FLAMMABILITY AND SMOKE CHARACTERISTICS OF AIRCRAFT INTERIOR MATERIALS

TECHNICAL REPORT
ADS - 3

by

John F. Marcy
E. B. Nicholas
J. E. Demaree
Systems Research and Development Service

January 1964

This report was prepared by the SRDS under Project No. 311-3Xl for the Aircraft Development Service.

TABLE OF CONTENTS

Page
SUMMARY ii
INTRODUCTION 1
BACKGROUND 1
DISCUSSION 3
Fire Testing 3
Equipment Description 5
Laboratory Tests and Measurements 6
Test Results and Analysis 11
CONCLUSIONS 20
REFERENCES 21
ACKNOWLEDGMENTS 23
SUMMARY TABLES 24
ILLUSTRATIONS 30
APPENDIX 1
Materials Description (11 pages)
APPENDIX 2

Flammability Test Data on Interior Materials (59 pages)

SUMMARY

Flammability and smoke characteristics of interior materials were determined from a selection of 109 materials representative of present usage in the aviation industry. A comparison was made of the flame-resistant characteristics exhibited by the different materials on the basis of: (1) test method, (2) thickness, weight, composition and backing, (3) fire-retardant treatment, and (4) degradation from use and cleaning. By employing test methods defined in FAA Flight Standards Service Release 453 and Federal Specification eee-T-191b, burning characteristics were obtained in terms of burn rate, burn length, and self-extinguishing time. A Flame-Spread Index and smoke factor also were obtained by making use of the Radiant Panel Test Apparatus.

INTRODUCTION

This project was designed to provide technical information from standard laboratory fire tests that could be used as a basis for defining more acceptable flame-resistant standards and test methods for aircraft interior materials than those now provided by FAA Flight Standards Service (FSS) Release No. 453.

Recent fire experience in air transport passenger compartments and the development of new materials and test methods had suggested that the present standards were perhaps no longer adequate. As part of the project assignment, a laboratory test program was established using the test equipment and facilities at the National Bureau of Standards, Washington, D. C. Under this test program, some 100 different materials representative of materials in current use in commercial air transport were tested for relative flammability by various test methods including that specified in FSS Release No. 453, for direct comparison. Future work on the project will include toxic gas analyses on the combustion by-products of materials and also full-scale cabin fire tests using interiors with different degrees of fire resistance. The result of these tests will be covered in separate reports.

BACKGROUND

The events that preceded this project and were responsible for it being conducted were foremost: (1) concern with recent fire experience involving interior materials in air transport passenger cabins, (2) increased use of plastics and synthetics in interior furnishings, and (3) development of new laboratory test methods and criteria for evaluating flame-resistant characteristics of materials.

An acceptable procedure for showing compliance with the pertinent flame-resistant requirements in CAR's 3, 4b, 6, and 7 is contained in FSS Release 453, dated November 9, 1961. This document is based almost entirely on an earlier Safety Regulation Release 259, dated August 26, 1947. The two documents establish both a test method and a burn-rate limit of 4 inches per minute for showing compliance. However, a burn rate of this magnitude is now generally considered very lenient. A survey of interior materials in aircraft reveals that these are essentially the same as those offered to and used by industry in general; the most notable exception among the aircraft materials being the vinyl-coated fiberglas fabrics. Other exceptions are the synthetic fiber fabrics and
vinyl sheets which are sometimes specially flame-retardant treated. In any case, the degree of flame resistance required by present regulations does not encourage the development or use of better materials at this time. During the last few years, however, as a result of a series of fire in which the interior cabins of several large transport aircraft were severely damaged (Reference 1), the aviation industry has shown an increasing interest in the problem of minimizing the hazard from cabin fires (References 2 and 3). At least one major aircraft company has undertaken an extensive testing program with the object of selecting the best flame-retardant materials available from industry for use in interior cabins. These materials are selected according to their exceptional self-extinguishing properties. A very high percentage of the materials which are found to pass the present regulations fail to meet these more severe tests.

A test program which is concerned with the upgrading of flameresistant materials needs to consider, first, the validity of the test methods employed to establish new flame-resistant limits and, second, whether such new limits are adequate. Present standards which are based on Federal Specification CCC-T-191b, May 1951, titled "Textile Test Methods," may be inadequate. This title raises the question whether materials other than fabrics may be justifiably considered to fall in this classification since many of the interior materials now in use consist of sheets, laminates, and assemblies of several components containing plastics, glass, and even paper. A second consideration involves the severity of the test method. The rapid spread of fires throughout the cabins of large transports (Reference 1) was surprising in view of the use of materials presumably flame resistant.

The problem of devising more realistic test methods and criteria has engaged the attention of the leading research and testing laboratories. Test methods (References 4, 5, and 6) utilizing large ignition sources, such as fire tunnels heated by large gas flames and a radiant panel, have been developed for this purpose. These more severe methods are used extensively for hazard classification of building materials. Some of the vinyl-coated fabric materials now supplied to the aviation industry were tested in a 25 -foot tunnel and displayed the Underwriters Laboratories, Inc., label (Reference 7). These methods also provide a smoke factor for the burning material. This factor (Reference 8) is receiving increasing interest due to the widespread use of plastics which, in general, produce much larger quantities of smoke than do the cellulose-derived materials.

The use of plastics also has been responsible for the concern of late shown over the problem of toxic gases. Normally, the only toxic gas of sufficient concentration to be dangerous to life is carbon monoxide (References 8 and 9). In the case of some heated or burning plastics, however, other gases more toxic than carbon monoxide may be produced in concentrations sufficient to become hazardous (Reference 10). Toxicity is a difficult problem to analyze (References 11 and 12) since it depends to a large extent on the combustion process in an actual fire. Laboratory tests conducted on small samples of interior materials may not provide complete or sufficient information on this hazard. Further tests utilizing a full.. scale test article to simulate an actual fire in an aircraft to more accurately determine toxicity effect of the materials will be undertaken in the future as a second phase of this project.

Fire-retardant treatment is effective both by surface coating of the fabrics (References 13 and 14) and by incorporation of the chemicals within the material itself. Published data, however, show that the effect with plastics is erratic (Reference 15). In contrast, the salts used in the coating of the fabrics are generally effective in making the material more self-extinguishing when used in sufficient quantity. However, the treatment is affected by cleaning agents which dissolve the salts (Reference 16). Therefore, the treatment must be renewed to remain effective.

The work described in this report is concerned mainly with a study of test methods and their application to the fire testing of aircraft interior materials. To insure a satisfactory cross section of all materials in common use in aviation, over 100 materials were selected from among some dozen different sources including two aircraft companies, two airlines and, the rest ${ }_{t}$ materials manufacturers. A majority of these materials may be seen to consist of vinyls and synthetic fibers characteristic of modern interior furnishings.

DISCUSSION

Fire Testing

The ability to resist fire is one of the important properties of materials. Materials used in aircraft and subject to fire are divided into four classifications. These are in order of the severity of the requirements as follows: (1) fireproof, (2) fire resistant, (3) flame resistant, and (4) flash resistant. The division between these classifications is more or less arbitrary and dependent upon the intended use of the material.

Fireproof and fire-resistant materials are generally limited to the metals, fiberglas or asbestos. These materials are tested for flame penetration through the material rather than flame spread.

