 Mean Dc, Clear Beam Value, For Each Material and Laboratory

LAB.	LINULEUM	POLY. RUG	RED OAK	ABS	POLYSTYRENE
В	3.5	22.5	•5	6.5	1.0
D	17.0	22.0	8 • 0	9.5	1.0
EE	3.5	20.0	5.0	16.5	3.0
F	12.5	18.5	5.5	10.5	5.5
G	14.0	68.0	14.0	7.0	2.0
Н	16.5	31.0	12.0	4.0	•5
Ī	10.5	21.5	8.5	7.0	•0
J	22.0	34.0	10.5	7.5	1.5
K	8.5	24.0	4.5	7.0	2.5
L	13.5	22.5	5.5	10.5	•5
_			3.5	2003	• 5
M	13.5	13.0	10.5	12.0	3.0
N	7.∪	20.5	6.0	6.0	1.5
0	4.5	≥7∙5	7.5	6.5	1.5
00	• 5	22.5	• 0	3.5	•5
P	5.5	21.0	•5	2.0	2.5
R	6 . U	15.0	0∙5	5.0	2.0
S	1.5	18.0	6.0	3.5	1.0
LL	• 5	54.5	4.5	1.5	4.5
Q	8.0	46.0	2.0	6.5	1.0
A	9•∪	23.0	4.0	17.0	3.0
0	1.5	27.5	. .		
C E	3.0		4.5	1.0	• 0
£	5.0	ა8•0	შ∙0	8.5	1 • 0
LAB:	CELLULOSE	PVC	TILE/FL.	PVC/FL.	P. STYR./FL.
В	4.5	1.5	-		
D	4.0	2.5	.5	• 5	23.0
EE	20.5	5.5	1.0	1.0	25.0
F	6.0	2.0	1.0	, 5	36.0
	8.0	2.5	1.0	3.5	32.5
G H	4.5	2.5	1.0	1.0	30.0
I	6.5	4.0	•5	1 • Ú	29.5
J	4.5	1.5	1.0	4.5	∠8•5
K	3.5	•5	•5 •0	• 5	22.0
L	3.0	1.0		1.0	21.0
L	0.0				
M		200	1.0	•5	20.0
N	5.0				
	5.0 5.5	2.0	1.0	1.5	25.0
0	5.5	2.0 1.5	1.0 1.0	1.5	25.0 23.0
0 00		2.0 1.5 .0	1.0 1.0 2.0	1.5 .0 3.0	25.0 23.0 21.5
	5.5 4.5 4.0 5.0	2.0 1.5 .0 .5	1.0 1.0 2.0	1.5 .0 3.0	25.0 23.0 21.5 23.0
00	5.5 4.5 4.0	2.0 1.5 .0 .5	1.0 1.0 2.0 .0	1.5 .0 3.0 .0	25.0 23.0 21.5 23.0 33.0
00 P	5.5 4.5 4.0 5.0 6.0 3.5	2.0 1.5 .0 .5 .5	1.0 1.0 2.0 .0 .5	1.5 .0 3.0 .0 .0 1.5	25.0 23.0 21.5 23.0 33.0 33.0
OO P R	5.5 4.5 4.0 5.0 6.0	2.0 1.5 .0 .5 .5	1.0 1.0 2.0 .0 .5 1.0	1.5 .0 3.0 .0 .0 1.5	25.0 23.0 21.5 23.0 33.0 33.0 25.5
OO P R S LL	5.5 4.5 4.0 5.0 6.0 3.5	2.0 1.5 .0 .5 .5	1.0 1.0 2.0 .0 .5 1.0	1.5 .0 3.0 .0 .0 1.5 1.0	25.0 23.0 21.5 23.0 33.0 33.0 25.5
OO P R S	5.5 4.5 4.0 5.0 6.0 3.5 3.5	2.0 1.5 .0 .5 .5	1.0 1.0 2.0 .0 .5 1.0 .5	1.5 .0 3.0 .0 .0 1.5 1.0	25.0 23.0 21.5 23.0 33.0 33.0 25.5 35.5
OO P R S LL Q A	5.5 4.5 4.0 5.0 6.0 3.5 3.5 8.5 6.0	2.0 1.5 .0 .5 .5 1.0 .5 .0 1.0 2.0	1.0 1.0 2.0 .0 .5 1.0 .5	1.5 .0 3.0 .0 .0 1.5 1.0 .0	25.0 23.0 21.5 23.0 33.0 33.0 25.5 35.5 90.0 24.5
OO P R S LL Q	5.5 4.5 4.0 5.0 6.0 3.5 3.5 8.5	2.0 1.5 .0 .5 .5 1.0 .5	1.0 1.0 2.0 .0 .5 1.0 .5	1.5 .0 3.0 .0 .0 1.5 1.0	25.0 23.0 21.5 23.0 33.0 33.0 25.5 55.5

TABLE 7 Mean SON (5), Smoke Obscuration Number (5 min) For Each Material and Laboratory