The 4 -inch-per...minute burn rate, which is the upper limit of flameresistant materials, with which this project is concerned, was established prior to the year 1947. The basis for the acceptance of this figure was the flammability of doped cotton fabric with cellulose acetate butyrate which was used as a standard material and shown to have a burn rate of 2-4 inches per minute in tests conducted by the National Bureau of Standards.

The factors which determine the degree of flame resistance are: (1) minimum heat, temperature and time required for the material to ignite, (2) rapidity by which the flames propagate once the material is ignited, (3) tendency of the flames to become self-extinguishing upon removal of the ignition source, and (4) heat generated by the' burning material. Other factors related to fire-resistant requirements are smoke and toxicity of the gases produced by the burning material. Various test methods have been designed to measure these factors among which are the methods used in this investigation.

The equipment used in the various tests to compare the ignition time, burning rate, self-extinguishing time and smoke production of a large number of materials was that used by industry and government laboratories. To insure that flame-resistant ratings assigned to the materials are valid and generally acceptable, it is essential that both the equipment and test procedures are standardized. By nature, fire tests are difficult to duplicate; therefore, complete uniformity in test methods is essential. Because of the lack of required test equipment at the National Aviation Facilities Experimental Center (NAFEC), use was made of the facilities of the Fire Protection Section, National Bureau of Standards, Washington, D. C. These facilities included a conditioning chamber for the materials, apparatus for testing materials in a horizontal position as in FSS Release 453, apparatus for testing materials in a vertical position, and apparatus for testing materials subjected to a radiant heat source.

The Radiant Panel Test Apparatus was developed by the National Bureau of Standards and has achieved widespread use in testing laboratories and by materials manufacturers as a research tool. The test method has been adopted as an Interim Federal Standard No. 00136b, December 1962, titled "Flame-Spread Properties of Materials." The
types of materials which may be tested by this method include those in the form of "boards, sheets, structural members, heavy fabrics, finish materials, films or sheets and combinations of any of these." Unlike the Bunsen burner fire tests, this apparatus continues to heat the specimen while it is undergoing test, as would be the case in an actual fire involving other surrounding materials. This consideration is absent in the Bunsen burner tests which only consider the burner flame as the sole source of heat feeding the flames.

In addition to the four different methods by which the materials were compared - FSS Release 453, Horizontal Test Method 5906, Vertical Test Method 5902, and Radiant Panel Test Method - there exists other methods for specific applications in connection with flame-retardant treated textiles, plastics, vinyl-coated glass, and synthetic fabrics. In addition to the six test methods contained in Federal Specification CCC-T-191b, other recognized test methods have been established: (1) National Fire Protection Association (Reference 16): (2) American Society for Testing Materials (References 17 and 18), (3) Society of Automotive Engineers (Reference 19): and (4) Military (Reference 20).

Equipment Description

1. Horizontal Rate of Burning Apparatus: This apparatus is used in both the FSS Release 453 and CCC-T-191b Method 5906, and is shown in Fig. 1. The essential parts of the apparatus consist of a Bunsen burner ignition source, a ventilated metal cabinet for draft-free environment, a specimen holder for rigid specimen support, and a stopwatch.
2. Vertical Rate of Burning Apparatus: This apparatus is used in CCC-T-191b Method 5902, and is shown in Fig. 2. The essential parts of the apparatus are a ventilated metal cabinet for draft-free environment, a Bunsen burner ignition source, a specimen holder for rigid specimen support, a set of weights, and a timer.
3. Radiant Panel Flame-Spread Apparatus: The apparatus is shown in Fig. 3. The essential parts of the apparatus consist of a gas-fired radiant panel heat source, a pilot burner ignition source, a specimen holder, a temperature instrumented stack and a smoke sampler. A brief description of each of these parts follows:
a. Radiant Panel: This provides a radiant heat source to the burning material. The radiant panel consists of a porous refractory material fed from the rear with a premixed gas-air supply. Combustion is nearly completed within the pores of the refractory material providing a uniform temperature of $1238^{\circ} \mathrm{F}$. over its entire area. Dimensions of the radiant surface of the panel are 18 by 12 inches. A radiation pyrometer, shown in the photograph, is used to adjust the temperature of the panel.
b. Pilot Burner: This provides a flame to force ignition at the top of the specimen. The burner consists of a short length of 1 I8-inch I. D. stainless steel tube with a porcelain nozzle attachment. The burner is fed with acetylene, premixed with air.
c. Specimen Holder: This provides a rigid support for the test specimens and consists of a frame with a clamping arrangement. Overall size of the holder is $193 / 8$ by 6114 inches, allowing an exposed surface of $175 / 8$ by 5114 inches. The holder is inclined at an angle of 30° away from the radiant panel which is in a vertical position. Markings on the holder at 3 -inch intervals are provided for timing flame propagation.
d. Instrumented Stack: This provides means for measuring the heat rise in the exhaust stack due to the burning of the specimen. Eight chromel alumel thermocouples connected in parallel are placed inside the stack to provide an average stack temperature which is recorded continuously. Airflow through the stack and out through the hood is adjusted to a calibrated air velocity of 100 feet per minute with no heating of the panel.
e. Smoke Sampler: This provides means for measuring the smoke density produced by the burning samples. A sample of the exhaust gases and fumes is aspirated from the top of the stack through a filter paper which collects the solid smoke particles.

Laboratory Tests and Measurements

1. Horizontal Rate of Burning Test Procedure

a. Four test specimens, $131 / 4$ by 3 inches, were cut from each sample material. The fabrics were cut lengthwise to the warp direction. (FSS Release 453 specifies tests in both directions of the weave to determine the most critical direction.)
b. The specimens in all fire tests were conditioned for at least 12 hours in a room at $73^{\circ} \mathrm{F} .+5^{0} \mathrm{~F}$. and a relative humidity of 50 percent +5 percent.
c. The burner flame was adjusted with no air intake to $11 / 2$ inches in height.
d. The specimen was clamped in the holder and positioned inside the cabinet with the $3 / 4$ inch of the flame tip directly below the starting edge of the specimen. Ambient temperature inside the cabinet measured between $95^{\circ} \mathrm{F}$. and $115^{\circ} \mathrm{F}$.
e. Ignition time, or the time required for the material to flame, was recorded from the instant the specimen was slid into position over the burner flame until the specimen started to flame.
f. The flame was removed from the specimen after a 15 -second exposure only in the case of the FSS Release 453 tests, but was allowed to remain indefinitely in position for Test Method 5906.
g. Flaming time was measured from the time the specimen ignited to the time the flame was selfmextinguished or reached a given calibrated distance marker.
h. Burn length was measured from the start wire position. The specimens which were self-extinguishing and those for which burning did not extend beyond the start wire (less than 1.5 inches) were identified in the tabulation of test data by the numeral I. The specimens which burned beyond the start wire but which were self-extinguishing before reaching the stop wire (les s than 11.5 inches) were identified in the tabulation of data by the numeral II. The specimens which burned the full length were considered as non-self-extinguishing and were identified in the tabulation of test data by the letter X.
i. Burn rate was measured by dividing the burn length by the flaming time. Burn rates were obtained for the initial!. 5-inch length of the specimen, the final 10 -inch length of the specimen and, also, for burn lengths in betw, een these distances. The flame front on the top of the sample was used in all tests to determine the burn rate. The flame below the specimen, however, generally traveled ahead of the flame on top of the burning specimen but was not as well defined.
j. Smoke, odor and burning characteristics of the specimens were noted and recorded.
2. Vertical Rate of Burning Test Procedure
a. Four test specimens, 12 by 3 inches, were cut from the same sample material, lengthwise to the warp direction.
b. The burner flame was adjusted to $1 / 2$ inches in height as in the horizontal tests.
c. The specimen was clamped in the holder, placed inside the cabinet, and hung vertically from a horizontal bar, with the bar extended across the centerline of the cabinet and supported by V-blocks at each end. The specimen was positioned so that its edge was 314 inch directly above the center of the burner barrel. The burner was slid into position under the specimen to start the test.
d. Ignition time was measured from the instant the burner was placed under the specimen until the time the specimen began to flame.
e. The burner was removed from beneath the specimen after a 12 -second exposure and the test continued.
f. Flaming time was measured from the time the burner was withdrawn until the time the flame was self-extinguished, or until the full length of the sample was burned.
g. Glow time was measured from the instant flaming stopped until the specimen ceased to emit light.
h. Burn length was measured as in the horizontal tests.