LAB.	LINO	RUG	RED OAK	ABS	P STYR
В	706•0	1220.0	208.5	240.0	36.5
D	801•n	1427.0	123.5	208.0	46.5
EE	706.0	1536.5	15 l • n	184.5	37.0
F	687.5	1320.0	173.5	238.0	36.0
G	428.5	1065.5	65.5	106.0	33.0
H	674 • D	1301.0	134.5	141.5	35.5
I	593.5	1268.5	103.0	240.0	
J	741.0	1636.5	200 • 5	166.5	21.5
K	550.5	1212.0	105.0	187.0	25.0
L	847.5	1419.5	221•0	279.0	43.0
		(11 / •	22 i • ij	2/7 • 1	42.0
LL	529.0	1361.0	116.5	195.5	35.0
M	780.0	1616.0	155.0	302.5	41.0
N	947.5	1344.0	186.5	251.5	30.5
0	540.5	1107.5	259.5	194.0	39.0
00	345.5	1343.0	109.5	208.0	31.0
P	494.5	1173.5	103.5	167.0	37.0
R	713.0	1454.0	125.5	174.0	
S	687.0	1299.5	103.5	171.0	41.0
Q	650.5	997.5	70.0	230.5	39.0
À	787.5	1612,5			35.0
••	70743	101542	280.5	297.0	45 · 0
С	350.0	1128.0	66.0	120.0	27.0
E	377.5	1111.0	90 • n	127.5	20.5
7.45			TILE/FL		
LAB.	A CELL	PVC	IILE/FL	PVC/FL.	P. STYR./FI
В	335.5	301.5	34.5	194.5	599.0
D	405.5	266.5	50.5	211.0	567.0
EE	456.5	307.0	56.0	251.5	350.5
F	415.0	287.0	8 • 0	114.0	1273.0
G	306.0	175.5	46.5	186.5	490.0
H	378 • 0	259.5	35 • 5	134.5	731.0
I	395.5	253,5	73.5	297.0	501.5
J	511.5	301.0	90.5	265.5	1000.0
K	329.5	213.5	61.0	270.5	324.0
L	459.5	319.0	30 • 0	170.0	887,0
LL	455.5	264.0	70•0	260.0	95.0
M	431.0	327.0	56.0	292.5	•
N	417.0	291.5	25 • 0	130.0	233.0
0	452.0	309.0		139.0	657. ⁰
00	326.0	216.5	43 • 5 3 3 • 0		374.5
	306.5	270.5	. 32•0 59•5	146.5	225.5
P R	404.5	280.0		226.0	166.0
S	388.0	258.5	26 • D	127.0	1348,0
Q			28 • 5	197.0	871.0
A	315.5 445.0	216.5	86.5	112.0	948.5
n	77 2 (U	369.0	58• 0	393.0	413,5
C	234.0	188.0	26 • 0	116.0	1101.5
E	300.0	194.0	23.5	115.5	44.5
			· · · -		

	TABLE 8	Mean T. 9Dm For Ea	ach Material and	Laboratory	
LAB.	LINULEUM	POLY. RUG	RED OAK	ARS	POLYSTYRENE
В	9.30	6.00	9.95	12.85	14.00
D	3.15	4•3บ	10.65	13.80	11.65
EE	9.60	5.40	10.70	14.80	14.75
F	11.15	5.50	10.05	13.50	17.00
G	13.05	6.30	13.80	16.30	12.50
Н	9.00	5.50	11.65	14.50	14.75
I	11.00	5.65	11.75	14.25	14.50
J	9.70	5.40	9.20	13.25	15.70
K	10.55	5.75	11.55	13.95	16.85
L	7.70	5.65	9.25	12.90	15.85
LL	8.80	4.95	10.75	14.00	14.25
M	6.65	4.30	10.45	11.70	16.50
N	7.50	4.50	10.75	13.50	15.35
2	9.90	6.75	9.15	14.65	
óo	13.40	5. 65			12.15
P	10.20	5.65	12.10	14.10 14.25	13.45
	7.95	5.15	11.10		16.15
R			11.40	14.45	16.80
S	8.75	5.85	11.35	14.65	17.35
Q	7.05	4.35	13.25	13.55	5.55
A	Ua•∂.	3. 40	8•75	11.70	22.50
С	12.00	5.15	15.20	11.60	11.95
E	10.00	5.10	12.00	16.00	23.00
LAB.	CELLULOSE	PVC	TILE/FL	. PVC/FL.	P. STYR./FL.
В	5.55	5.30	8.50	4.20	5.55
B D	5•55 5•05	5•30 5•90	8.50 7.75	4.2U 4.15	5•55 5•50
B D EE	5•55 5•05 4•60	5.30 5.90 5.30	8.50 7.75 7.00	4.20 4.15 3.90	5.55 5.50 6.60
B D EE F	5.55 5.05 4.60 4.80	5.30 5.90 5.30 5.35	8.50 7.75 7.00 8.75	4 • ∠0 4 • 15 3 • 90 3 • 50	5•55 5•50 6•60 4•25
B D EE F G	5.55 5.05 4.60 4.80 5.80	5.30 5.90 5.30 5.35 7.55	8.50 7.75 7.00 8.75 9.00	4.20 4.15 3.90 3.50 4.30	5.55 5.50 6.60 4.25 6.05
B D EE F G H	5.55 5.05 4.60 4.80 5.80 5.15	5.30 5.90 5.30 5.35 7.55 5.25	8.50 7.75 7.00 8.75 9.00 8.75	4.20 4.15 3.90 3.50 4.30 4.55	5.55 5.50 6.60 4.25 6.05 5.25
B D EE F G H I	5.55 5.05 4.60 4.80 5.80 5.15 5.25	5.30 5.90 5.30 5.35 7.55 5.25 6.30	8.50 7.75 7.00 8.75 9.00 8.75 8.50	4.20 4.15 3.90 3.50 4.30 4.55 4.00	5.55 5.50 6.60 4.25 6.05 5.25 5.70
B D EE F G H I J	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.00	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65
B D EE F G H I	5.55 5.05 4.60 4.80 5.80 5.15 5.25	5.30 5.90 5.30 5.35 7.55 5.25 6.30	8.50 7.75 7.00 8.75 9.00 8.75 8.50	4.20 4.15 3.90 3.50 4.30 4.55 4.00	5.55 5.50 6.60 4.25 6.05 5.25 5.70
B D EE F G H I J K L	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.00 5.80 4.90	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90 4.10	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85
B D EE F G H I J K L	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.00 5.80 4.90	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90 4.10 4.15	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85
B D EE F G H I J K L	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.00 5.80 4.90 5.95 5.45	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90 4.10 4.15	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85
B D EE F G H I J K L LL M N	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.00 5.80 4.90 5.95 5.45 5.15	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20 6.70 8.25	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90 4.10 4.15 4.25 3.75 4.00	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85
B D EE F G H I J K L LL M N O	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35 5.20 4.35	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.00 5.80 4.90 5.95 5.45 5.15 5.05	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20 6.70 8.25 12.65	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90 4.10 4.15 4.25 3.75 4.00 7.10	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85
B D EE F G H I J K L LL M N O	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35 5.10 4.50 5.15 4.70 6.65	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.00 5.80 4.90 5.95 5.45 5.15 5.05 6.10	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20 6.70 8.25 12.65 10.25 8.85	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90 4.10 4.15 4.25 3.75 4.00 7.10 4.50	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85
B D EE F G H I J K L LL M N O O P	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35 5.15 4.70 6.65 5.75	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.00 5.80 4.90 5.95 5.45 5.15 5.05 6.10 5.35	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20 6.70 8.25 12.65 10.25 8.85 9.05	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90 4.10 4.15 4.25 3.75 4.00 7.10 4.50 4.40	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85 11.00 6.75 5.65 6.75 7.30
B D EE F G H I J K L LL M N O O P R	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35 5.10 6.65 5.75 6.10	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.80 4.90 5.95 5.45 5.15 5.05 6.10 5.35 5.65	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20 6.70 8.25 12.65 10.25 8.85 9.05 7.35	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90 4.10 4.15 4.25 3.75 4.00 7.10 4.50	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85 11.00 6.75 5.65 6.75 7.30 6.95
B D EE F G H I J K L M N O O P R S	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35 5.15 4.70 6.65 5.75 6.10 4.95	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.80 4.90 5.95 5.45 5.15 5.05 6.10 5.35 5.65 5.90	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20 6.70 8.25 10.25 8.85 9.05 7.35	4.20 4.15 3.90 3.50 4.30 4.55 4.00 3.90 4.10 4.15 4.25 3.75 4.00 7.10 4.50 4.40 3.55	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85 11.00 6.75 5.65 6.75 7.30 6.95 4.50
B D EE F G H I J K L LL M N O O P R	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35 5.10 6.65 5.75 6.10	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.80 4.90 5.95 5.45 5.15 5.05 6.10 5.35 5.65	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20 6.70 8.25 12.65 10.25 8.85 9.05 7.35	4.20 4.15 3.90 3.50 4.50 4.55 4.00 3.90 4.15 4.25 3.75 4.00 7.10 4.50 4.50 5.90	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85 11.00 6.75 5.65 6.75 7.30 4.95 4.85
B D EE F G H I J K L M N O O P R S Q A	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.25 4.35 5.15 5.25 4.35 5.15 4.50 5.15 4.50 5.15 4.50 5.15 4.50 5.15 4.50 5.15 4.50 5.15 4.50 5.15 4.50 5.15 4.50 5.15 4.50 5.15 4.50 5.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.80 4.90 5.45 5.15 5.15 6.10 5.65 5.65 5.90 5.465	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20 6.70 8.25 12.65 10.25 8.85 9.05 7.35 7.05 4.00	4.20 4.15 3.90 3.50 4.55 4.00 3.90 4.15 4.25 3.75 4.00 7.10 4.50 4.50 3.90 3.90 3.90 4.50 4.50 4.50 4.55 4.55 4.55 4.55 4.5	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.75 5.65 6.75 7.39 4.85 4.85 4.85
B D EE F G H I J K L L M N O O P R S Q	5.55 5.05 4.60 4.80 5.80 5.15 5.25 4.35 5.20 4.35 5.15 4.70 6.65 5.75 6.10 4.95 5.90	5.30 5.90 5.30 5.35 7.55 5.25 6.30 5.80 4.90 5.45 5.45 5.15 5.05 6.10 5.35 5.65 5.90 5.55	8.50 7.75 7.00 8.75 9.00 8.75 8.50 6.45 9.05 8.20 6.70 8.25 10.25 8.85 9.05 7.35 7.05	4.20 4.15 3.90 3.50 4.55 4.00 3.90 4.15 4.25 3.75 4.00 7.10 4.50 4.50 5.90 5.90 5.90	5.55 5.50 6.60 4.25 6.05 5.25 5.70 5.65 6.90 4.85 11.00 6.75 5.65 6.75 7.30 4.85 4.85 4.85

TABLE 9 Dm(corr.)Values for 6 Additional Replicates by Each Lab

				Non-f	Non-flaming	80								Flaming		
	Linoleum	leum	Rug	Red Oak	- ¥	ABS		α-cell	1	PVC.	PVC-Gyp	P.Styrene	rene	PVC-Gyp	Acou	Acoustic Tile
Lab	ъ	S	ВК	I I	11	D M	Ŀ	0	8	Ħ	0	EE	Z	G P	н	æ
AMINCO	752 740 713 745 745	744 789 779 768 <u>a</u> /	664 619 689 599 646 597 628 620 628 591 620 630	608 559 635 534 561 529 591 530 590 518 598 $\frac{2}{3}$	6 4 6 0 8 7	205 201 212 213 195 215 210 198 211 192 211 176	164 159 160 171 157 164	156 162 160 153	166 158 157 161 169	97 102 95 101 100	96 94 97 94 94	343 325 345 285 371 287	343 282 451 478 356 461	57 70 56 66 54 77 51 63 61 67	24 20 22 25 30 30	13 9 10 9
Avg.	739	770		597 534	7	207 199	162	159	163	66	96	326	395	55 70	25	10
S.D.	16	19	26 16	24 15	1.5	6.5 14	5.0	4.0	4.9	2.6	2.8	34	62	3.5 5.9	3.	9 1.8
Lab	A			ပ								Ħ	/ব			
HOME	52 52 53	530 513 526 528 566		338 374 348 367 373 372							-	23 35 32 28 28 28 31	1 8 8 2 5 3		_	
Avg.	53	533		362								28	· ·			
ş.D.	17	17.7		15.2								3	3.4			

 $\frac{a}{}$ Data not reported or withdrawn by request

 $\frac{b}{a}$ Specimens did not ignite; methane was used as fuel

TABLE 10 -SUMMARY OF VALUES FOR 18 LABORATORIES (AMINCO)