1. Char length was measured as the length of the material damaged by the fire, evidenced by tearing of the material by suspending to it specified weights. Char length was normally less than burn length since the former represented the more severely damaged areas from burning.
J. Smoke, odor and burning characteristics of the specimen were noted. Ignition time was usually easily observed since there was a
definite change in the color and shape of the burner flame. Some of the materials such as synthetic fibers melted and fell as flaming droplets which present a problem. Other materials burned so vigorously that the flames reached to the top of the cabinet.
k. Burn rate was calculated by dividing the burn length by the total flaming time including the $1 Z$-second burner exposure time, but minus the ignition time. Specimens which did not burn the entire $1 Z$-inch length were considered as self-extinguishing and were identified in the test data by the numeral I. Specimens which burned completely were considered non-self-extinguishing and were identified by the letter X .

3. Radiant Panel Flame Spread Test Procedure

a. Four test specimens, 18 by 6 inches, were cut from each sample material lengthwise to the warp direction.
b. A calibration of the apparatus was made to determine proper radiant panel and stack temperatures.
c. A filter disk was weighed and placed in the smoke sampler.
d. The specimen was placed in the holder and covered with a I-inch mesh poultry netting. The netting was placed over the exposed area of the specimen for mechanical support. A 1IZ-inch thick millboard was placed in the holder for backing up the specimen with a lIZ-inch air gap separating the specimen from the millboard.
e. The pilot burner was ignited and brought into position.
f. The specimen holder was placed into position with the specimen in contact with the pilot flame to initiate the fire test.
g. Ignition time was measured from the instant the specimen was in contact with the pilot flame until the time flaming of the material was first evidenced by a change in the pilot flame.
h. Burn length was measured from observation of the sustained and continuous flaming of the material down the length of the specimen. Time of arrival of the flame front at each succeeding 3-inch interval marker was measured. Flash fires moving up and down the specimen were observed with some materials. These were disregarded in the calculations. Burn length was measured from the last 3 -inch marker
past which the flame was observed to have crossed. Actual burn length as such was not recorded. Instead, the flaming times for the flame front to reach the successive 3 -inch positions are obtained for use in the calculation of all Flame-Spread Indexes.

1. Burn rate was obtained by dividing the first 3-inch increment length of the specimen by the time required, after ignition, for the flame to reach the 3 -inch marker.
j. A smoke factor was determined as the difference in the weight to the nearest 0.1 milligram (mg .) of the filter paper before and after the fire test.
k. A heat factor was determined directly from the rise in stack temperature resulting from the combustion of the test specimen as compared to that of an asbestos-cement board under the same standard test conditions.
2. Flame.Spread Index was calculated by combining the flame propagation velocity and the heat evolution test values as shown by formulas in the Interim Federal Standard No. OOl36b for the Radiant Panel Apparatus.
m. Coefficient of variation of the Flame-Spread Index between specimens of the same sample material was calculated by standard statistical methods.
n. Smoke and burning characteristics of the specimen were noted.
3. News Used and Dry Cleaned Materials Test: Fabric and rug materials were received from one source for more direct and easier comparison. Both new and used materials of the same type were dry cleaned. New and dry cleaned specimens were obtained from the same sample material. Used materials were received in the soiled condition that would be typical of normal maintenance routine. The materials were cleaned in accordance with a major air carrieris recommendation and in a commercial plant. The rug material was cleaned with a recommended shampoo and the fabrics were cleaned in Stoddard solvent. Test procedures were identical to those employed in other tests.

Test Results and Analysis

1. Horizontal Burn Rate Tests: The materials used in all fire tests are listed and described in Appendix 1. The test results are tabulated in Appendix 2, Tables 1 and II. A summary of the test data is presented in Table I of the text. Typical fire damage to a high and a low flammable material is shown in Figs. 4 and 5.

The data show the following characteristics for the materials subjected to the standard fire tests:

93 materials tested, of which -
81 were self-extinguishing within a burn length of II. 5 inches.

60 were self-extinguishing within a burn length of 1.5 inches.

12 were non.self-extinguishing and burned their full length.

4 alone were non-self-extinguishing with an average burn rate of 4 inches per minute or greater. This burn rate exceeds the limit specified in FSS Release 453. In addition, three mOre materials may be considered marginal failures in that one specimen out of four also exceeded this limit.

70 were self-extinguishing with a burn rate of a - 1 inch per minute.

23 were self-extinguishing within a 0.50 -minute flaming time.
(Note that Test Method 5906 is a somewhat more severe test method than FSS Release 453 since the burner is not removed after a 0.25 -minute flame exposure.)

The above statistics show that the most flammable materials were the fabrics and rugs as these showed the highest flaming time, burn length and burn rate. The uncoated fabrics were generally more flammable than
the coated fabrics. Twelve of the 19 synthetic fiber uncoated fabrics showed a flaming time longer than 2 minutes, while 9 of these showed a burn rate of 2 - 3 inches per minute. Of those nine materials, seven were non-sel£-extinguishing and burned the full length. The coated fabrics were generally less flammable than the uncoated fabrics such as the synthetic fibersj however, three out of the four materials which failed the FSS Release 453 tests, or equivalent, belong to this category and were outstanding exceptions. These three materials were the simulated leatherettes of vinyl-coated cotton fabric construction. In contrast to the vinyl-coated cotton fabrics, all vinyl-coated fiberglas and dynel fabrics showed no appreciable burning, as well as more rapid extinguishment within 0.50 minute. None of the vinyl sheet materials were sel£extinguishing within less than 1.0 minute although the burn rate was within 1.0 inch per minute and the burn distance within 3.0 inches.

Only two other materials besides the fabrics and rugs showed any appreciable burn length. These were plexiglass and neoprene sponge. Neoprene sponge was the only material other than the three fabrics with a burn rate exceeding 4 inches per minute.

The least flammable materials were the heavier and thicker samples such as the laminates and assemblies which generally showed little or no burning. In some cases, although burn rate and distance were negligible, flaming time was considerable due to slow burning.