				Non-flaming Exposure	ng Exposur	e.			Flamin	Flaming Exposure	e .		
									Modified Burner	Burner	Straig	Straight Burner	
		Lino.	Rug	Red Oak	ABS	α -cell	PVC-Gyp	P. Sty	ABS/.032 £/P.Sty.	Sty.	PVA/PVC e/	PVC-Gyp	Tile
	BETWEEN-LAB			٧									
D_(corr.)Mean	Mean	725 <u>d</u> /	621	552	188	162d/	109	23	451.4	391	548	62	20
· 	S. $D.^{a}$	67		40	20	4.7	9.9	6.3	17.3	52	39	19	6.9
	Coef. Var.%	7.9 %	8.4	7.2	11	2.9	0.9	27	3.8	13	7.1	31	34
	WITHIN-LAB								, 06	33	22	7.	7
	S. D. = '	94	28	18	12	4.2	3.5	6.7	50.4	25	77	10.1	7
	Coef. Var. 72/	, <u>c</u> / 6.4	4.5	3.2	6.4	2.6	3.2	29	4.5	8.0	4.0	17	23
	BETWEEN-LAB	8.											
06	Mean	9.6	5.5	10.8	14.0	5.2	5.6	15.0		6.2		4.2	8.4
	S. D.	1,8	79.	1.1	86.	.62	.63	1.7		1.6		.77	1.4
	Coef. Var.%	7, 19,4	11.8	10.4	7.0	11.9	11.1	11.5	•n=	26		18.2	17.0
	BETWEEN-LAB	~:							•				
Son (5)	Mean	199	1337	149	203	395	272	36		623		197	45
	Coef. Var.%	, 23.2	12.2	34.9	24.6	14.9	15.1	17.7		56.8		30.9	7.77
	BETWEEN-LAB												
	Mean	8.9	26.4	6. 4	7.0	5.6	1.6	1.8		27.0		1.1	. 75
	S. D.	6.3	13.8	3.8	3.7	3.9	1.4	1.4		5.2		1.2	64.

Between-lab. Standard deviation were based on mean of each lab. With-in lab. Standard deviation based on individual values. S. D. = Calculated Standard Deviation हा थे । थे ।

Coef. Var. = Coefficient of Variation.

Excluding Lab. LL

Pre-round-robin, 17 labs.

Candidate reference material, 12 labs.

The mean values based on duplicate determinations of

D_m (corr.) - the maximum specific optical density of smoke, corrected for window deposit.

T.9D_m - the time to reach 90% of D_m.

D_c - the specific optical density of photometer window smoke deposit.

SON (5) - a smoke obscuration number based on the smoke buildup during the first 5 minutes. (See Appendix II-B)

are shown in Tables 5, 6, 7, and 8 respectively. $\frac{3}{}$

Individual values are tabulated in Appendix I. On materials in which a laboratory performed 8 replicate tests, only the first 2 test results are included in these summary tables. The remaining 6 test results, including the mean and standard deviation are tabulated in Table 9.

6. Statistical Analysis

6.1 Means and Standard Deviation

Table 10 summarizes, for each material, the arithmetic mean, standard deviation, and coefficient of variation of data from 18 laboratories using the AMINCO-built chamber. The within-laboratory standard deviations are computed from the formula:

$$s^2 = \frac{1}{2k} \sum_{i=1}^{k} (x_{1i} - x_{2i})^2$$

where S is the pooled standard deviation, X_{1i} and X_{2i} are

 $[\]frac{3}{\text{See Appendix II (Appendix B) for definition of terms.}}$

the replicate test results from laboratory i, and k=18 is the number of laboratories. The between-laboratory standard deviations are computed from the means of the duplicates of these 18 laboratories. The mean and between-laboratory standard deviation of $T_{.9D_m}$, D_{c} and $SON_{(5)}$ are also included. Results of one AMINCO (Q) and all three home-built (A,C,E) chambers are not included in the analysis. (There were basic differences between individual home-built chambers, and between these chambers and the AMINCO-built chambers, e.g. chamber wall construction, photometer, etc.) A comparison of the within-laboratory standard deviation in Table 10 with their counterpart in Table 9 for the various materials substantiate the assumption that laboratories using AMINCO chambers have approximately equal precision.

6.2 Variability

A simple graphical procedure, known as the Youden Plot, was used for comparing interlaboratory results [3]. A graph is prepared by plotting the value of D_m (corr.) for one material on the X-axis and that for another material of about the same value on the Y-axis. Each point represents one laboratory and there will be as many points as there are reporting laboratories. A line parallel to the X-axis is drawn through the median of these points in the Y direction; a line parallel to the Y-axis is drawn through the median of these points in the X direction. The two lines divide the graph into four quadrants.

If only random errors are present, the points can be expected to be equally distributed in all quadrants. Points tend to be concentrated in the upper right and lower left quadrants when systematic bias by individual laboratory exists.

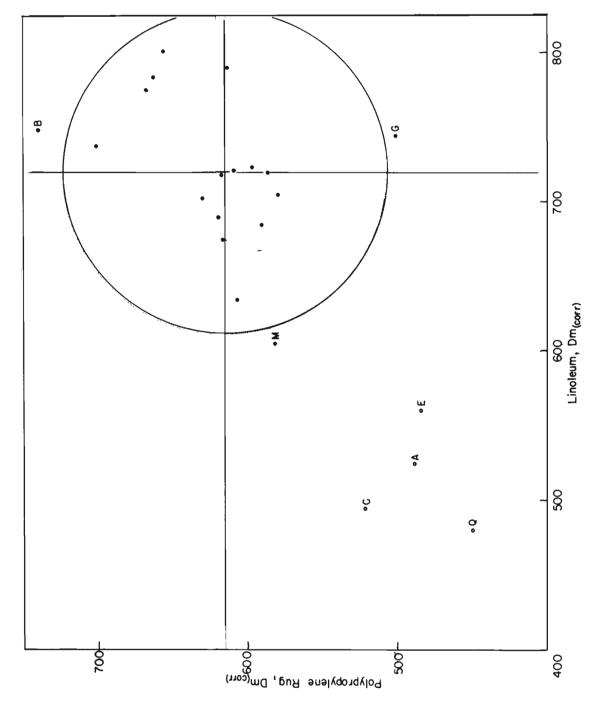
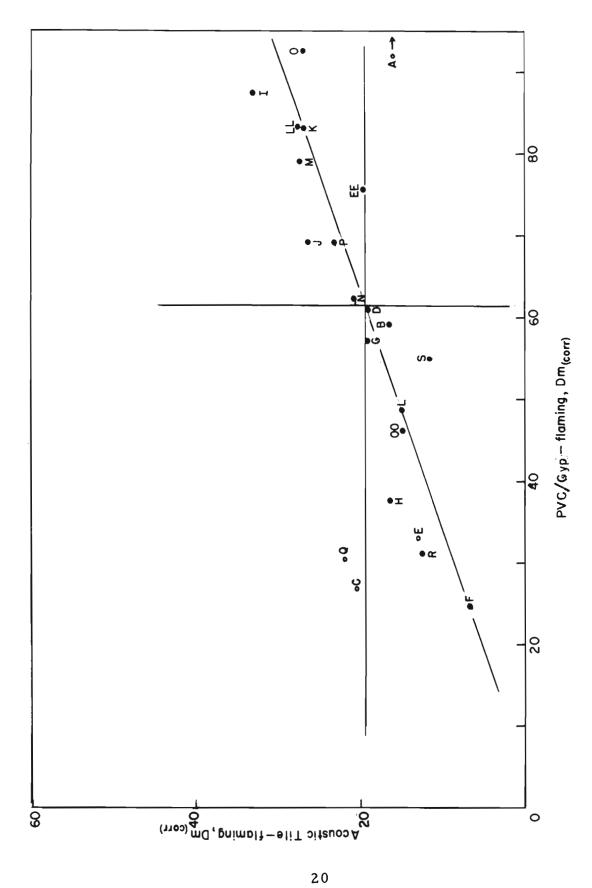



FIG. 1 Youden Plot of Linoleum vs. Polypropyrene Rug

Youden Plot of PVC/Gypsum vs. Acoustic Tile, Flaming FIG. 2

Figure 1 is a Youden Plot based on non-flaming test data for Linoleum and Polypropylene rug, and Figure 2 for the flaming test data on PVC-gypsum board and Acoustic Tile. In both figures, Labs A, C, E and Q are identified but are not included in determining the medians. Figure 1 is represent-ative of the other Youden plots for materials tested under the non-flaming condition, and Figure 2 for the flaming condition. There is a general tendency for points to concentrate in the upper right and lower left quadrants, which is typical for most interlaboratory data. The data, particularly in Figure 2 show that laboratories have a much greater tendency to have similar results (high or low) on both materials thus indicating a systematic deviation which requires explanation.

Figures 3 and 4 are another form of Youden plot in which the first and second (duplicate) test results for a single material are plotted. If there were no systematic biases, about 90% of the points should be within a circle whose radius is 2.15 times the standard deviation.

Analysis of Table I -1 (Appendix I) shows that for all materials with $D_{\rm m}$ (corr.) values>100, 80% of all the individual values were within $\pm 10\%$ of the mean values for all laboratories; also over 95 percent of all the individual values were within $\pm 20\%$ of the mean values for all laboratories.

An overall distribution of results (18 AMINCO chambers) is shown in Figure 5 and 6. Deviation from the mean values of D_{m} (corr.) for each laboratory are plotted against the mean of all laboratories.

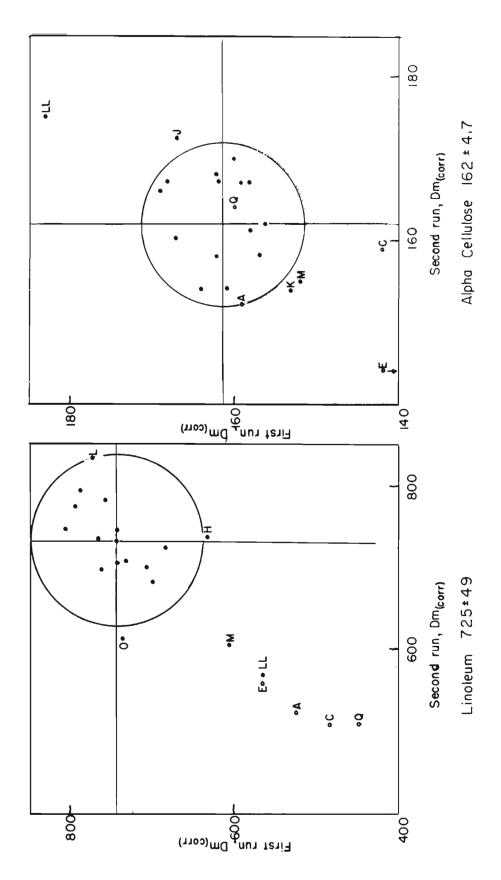
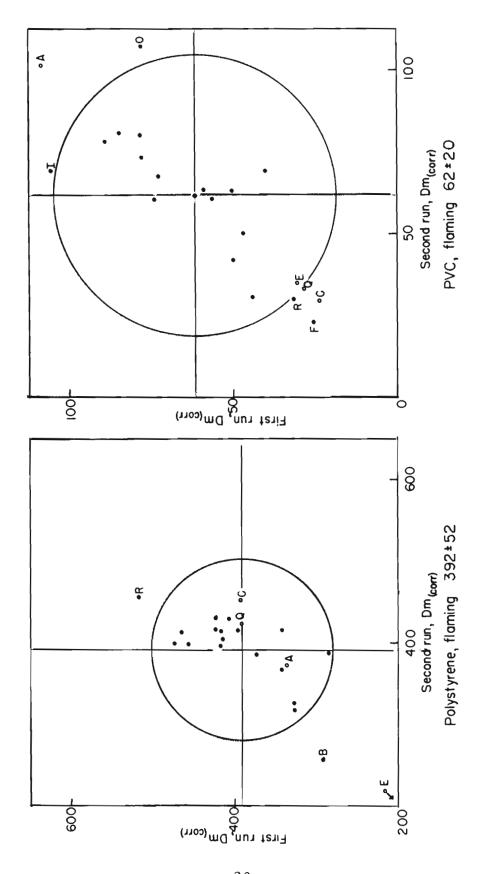