No direct correlation between flammability and flame-retardant treatment was evident on the basis of scattered tests and the insufficient information on the formulation of the materials obtained from suppliers. In addition to the 11 materials marked as fire-retardant treated, it was known that many other materials also had been treated for aircraft use although no confirmation of this was obtained in writing. Of the 11 fireretardant materials, only 2 showed a burn length in excess of 1.5 inches.

The effect of both use and cleaning on the flame resistance of the material was not apparent on the four uncoated fabrics and three rug materials tested. No information of any chemical coatings that could have been applied in the manufacture of these materials to decrease their flammability was available. Therefore, it was not possible to infer any effect from the leaching out of the chemical salts deposited in the fabrics which may result from dry cleaning. Presumably, many of the fabrics, plastics, and paper listed had some degree of flame-retardant
treatment. The fire-retardant chemicals are incorporated within the vinyl materials rather than deposited on the surface as in fabrics; therefore, these materials were not affected by the solvent action of cleaning agents.

Test results utilizing FSS Release 453 Test Method for comparison to Test Method 5906 are contained in Appendix 2, Table IL
2. Vertical Burn Rate Tests: A summary of the test results contained in Appendix 2, Table III, is presented in Table II of the text. The data show the following characteristics of the materials tested:

93 materials tested, of which -
67 were self-extinguishing within a burn length of 12 inches.

37 were self-extinguishing within a burn length of 3.0 inches.

26 were non-self-extinguishing and burned their full length.

59 were self-extinguishing within a 0.50 -minute flaming time following burner flame removal.

31 were self-extinguishing with a burn rate of 0-10 inches per minute.

The above statistics show that the most flammable materials were again the fabrics and rugs, especially the uncoated fabrics. Burn rates of greater than 30 inches per minute were obtained for four fabrics including two dacrons. Only 9 of the 19 uncoated fabrics were selfextinguishing and only 4 of those within 0.50 minute. These latter materials were the dacron or nylon fabrics. In contrast, 21 of the 28 coated fabrics were self-extinguishing within 0.50 minute. This number included the 11 coated fiberglas fabrics and the 4 coated dynel fabrics, the latter which showed zero flaming time. The most flammable fabrics were again the vinyl-coated cotton materials. Of 13 such materials, 5 were non-self...extinguishing and burned the full length. These again included the simulated leatherettes.

All uncoated fabrics showed a burn length of 3.0 inches or more. In contrast, 13 of the 28 coated fabrics showed a burn length of 3.0 inches or less. Both flaming time and burn length were generally greater, while the corresponding burn rate was less for the uncoated than the coated fabrics. The majority of the coated fabrics burned at the rate of 10 - 20 inches per minute compared to 10 inches per minute or less for the uncoated fabrics.

Only one of the two leathers was self-extinguishing.
Out of seven rugs, four were self-extinguishing but the time exceeded 2.0 minutes, which was also typical of the heavier, slower burning sheet materials.

It should be noted that in the vertical test method, in contrast to the other methods, both sides of the materials are subject to the burner flame. In the case of the rugs, both the face and the padding, or backing laminate, were exposed to the burner flame. Thus, in one test the foam rubber backing burned completely while the wool face material burned less than 3. 0 inches. The vertical test is severe for materials with a flammable exposed undercoating.

The least flammable materials were again the heavier and thicker rigid laminates and assemblies.

Again, no positive effect of fire-retardant treatment in reducing the flame resistance of the materials was evident.

Further, definite test results showing that either the new, used, or dry cleaned condition of the material affected its flammability were scattered and inconclusive.
3. Radiant Panel Flame-Spread Index and Smoke Factor Tests: A summary of the test results contained in Appendix 2, Table IV, is presented in Table III of the text. The test data show the following characteristics for the materials:

[^0]had a Flame-Spread Index rating of 0-30 and smoke factor of $0-1 \mathrm{mg}$.

The above statistics show that all categories of materials, \ln contrast to the burner flame tests, are flammable and will burn. The greater severity of the fire tests with the Radiant Panel burns the heavier and thicker materials that remain unaffected by the Bunsen burner flame, thus providing flammability test data for all categories of interior materials. The tendency of the Radiant Panel tests is to raise the flammability ratings of the fabrics with reference to the other categories of materials which is just the opposite of that which is shown by both the horizontal and vertical burn rate tests.

Since the Flame-Spread Index is determined in part by the heat generated by the burning samples, a dependence on weight of the combustible materials should be expected. Thus, materials which showed the smallest index ratings, therefore the best flame characteristics, were seen to be the fabrics, especially the very sheer and light-weight synthetics. Outside of this group, the vinyl and mylar-clad aluminum laminates also had exceptionally good (low) Flame-Spread Index characteristics. All five vinyl laminates in this group showed a Flame-Spread Index rating below 50 and a smoke factor below 2.0 mg .

Outstanding performance was shown by the vinyl-coated dynel fabrics and the sheer uncoated dacron fabrics. The six fabrics of this type having an average weight of less than 0.7 pound per square yard showed a Flame-Spread Index rating of only $0-10$ and a smoke factor less than $\mathbf{1 . 0} \mathrm{mg}$. In addition to their light weight, the dynel fabrics apparently owe much of their exceptional low Flame-Spread Index characteristics to the tendency of the material to shrivel up and pull away from the flame or heat, thus decreasing its susceptibility to fire. Nylons definitely
tended to show an increase in Flame-Spread Index with weight and, likewise, for addition of metal fibers to the fabric. Out of 15 materials with a Flame-Spread Index rating of 0 - 10, 9 were fabrics; while out of 28 materials with a Flame-Spread Index rating of 0 - 30, 13 were fabrics.

The vinyl-coated fiberglas fabrics again showed superiority over the vinyl-coated cotton fabrics by comparison of the index ratings. Out of a total of 10 fiberglas fabrics, 6 had an index rating of $0-50$. Out of a total of 10 cotton fabrics, 5 had an index rating of 300 plus. Only two of the cotton fabrics had an index rating of $0-50$.

The two leathers showed a Flame-Spread Index rating of 100-300 with a relatively low smoke factor of $0-1 \mathrm{mg}$.

The five rugs also showed a Flame-Spread Index rating of 100-300 but with a much higher smoke factor with the exception of one rug.

Sheet materials showed considerable variation in index ratings. These included the two neoprene foams with a Flame-Spread Index rating over 1500 . In contrast, some vinyls and one neoprene showed an index rating as low as $0-10$ which may have been due to the exceptional fire-retardant treatment of the particular material.

Of 13 assemblies, 6 showed a Flame-Spread Index rating of O-50. Five of these six materials had a vinyl or plastic fiberglas covering or were vinyl-bonded to aluminum. The sixth was an assembly with a plastic covering on polyester sheet backing.

Four of the five paper honeycomb assemblies had a FlameSpread Index rating of 50-100, and one had a Flame-Spread Index rating of 30 - 50.

The smoke factor generally increased with the thickness or weight of the material as well as with the Flame-Spread Index. Vinyls, as is well known, were shown to be very productive of smoke, especially the heavier vinyl sheets.

Further, the vinyl-coated fabrics with an index rating of 0 - 50 also showed a large smoke factor of nearly 2 mg . which was twice that for the uncoated fabrics.

Reflectivity of the materials was expected to be a factor in reducing the Flame-Spread Index, particularly in this test method employing radiant heat. This was shown to be the case for two mylar sheets, one of which was aluminized and both identical except for reflectivity.

Backing of the material was expected to be a factor affecting the Flame-Spread Index because of the severity of the test method. This was shown by testing separately the materials making up the whole assembly. One assembly showed a small change in index because its immediate backing material was less flammable than the surface material. In this case, the I-inch thick more highly flammable paper core was too far removed from the heated surface material to affect the index of the whole assembly. In contrast, another assembly showed that the more exposed highly flammable polyether foam backing significantly increased the index of the fabric covering.

Test results on the effect of fire-retardant treatment on the Flame..Spread Index were conflicting in that these results indicated, if anything, a slight increase in the Flame-Spread Index.

Test results showing the effect of use and cleaning of the materials on the Flame-Spread Index were again inconclusive. Only one rug material showed a definite increase in index with use and after shampooing. However, the effect of increasing significantly the index of one low index curtain material by spot cleaning with perchloroethylene was shown.

The two detergents, one deodorant, and perchloroethylene used In cleaning aircraft materials were shown not to be flammable by a wick test.
4. Comparison of Test Methods and Results: A comparison of the test data obtained by the different test methods shows that:
a. Burn rate by the vertical test method was of the order of 10 times more rapid than that by the horizontal test method with comparative increase in burn length.
b. Self-extinguishing time by either the horizontal or vertical test method was of the same order of magnitude.
c. Burn rate measurements by the FSS Release 453 Test Method closely agreed with those obtained by Test Method 5906 (Horizontal) since the two methods are essentially the same.
d. The vertical test method is somewhat more severe than the horizontal test method in that fewer materials were shown to be selfextinguishing. A burn length of 12 inches by the vertical test method was roughly equivalent to a burn length of 1.5 inches by the horizontal test method.
e. The majority of materials were self-extinguishing by both test methods; therefore, this property may be used as a test criteria for the flame resistance of materials by either method in the place of the less severe requirement of a given maximum burn rate. This test criteria is especially applicable to the vinyls which by nature are self-extinguishing. In the case of the uncoated fabrics, however, a self-extinguishing requirement would be severe since about one-third of the materials tested would fail to meet this requirement in the horizontal test method, and about one-half in the vertical test method.
f. Tests showed that a requirement for flame resistance based on a given burn length rather than on a burn rate is the more practical of the two for the self-extinguishing materials which comprise the bulk of the materials tested by both methods. This is because burn rate measurements in the horizontal test method are considered valid only outside the influence of the burner flame (start wire - 1.5 inches). It has significance and is applicable only to the more flammable materials which show continuous burning with a well-defined self-sustained flame over the entire length of the test sample. It should be noted, however, that the majority of materials were self-extinguishing before reaching the start wire; hence, no burn rate figures would be available if this test alone were used.
g. Tests showed that the flame resistance by the vertical test method based on a maximum self-extinguishing time of 0.50 minute is about equal to a maximum burn length of 1.5 inches by the horizontal test method.
h. The majority of the materials were self-extinguishing within less than 1.0 minute by either the vertical (75 percent) or horizontal (50 percent) test methods.
i. The Radiant Panel Test Method is the most severe of the four test methods.
j. The Radiant Panel Test Method is relatively less severe on the fabrics than on the heavier and thicker materials in comparison to the Bunsen burner test methods which show the opposite results.
k. The Radiant Panel Test Method alone, due to its large heat source, has the capacity to penetrate the thin covering materials of some assemblies to indicate to some extent the flame resistance of the immediate backing component materiaL

L The Radiant Panel Test Method is the only method that yields a Flame-Spread Index rating which takes into account the heat generated by the burning sample.
m . The Radiant Panel Test Method is the only method that yields a smoke factor value in addition to a rating for flame resistance.
n. Although the Radiant Panel Test Method is fundamentally different than the Bunsen burner test methods, low Flame-Spread Index ratings for the materials tested, nevertheless, are in good agreement with requirements for both short burn length and rapid self-extinguishing time to indicate superior flame-resistant requirements by either test method. Thus, of a total of 29 materials with a Flame-Spread Index of $0-50$ and a smoke factor of $0-2 \mathrm{mg}$., 25 of these materials show both a burn length of less than 1.5 inches (by the horizontal test method) and a self-extinguishing time of less than 0.50 minute (by the vertical test method). The four materials which are exceptions and do not meet all three conditions listed above are the nylons. Because these materials melt and drip in the Radiant Panel Test Method, it was difficult to obtain reproducible data using this method.

CONCLUSIONS

Based on an analysis of the test results obtained on 109 different aircraft interior Inaterials and from a cOInparison of the four test methods to achieve these results, it is concluded that:

1. The FSS Release 453 Test Method is not a suitable test procedure for rnaterials other than fabrics.
2. There are many Inaterials presently available and in use today which are self-extinguishing and which far exceed the flaIne-resistant characteristics required by a 4 -inch-per-Ininute maximum burn rate.
3. On the basis of the tests conducted, the vertical test method is a satisfactory alternate to FSS Release 453 as a test method for fabrics that are self-extinguishing.
4. The Radiant Panel Test Method is capable of covering the entire flammability range of the interior Inaterials tested, thus providing FlaIne-Spread Index ratings indicative of the degree of flame resistance.
5. The large number of interior Inaterials containing vinyls or other plastics produce greater quantities of smoke during burning than do the cellulose-derived Inaterials of the same flammability range.
6. The effect of the condition of the material whether new, used, or cleaned on the flame resistance of the fabrics and rugs tested was not significant.