FIG. 3 Youden Plots of Linoleum and α' -cellulose

Youden Plots of Polystyrene Foam and PVC, Flaming Condition FIG. 4

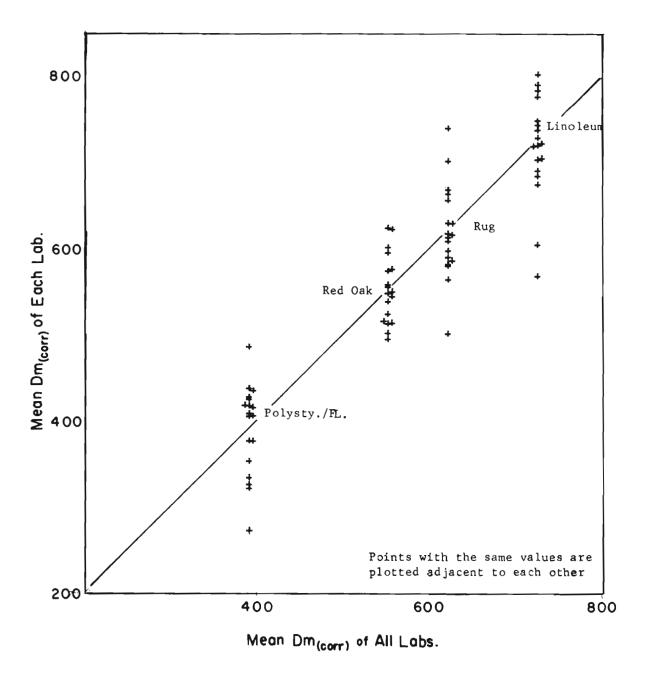


FIG. 5 Mean $D_{m(corr.)}$ of All Labs vs. Each Lab., 4 Materials

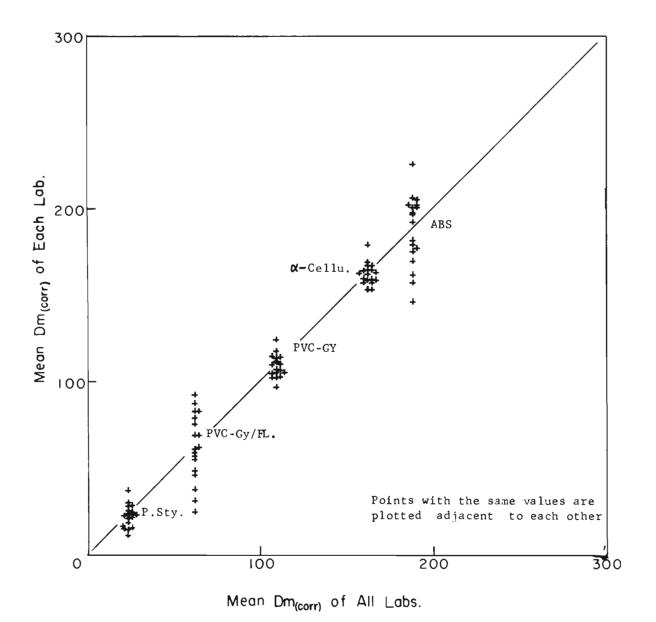


FIG. 6 Mean $D_{m(corr.)}$ of All Labs vs. Each Lab., 5 Materials

Table 11 - Material Rankings by 18 Labs. (AMINCO) (Flaming or non-flaming exposure)

LAB.	Lino.	Rug	Red Oak	Polysty/Fl.	ABS	α-cellu.	PVC-Gyp	PVC-Gyp/F1.	Ро	Polysty.
щ	1	2	က	4	5	9	7	00		6
Д	1	2	e	4	5	9	7	œ		6
E E	1	2	8	7	5	9	7	80		6
ţĸ	-	က	2	7	2	9	7	80		6
G	-	2	က	7	9	5	7	∞		6
Ħ	H	2	က	7	2	9	7	∞		თ
I	1	2	8	7	5	9	7	80		10
J	1	2	က	7	2	9	7	80		10
×	1	2	က	4	2	9	7	80		6
П	1	2	3	7	5	9	7	80		6
TT	1	2	ო	4	2	9	7	80		10
Σ	1	2	ო	7	2	9	7	80		10
Z	1	2	က	7	5	9	7	80		10
0	1	2	c,	7	5	9	7	œ		10
00	1	2	က	7	5	9	7	œ		6
Ъ	1	2	r	7	9	5	7	œ		6
×	1	2	٣	7	5	9	7	∞		6
S	1	2	8	4	2	9	7	œ		6
Mean D (corr.) 725	.) 725	621	552	391	188	162	109	62		23

6.3 Ranking of Materials

Of the 10 material-conditions included in the tests, all 18 laboratories with AMINCO chambers ranked 9 of the material-conditions in the same order in terms of $D_{\rm m}$ (corr.) with only 3 reversal, see Table 11. Because of the proximity of results between the 10th material, Acoustic tile, $D_{\rm m}$ (corr.)=20; and the 9th material, Polystyrene Foam, nonflaming $D_{\rm m}$ (corr.)=23, some reversal in ranking order occurred. This was not unexpected because of the closeness of the $D_{\rm m}$ values.

Table 12 shows the ranking order of the laboratories for each material and the ranking sums (score) for each laboratory. A ranking order of 10, for example, means that the particular laboratory has a $D_{\rm m}$ (corr.) value higher than nine other laboratories for that material. The score for a laboratory is based on the sum of the rankings for all materials [4]. The score rank indicate the ranking of the score.