REFERENCES

1. Cabin Fire Incident and Investigation TWA Boeing 707-131, Plane 7739, Trans World Airlines, Inc., Engineering Report No. 1203.
2. Evaluation of Interior Materials for the 707 Airplane, Boeing Airplane Company, Document No. D6-1084, dated 1957.
3. Convair 880 Cabin Interior Furnishings Flame Tests and Electrical Equipment and Wiring Studies, Reports Nos. ZM-22-086 and MP-61-098M, dated 1961.
4. Federal Fire Council Minutes of Meeting, April 17, 1962, Various Surface Flame-Spread Test Methods for Building Finish Materials, Federal Fire Council, Washington 25, D. C.
5. Robertson, Dr. A. F., Surface Flammability Measurements by Radiant-P.anel Method, National Bureau of Standards Paper No. 191.
6. Robertson, Dr. A. F., Gross, D., and Loftus, J., A Method for Measuring Surface Flammability of Materials Using Radiant Energy Source, National Bureau of Standards Paper No. 87.
7. Building Materials List, January 1963, Underwriters Laboratories, Inc., Pages 68-69.
8. Fire Protection Handbook, Twelfth Edition, 1962, National Fire Protection Association, 60 Batterymarch St., Boston 10, Mass.
9. Colman, E. H., FRIC, Gaseous Combustion Products from Plastics, Department of Scientific and Industrial Research and Fire Offices.
10. Watson, H. A., Stark, H. J., Beatty, R. L., Busch, H. W., and Berger, L. B., Thermal Decomposition Products and Burning Characteristics of Some Synthetic Low-Density Cellular Materials. Bureau of Mines Report No. 4777.
11. Watson, H. A., Stark, H. J., Sieffert, L. E., and Berger, L. B., Decomposition Temperatures of Polytetrafluoroethylene and Polymonochlorotrifluoroethylene as Indicated by Hologen Liberation. Bureau of Mines Report No. 4756.
12. Schiesheim, Alan, Method for the Controlled Burning of Combustible Materials and Analysis of the Combustion Gases, Journal of Research of the National Bureau of Standards, Vol. 57, No.4, October 1956, Research Paper 2715.
13. Sandhozer, Marjorie W., Some Properties of Flameproof Fabrics, National Bureau of Standards, Reprint from American Dyestuff Reporter, Vol. 48, No.2, Pages 37 - 41, Is sue of January 26... 1959.
14. Guthrie, John D., Drake, George L., Jr., and Reeves, Wilson, Application of the THPC Flame-Retardant Process to Cotton Fabrics, Reprint from American Dyestuff Reporter.
15. Gross, Daniel, and Loftus, Joseph J., Flame Spread Properties of Building Finish Materials, National Bureau of Standards, Reprint from American Society for Testing Materials Bulletin No. 230, May 1958.
16. Standard for Flameproofed Textiles, National Fire Protection Association, NFPA No. 701-1951.
17. Technical Data on Plastics, Manufacturing Chemists r Association, Inc., 1625 Eye Street, N. W., Washington 6, D. C.
18. Flammability of Plastics 0.050 Inches and Under in Thickness, American Society for Testing Materials, ASTM Designation: D568-61.
19. Flame-Resistance Treatment of Interior Fabrics. Society of Automotive Engineers, AMS 3855A - 1954.
20. Cloth, Coated, Synthetic and Fibrous Glass, Military Specification, MIL-C-751B (ASG), April 15, 1955.

ACKNOWLEDGMENTS

The authors wish to acknowledge Dr. A. F. Robertson, Dr. Marjorie W. Sandholzer, Mr. D. Gross and Mr. J. Loftus of the National Bureau of Standards, Fire Protection Section, for their valuable assistance in conducting these tests. The authors are also indebted to the many fabrics manufacturers and airlines for furnishing the materials that were tested.

TABLE I

DATA SUMMARY FOR HORIZONTAL TESTS - METHOD 5906

DATA SUMMARY FOR HORIZONTAL TESTS - METHOD 5906

Material			Class		Flaming Time (min.)					Burn Rate ${ }^{(1)}$ (in. / min.)					Total Burn Length (in.)		
				$\begin{array}{lc} & 0- \\ 0 & \underline{0} .5 \end{array}$	$\begin{aligned} & \hline 0.5- \\ & 1.0 \end{aligned}$	$\begin{aligned} & \text { 1. } 0 \\ & \text { 2. } 0 \end{aligned}$			1-2	2-3	- -4		$\begin{aligned} & 1.5- \\ & 3.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.5 \end{aligned}$	$\begin{array}{r} 7.5 \\ \text { J1. } \end{array}$		
	No. -	Code															II _X
67	7	F3		0					0	0					0		
89	9			0				0		0					0		
	-	R1	0					0		0							
12	2			0					0	0							0
26	6		0					0		0							
41	1			0					0	0						0	
100			0					0		0							
27	7	R2		0					0	0						0	
99	9			0					0	0					0		
	0	S1	0			0				0							
47	7			0			0			0					0		
66	6		0			0				0							
68	8		0				0			0							
91	1			0					0					0			
95	5		0			0				0							
96	6		0				0			0							
97	7		0				0			0							
98	8		0				0			0							
107			0				0			0							
108			0			0				0							
35	5	S2	0				0			0							
69	9		0			0				0							
11	1	53	0						0	0							
"30			0						0	0							
*3			0						0	0							
	32		0						0	0							
:'33				0				0		0					0		
	34		0						0	0							
	7			0					0		0					0	
	5	LI	0					0		0							
	9		0				0			0							
57	7		0			0				0							
58	8	L2	0			0				0							
59	9		0				0			0							
	5	L3	0			0				0							
	86		0			0				0							
87	87		0			0				0							
	8		0			0				0							
	6	A	0						0	0							
	0		0					0		0							
81	1		0					0		0							
	82		0						0	0							
	83		0						0	0							
	84		0					0		0							
	Total	93	60	$21 \quad 12$	5	$5 \quad 18$	22	16	32	70	5	12	2	4	8	9	4

*Flame-retardant treatment.

Code
F - Fabric
1 - Uncoated, 2 - Coated, 3 - Leather
R - Rug
1 - Unpadded, 2 - Padded
S - Sheet, L - Laminate, A - Assembly
1 - Flexible, 2 - Semi-rigid, 3 - Flexible

Class
I Burned less than 1.5 inches (start wire).
II Burned less than 11.5 inches (stop wire).
X Burned full length.
Note (1) Burn rate measured from start wire

TABLE II
DATA SUMMARY FOR VERTICAL TESTS - METHOD 5902

*Flame-retardant treatment
Code
F - Fabric
1 - Uncoated, 2-Coated, 3 - Leather
R - Rug
I - Unpadded, 2 - Padded
S - Sheet, L - Laminate, A - Assembly
1 - Flexible, 2-Semi-rigid, 3 - Rigid

Class
I Burned less than 12 inches.
X Burned full length.

Note (1) Measured after $1 Z$-second burner removed.
(2) Sample only 8 inches long.

T ABLE II (Continued)
DAT A SUMMARY FOR VERTICAL TESTS - METHOD 5902

*Flame-retardant treatment
Code
F - Fabric
1 - Uncoated, 2 - Coated, 3 - Leather
R - Rug
1 - Unpadded, 2 . P added
S - Sheet, L - Laminate, A - Assembly
I - Flexible, 2 - Semi-rigid, 3 - Rigid

Class
I Burned less than 12 inches.
X Burned full length

Note (1) Measured after 12 -second burner removed.
(2) Sample only 8 inches long.

TABLE III

DATA SUMMARY FOR RADIANT PANEL TESTS

Material		$$					$\begin{gathered} \text { Smoke Factor }-(\mathrm{mg} .) \\ 0-\quad 0.5-\quad 1.0-\quad 2.0- \end{gathered}$				$\begin{aligned} & \text { Burn Kate (InItIal } \\ & 3 " \text { Length) (in. Imin.) } \\ & 0-5-10- \\ & \hline \end{aligned}$		
No.	Code	-10	- 30	-50	100	$300-300+$	0: 5	1.0	$\underline{2} .0$	3. 0 - 3. $0+$	- ${ }^{5}$	$10-25$	25ti
2	F1		0				0				0		
3		0					0				0		
4		0					0				0		
6						0		0			-		
7						0		0			-		
8						0				0	-		
13						0		0				0	
14						0	0					0	
15				0						0		0	
16				0			0					0	
17						0			0			0	
18					0			0				0	
19			0				0					0	
20		0					0				0		
'42						0			0			0	
43						0	0						0
:44						0			0			0	
45						0		0				0	
'70			0				-					0	
5	F 2					0				0	-		
9		0					0				-		
21					0				0			0	
22			0					0				0	
23						0				0		0	
24				0						0		0	
28		0						0			0		
36					0					0		0	
37						0				0			0
38						0				0			0
40						0			0				0
:'46					0					0	0		
48				0					0		0		
49						0				0		0	
50						0			0			0	
51					0				0			0	
52				0				0				0	
53				0				0			0		
54					0				0		0		
55			"			0				0	0		
56						0		0					0
60				0						0		0	
61		0					0				-		
62		0					0				-		
63		0					0				-		
64						0			0				0
65		0							0		-		
67	F 3					0	0					0	
89						0		0				0	
1	R 1	0							0		0		
12						0			0			0	
26						0				0	0		
41						0				0	0		

*Flame-retardant treatment $\quad=$ Complete information not available Code: F - Fabric R - Rug S - Sheet, L - Laminate, A - Assembly

1 - Uncoated, 2 - Coated,
3 - Leather

1 - Unpadded
2-Padded

1 - Flexible, 2 - Semi-rigid,
3 - Rigid

[^1]

FIG. 2 VERTICAL RATE OF BURNING APPARATUS

FIG. 3 RADIANT PANEL FLAME-SPREAD APPARATUS (ASSEMBLY)

RADIANT PANEL
TEST

HORIZONTAL TEST HORIZONTAL TEST VERTICAL TEST 5906

FIG. 4 HIGH FLAMMABLE MATERIAL
RADIANT PANEL

NOILCIYวS'今G STVIY'ALVW
1 XIGN'تुddV

Use
Flooring
Drapery
Curtain
Curtain - liner
Upholstery
Upholstery
Upholstery
Upholstery
Ceiling
Panel and Door
covering
Bulkhead and
Galley covering
Flooring
Upholstery Designation
Rug (UP)
Fabric (UC)
Fabric (UC)
Fabric (UC)
Fabric (C)
Fabric (UC)
Fabric (UC)
Fabric (UC)
Fabric (C)
Sheet (F)
Sheet (R) (UP)
Fabric (UC) $\begin{array}{cc}\begin{array}{c}\text { Thickness } \\ \text { (in.) }\end{array} & \begin{array}{c}\text { Wampleight } \\ \text { (lb./sq.yd.) } \\ 0.21\end{array} \\ 0.44 \\ 0.025 & 0.54 \\ 0.005 & 0.11 \\ 0.006 & 0.12 \\ 0.020 & 1.11 \\ 0.018 & 0.66 \\ 0.031 & 0.66 \\ 0.034 & 1.20 \\ 0.012 & 0.65 \\ 0.010 & 0.66 \\ 0.030 & 1.97 \\ 0.030 & 0.86\end{array}$

MATERIALS DESCRIPTION（Continued）

$$
\begin{aligned}
& \begin{array}{l}
\text { Use } \\
\text { Drapery in Coat } \\
\text { Compartment } \\
\text { Upholstery } \\
\text { Curtain - } \\
\text { window } \\
\begin{array}{l}
\text { Drapery - } \\
\text { coat and galley } \\
\text { Ceiling - } \\
\text { lavatory } \\
\text { Lining - wall } \\
\text { Upholstery - } \\
\text { seat and arm } \\
\text { rest }
\end{array}
\end{array} \\
& \\
& 0.63 \\
& \begin{array}{l}
0.63 \\
0.73 \\
0.73 \\
0.57
\end{array} \\
& \begin{array}{l}
\text { Fabric (ie) } \\
\text { Fabric (UC) }
\end{array} \\
& \begin{array}{l}
\text { Fabric (UC) } \\
\text { Fabric (C) } \\
\text { Fabric (C) }
\end{array} \\
& \begin{array}{l}
\text { Fabric (UC) } \\
\text { Fabric (C) } \\
\text { Fabric (C) }
\end{array} \\
& \begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \\
& \text { } \\
& \text { - } \\
& \text { } \\
& 09^{\circ} 0 \\
& \begin{array}{l}
0.73 \\
0.60 \\
1.01
\end{array} \\
& 0.025 \\
& 0.026 \\
& 0.030 \\
& 0.020 \\
& 0.020 \\
& 0.015 \\
& \begin{array}{l}
0.008 \\
0.022
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 匹 } \\
& \text { 匹 } \\
& \text { N N } \\
& \text { N } \\
& 2 \\
& \pm \quad \backsim \quad \bullet \\
& \text { ส ส }
\end{aligned}
$$

Wool
Wool backed by Foam
pad（3／16＂）
Vinyl backed by Fiberglas
 \overparen{E}
\vdots
\vdots
\vdots
\vdots E
\vdots
\vdots
\vdots MATERIALS DESCRIPTION（Continued） Designation Use

$$
\begin{aligned}
& \bar{\pi} \\
& 3 \\
& 1 \\
& \vdots \\
& B \\
& B \\
& B
\end{aligned}
$$

$\begin{array}{cc}\frac{\text { Sample }}{\text { Thickness }} \\ \text { in．}^{\text {in．}} & \text { Ib b．／sq．yd } \\ 0.017 & 1.01\end{array}$
and ceiling

$$
\begin{aligned}
& \text { Flooring - } \\
& \text { under seats }
\end{aligned}
$$ Vinyl O／32＂）

$$
\begin{aligned}
& \text { on } \\
& \stackrel{y}{0} \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
$$

Flooring

$$
\begin{aligned}
& \text { Window frames, } \\
& \text { Food tray, } \\
& \text { etc }
\end{aligned}
$$ Vinyl 0／16＂）

$\stackrel{0}{0}$ 艺
シ் オ ત
\cdots
त
∞
$\tilde{6}$
$\stackrel{0}{0}$
$\stackrel{\rightharpoonup}{n}$

已

(pənu!̣uoว) NOILdİYOSAC STVİGZLVN
Designation Use

Lining - cargo

Paneling
Paneling
Upholstery
UpholsteryFlooring
Upholstery
Curtain
 yd.)
63

8			
\div			\div

$\stackrel{m}{\sim}$
0.98
3.39
3.39
0.98
0
∞
0
0.73
Sample
$\frac{\text { (in.) }}{}$
0.043
0.021
0.020
0.060
0.045
0.036
0.025
0.24
0.040
0.030
0.025
$\stackrel{8}{8}$
n
2
 \qquad
完

\square
-
\square

MATERIALS DESCRIPTI)N (Continued)

	No.	Code	$\frac{\text { Samp }}{\text { Thickness }} \text { (in.) }$	$\begin{aligned} & \text { ple } \text { Weight } \\ & (16 . / \text { su. . . } \end{aligned}$	Designation	Use	Composition
	45	FI	0.060	0.79	Fabric (UC)	Uplolstery	Nylon, Cotton, Dacron
	46	F2	0.034	1. 65	Fabric (C)	$\begin{aligned} & \text { Up101stery - } \\ & \text { seat } \end{aligned}$	Vinyl backed by Cotton
	47	51	0.011	0.73	Sheet (F)	COTering allminum panel	Vinyl
	48	F2	0.020	1.52	Fabric (C)	COTering - wall	Vinyl backed by Cotton
	49	F2	0.020	1.49	Fabric (C)	Covering - wall	Vinyl backed by Cotton
	50	F2	0.033	1. 30	Fabric (C)	Covering - wall	Vinyl backed by Cotton
	51	F2	0.010	0.63	Fabric (C)	Headlining, Ceiling and Entrance lining	Vinyl backed by Fiberglas
	52	F2	0.013	0.89	Fabric (C)	Lining entrance	Vinyl backed by Fiberglas
	53	F2	0.017	3.20	Fabric (C)	Lining entrance and door	Vinyl backed by Fiberglas
	54	F2	0.022	1.20	Fabric (C)	Wainscoting, Partition and Seat panels	Vinyl backed by Fiberglas