7. Discussion

This round robin was designed to examine the level of variability of the test method for materials with a wide range of properties in terms of composition, thickness, reaction to heat and flame, and production of smoke. It also included diverse types of laboratories - research as well as testing oriented; experienced as well as new to smoke measurement work. The result should reflect therefore, a conservative estimate of the precision of the test method.

An interlaboratory test of this type indicates clearly to the participating laboratories who have reported systematic

Table 12 $D_m(\text{corr.})$ Ranking and Score of Labs for Each Material (18 AMINCO Labs.)

LAB.			Non-F1	Non-Flaming Exposure	posure							Flame	Flame Exposure	
	Lino.	Rug	Red Oak	ABS	Ce11	PVC	P.Sty	Score	Score	P.Sty	PVC	Tile	Score	Score
рв	14 6	18 13	σ . κ.	12.5	5.5 15.5	12 6.5	6 14	77 70.5	14	1 5	80 00	6.5	15.5 22	8 2
ਸ ਬ ਬ	16	15	11 18	14.5 17	7,13.5	11	15 9.5	89.5	15 16	നയ	13	9,5	25.5 10	10
Н	7 4	2 5	16 13	1 2	13.5 3.5	8 2.5	7 8	44.5	53	12	7.8	9.5	18.5 21.5	3
нь	11	6	2 15	9 5	12 17	4 ک	1 2	46 72	4 13	15	17	18 13	40	17 11
X I	91	4 14	14 17	18	3.5	2.5	11	54 94.5	5	7 10	15.5	14.5	37	12 4.5
II.	2 1	3 7	7 10	8 14.5	18 1.5	16 17	13 9.5	71 56.5	12	96	15.5 14	16.5 16.5	38 39.5	13.5 15.5
zo	13 3	10	1 16	16 10	9	18 14	5	62	10	17	10	11 14.5	38	13.5 18
90 P	5	12 8	5	4 %	8	16.5	3	37 54.5	1	11 16	4 11.5	4.5	19.5 39.5	4.5 15.5
& S	8 15	11 16	8 12	6	5.5 15.5	9	17 18	64.5	9	18 13	6 2	2	23 21	6 9

deviations from the average, that they should examine their procedures more carefully to locate sources of such departures.

7.1 Variation Between Laboratories

The optical system and the thermal properties of the inside walls differ between the home-built (Labs. A, C, and E) and AMINCO chambers. As a group, the results of home-built chambers are lower than the AMINCO type with the difference more pronounced at the higher end of the scale.

The mean values of 5 of the 10 material-conditions supplied by Lab. Q were the lowest of all 22 laboratories. In many cases, Lab. Q deviations from the median exceeded 3 times the standard deviation, and their results have been excluded. Justifiable reruns, and withdrawal of some data by request, based on acknowledged error, were few and are listed in Table 13.

7.2 Materials

The materials selected for the tests covered a wide range of smoke levels as well as physical properties. Table 9 and 10 reflect the fact that the uncertainty of the test results (in terms of computed standard deviation and coefficient of variation) is considerably greater for materials which change in shape and position during test exposure. For example ABS melted gradually and flowed down away from the high irradiance center region. The Polystyrene foam melted and shrank into the bottom of the holder rapidly where the bottom edge shields it from further exposure.

Table 13 Adjustment of Data

Lab	Material/Condition	No. of Tests	Remarks
Н	Polystrene/flaming	2	Rerun, error.
K	Ploystrene/flaming	2	Rerun requested by lab.
S	Linoleum/non-flaming	1	Replaced 2nd by 4th run.
N	PVC/flaming	2	Not reported; assumed 62.
00	Tile/flaming	1	Excluded, error
LL	Linoleum/non-flaming Rug/non-flaming Red Oak/non-flaming	1 1 1	Withdrew Requested by Lab. (error). "
Q	A11	A11	Not used in statistical calculation (excessive
A,C,E	A11	A11	variability) Not used; limited only to AMINCO chamber

The results of the $D_{\rm m}$ (corr.) values show that the ratio of between-laboratory standard deviation (reproducibility), to the within-laboratory standard deviation, range between 0.9 and 2.2. This implies that variations in procedures among laboratories account for most of the error rather than specimen variations. Hence, the averaging of three replicate determinations as specified in the proposed test method standard will not improve the between-laboratory variability, unless some of the major systematic sources of error are removed. However, the required three determinations may help in getting a more representative cross-section of the material.

In terms of ranking materials based on smoke level, these tests show (a) almost total agreement among the laboratories, and (b) the ability to rank order consistently two materials whose smoke density values were within 12% of each other (Polypropylene rug = 621 versus Red oak = 552).

7.3 Results

As indicated by the $D_{\rm m}$ (corr.) values in Table 10 under the non-flaming exposure condition, the five non-melting materials have a maximum coefficient of variation of 8.4%. The other two materials which melt, ABS and Polystyrene, have coefficients of variation of 11 and 27% respectively. However, the 27% coefficient of variation represents a standard deviation of only 6.3.

Under flaming exposure, the large coefficient of variation for tile and PVC-gypsum veneer may be attributed to systematic error. In Figure 2, the high values of Lab. I and LL and the low values of F, R, and H may be the result of using

Table 14 Results of Pre-Round-Robin and Candidate Reference Specimens

<u>Lab</u>	d- Cell	ulose	PVC/PVA I	laming	ABS/32 mil F	laming a/
	<u>Dm</u>	<u>Dc</u>	<u>Dm</u>	<u>Dc</u>	Dm(corr)	<u>Dc</u>
Α	163	7	501	6		
	161	7	460	15		
В	171	2	561	5	433	10
	153	8	564		440	25
С	166	5	498	26		
	163	7	513	18		
D	161	5	597	7		
			607	11		
E	160	10	505	15	(EE) 452	22
	161	16	513	14	437	18
F	174	5	553	12	487	24
	175	5	516	17	491	24
G	166	3	505	13		
	176	3	517	13		
H	160	3	560	11		
	165	5	592	12	4-140	
I	161	4	581	5	(J)435	23
	157	3	597	9	475	27
K	150		550		488	26
	162	_	543		453	19
L	163	2	549	8	462	20
	156	3	608	12	457	18
LL	164	9	513	14		
	169	8	523	11		
M	157	6	620	18		
	166	7	629	13	/20	26
00					439.	26 17
_	156	,			440 420	18
0	156	4			420 471	
_	162	5	5/5	7	469	16
P	162	6	545	7 6	474	25 27
•	176	2	568		426	54(32) <u>b</u> /
Q	175	2	549 541	14 14	455	58(36)
_	160 162	2 9	531	20	400	70(20)
R	163	10	606	19		
•	166	5	495	7	439	26
S	162	4	535	9	417	27
U	102	4)3)	,	417	20
U					462	22
Return	een Lab					
	Mean 163.6	5	548.4		/.E1 /	
	S.D. 4.8				451.4	
	.Var% 2.9		38.9 7.1		17.3 3.8	
With	in Lab					
:	S.D. 6.1	l	22.0		20.4	
Coef	.Var% 3.7	7	4.0		4.5	

 $[\]underline{\underline{a}}/$ Modified Burner and Trough Holder $\underline{\underline{b}}/$ Values in parentesis were used to calculate Dm(corr)

improper fuel flow rate and burner distance, (See Table 4). If these data were excluded, the coefficient of variation for the two materials would be reduced by about one-third. However, for the tile and the PVC-gypsum materials, the actual values of the standard deviation are 6.9 and 19 respectively, representing low absolute variations for low smoke producing materials. The result for Polystyrene under flaming exposure is less affected by variations in burner location and fuel, since once ignited, it becomes strongly exothermic and burns without requiring external energy. This is also true with the thicker PVC-PVA sheet under flaming exposure used in the preliminary tests and the 0.032" ABS sheet used in the post-round-robin tests. There, the coefficient of variation was only 7.1% (mean $D_{\rm m}$ (corr.) = 548) and 4.5% (mean D_m (corr.) = 458) for the two materials respectively.

In order to detect possible gross errors in procedure or equipment, a short series of tests was conducted prior to the round-robin on two materials. The data are shown in Table 14. Also included are results of tests performed after the round-robin on a candidate reference material (ABS). The unusually high $D_{\rm C}$ values on ABS for Lab. Q were attributed to the additional smoke deposited on the window during an excessive exposure time after a maximum smoke level has been reached. A $D_{\rm C}$ correction of 22 was arbitrarily subtracted from the reported values. The statistical results from these tests are summarized in Table 10.

Of all the parameters listed in Table 10, the D_C values, photometer window deposit, has a relatively higher between-laboratory variance; which appears to be systematic. This may have been caused by the differences in window temperature among chambers and/or improper procedure (e.g. failure to remove the specimen from the front of the furnaces within one minute after teaching the minimum transmittance).

7.4 Possible Sources of Error

For the materials tested in this study, there was greater variability in the flaming exposure test results compared to the non-flaming tests. There are several possible sources for systematic errors in the flaming test, these include:

- 1. Type of pilot burner.
- Position of the pilot burner relative to the specimen surface (horizontal and vertical spacings).
- 3. Flow rates of propane and air to the pilot burner.

8. Conclusions and Recommendations

This interlaboratory study of the smoke density chamber test method showed that reproducible test results were attainable for a wide variety of materials tested under flaming and non-flaming exposure conditions.

To improve reproducibility and repeatability even further, and to reduce systematic errors, certain features of the test method description, apparatus and/or experimental procedures may be noted:

- For flaming exposure conditions, a reference standard material with a maximum specific optical density in the range of 400 to 500 appears useful.
- 2. Care should be taken in the proper location and use of the standard pilot burner to ensure its identical re-positioning from test to test.
- 3. Propane and air flowmeters of the proper range

- and calibration should be used and maintained.
- 4. The modified six-tube burner and holder (used on melting specimens) should be adopted for all flaming specimens. This would simplify procedures and avoid the need of selecting from two burners.
- 5. A properly calibrated radiometer should be used and carefully maintained.
- 6. Checks should be made of the proper furnace voltage prior to each test. In case where line voltage fluctuation causes excessive variation of irradiance, a constant voltage transformer may be necessary.
- 7. The specified temperature limits of the wall surface should be observed.
- 8. Proper conditioning of all specimens is necessary.
- 9. Improved specification and/or design of the photometer window heater should minimize temperature and smoke deposit variability among the chamber windows.
- 10. Remove the specimen and commence smoke exhaust one minute after reading maximum smoke value in order to reduce photometer window deposit.
- 11. Care should be exercised when changing optical filters, to avoid measurement errors. A system where filter changes can be made without removal of the optical drawer is recommended.

Recommendations 1 and 4 have since been included in the revised test method. An effective method for changing filters, as per Recommendation 11, is now available from AMINCO.

9. Acknowledgment

I would like to thank all participating laboratories and their representatives for their helpful comments, and cooperation in making this joint study possible; the participants for attending the pre-test conference; Mr. John Brendan of the U. S. Forest Products Laboratory for providing the red oak specimens; and Dr. H. H. Ku (NBS) for advice on the statistical design and analysis.

10. References

- [1] D. Gross, J. J. Loftus and A. F. Robertson, "Method for Measuring Smoke from Burning Materials", ASTM Special Technical Publication No. 422 (1967).
- [2] D. Gross, et al, Smoke and Gas Produced by Burning
 Aircraft Interior Materials,
 Sci. Ser. 18, 27 pages (Feb 1969).

 Nat. Bur. Stand. (U.S.), Bldg.
- [3] Youden, W. J., "Precision Measurement and Calibration, Statistical Concept and Procedures" edited by H. H. Ku, NBS Special Publication 300, Vol. 1, February 1969, U. S. Government Printing Office, Washington, D. C., 20402 or Youden, W. J., Industrial Quality Control, Vol. XV, No. 11, 1959.
- [4] Youden, W. J., Ranking Laboratories by Round-Robin Test. Materials Research and Standards 3, No. 1, 9-13 (1963).