MATERIALS DESCRIPTION (Continued)

MATERIALS DESCRIPTION (Continued)

No.	Code	Thickness (in.) (lb./sq.yd.) Weight.	
64	F2	0.005	0.28
65	F2	0.031	1.74
66	S1	0.13	0.76
67	F3	0.045	1.52
68	S1	0.183	0.57
69	S2	0.114	7.89
70	F1	0.032	0.60
71	A	2.50	11.76
72	A	0.50	5.17

（pənuṭวuoj）NOILdIYOSEA STVIUヨ．LVW
Window panel
DADO Panel
Toilet floor
pan
Windowpane
Air return
grille
Toilet ceiling
Aisle and Bulk－
head partitions

$$
\begin{aligned}
& \text { Assembly }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 苞 } \\
& \begin{array}{cccc}
\text { Code } & \left.\begin{array}{c}
\text { Thickness } \\
\\
\text { A in. }) \\
\text { A } \\
\end{array} \operatorname{lIb} \cdot \operatorname{ISq} \mathrm{q} \cdot \mathrm{yd} .\right) & \text { Designation } \\
& 0.75 & 6.40 & \text { Assembly }
\end{array}
\end{aligned}
$$

之 ㄱ
 glass fabric
Composition
Vinyl backed by Fiherglas $\stackrel{\rightharpoonup}{2}$
Plastic clad aluminum Plexiglas
Polyester Fiberglas Vinyl backed by fabric over on wood laminate（3／8＂） Formica sheet hooded on
$\begin{array}{ll}\hat{y} & 0 \\ 0 & n \\ 0 & 0\end{array}$
0
n
0
4.74
4.59
10.81
10.9
Assembly
Assembly
Assembly
Sheet（R）
λ
分
E
0
0
0
0

λ
i
E
0
0
0

$$
0.245
$$

Vinyl backed by Fiherglas
fabric over Polyurethane sheet：
$\left(3 / 8^{\prime \prime}\right)$ cemented to Styrofoam
sheet $\left(1 / 4^{\prime \prime}\right)$ by Polyester
Plastic clad aluminum sheet
backed by Fiberglas pad
$\left(1 / 2^{\prime \prime}\right)$
Vinyl reinforced Fiherglas Polyester glass fabric bonded Polyester glass fabric（two）
with Honeycomb paper core， with Honeycomb paper core，
$\left(1^{\prime \prime}\right)$
12.20
NA
5.14
10.81
Assembly Assembly suo！̣！uned peru －

$$
\text { 《 } \begin{array}{ll}
\text { を } \\
\text { 0 }
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\frac{n}{\vdots}
$$

$$
\vdots \quad \begin{gathered}
m \\
\vdots
\end{gathered}
$$

$$
\lll
$$

$$
n
$$

$$
<\quad \text { ir }
$$

$$
\ll
$$

$$
\ll
$$

A

$$
5
$$

Composition
Leather－top grain
Neoprene sponge（1＂）
Neoprene sponge $\left.0^{\prime \prime}\right)$
Vinyl backed by Cotton
Vinyl backed by Cotton
Vinyl backed by Cotton
Vinyl plastisol film
Vinyl sponge O／4＂）
Vinyl sponge（1／4＂）
Vinyl sponge $\left.0 / 4^{\prime \prime}\right)$
Wool backed by Cotton and
Jute with Foam Rubber
padding
MATERIALS DESCRIPTION（Continued）

Weight
1.05
0.71
NA
1.11
1.65
1.65
0.48
1.20
1.30
1.62
3.77
$\frac{\text { Thickness }}{\text { Sample }}$（in．） $\underset{-}{2} \quad 0$

0
0
0
$\dot{8}$
○ \quad の \quad

ふ
$\begin{array}{ll}0 \\ 0 & 0 \\ 0 & \\ 0 & \\ 0\end{array}$
0.29
$\begin{array}{lll}\grave{N} & \text { No } & \text { N } \\ 0 & 0 & 0\end{array}$
 1
0
0 －
 \qquad

 $\cdots \quad \vec{n}$ Designation －ふ
\qquad
MATERIALS DESCRIPTION (Continued)

APPENDIX 2

FLAMMABILITY TEST DATA ON INTERIOR MATERIALS

Table

I Test Method 5906-Morizontal

Part 1 - General Tests - Representative Materials Part 2 - Special Tests - New, Used and Cleaned Materials

II Test Method FSS Release 453

General Tests - Representative Materials

III Test Method 5902 - Vertical

Part 1 - General Tests Representative Materials
Part 2 - Special Tests - New, Used and Cleaned Materials

IV Test Method NBS Radiant Panel

Part 1 - General Tests - Representative Materials
Part 2 - Special Tests - New, Used and Cleaned Materials
table I
TEST METHOD 5906 - horizontal

$$
z-1
$$

(pənu!̣uoว) I 日TgVL

$z-2$
TABLE I (Continued)

TABLE I (Continued)

Part 1 - General Tests - Representative Materials

TABLE I (Continued)
TEST METHOD 5906 - horizontal
Part 1 - General Tests - Representative Materials

Material		Ignition	Flaming Time (min.	Burn Length (Measured From	Burn Rate (Measured From	Burn Rate Initial Final 1.5 in. 10 in. (in. $/ \mathrm{min})$. $\{$ in. $/ \mathrm{min})$.		Remarks
No.	Code	Time		Start Wire)	Start Wire)			
		(min.)		(in.)	(in./min.)			
35	S2	0.13	0.59	0.0	I			
35		0.15	0.75	0.0	I			
35		0.13	1.42	0.0	I			
35		0.05	0.85	0.0	।			
Avg.		0.12	0.90	0.0	1			
36	F2	0.07	1.33	0.0	1			
37	F2	0.05	3.48	10.0	X	2.1	3.7	
37		0.05	3.69	10.0	x	2.4	3.3	
Avg.		0.06	3.58	10.0	X	2.3	3.5	
38	F2	0.05	2.37	10.0	x	3.5	5.3	
38		0.05	2.50	10.0	X	3.6	4.9	
Avg.		0.05	2.40	10.0	X	3.5	5.1	
40	F2	0.05	1.87	10.0	x	6.0	6.4	Heavy saoke
40		0.05	1.59	10.0	x	6.4	7.7	
40		0.03	1.69	10.0	x	5.6	7.1	
40		0.05	1.62	10.0	x	7.5	7.3	
Avg.		0.05	1.70	10.0	X	6.4	7.1	
41	R1	0.15	5.92	2.6	0.5	1.4	11	Heavy. sooty sillOke
41		0.17	7.35	10.0	x	1.4	1.6	
41		0.13	7.47	10.0	x	1.5	1.5	
41		0.13	1.75	0.3	0.5	1.4	11	
Avg.		0.15	5.60	5.7	1.0	1.4	11	
42	F1	0.08	2.08	0.0	1			Light smoke
42		0.08	0.84	0.0	1			
42		0.10	1.03	0.0	I			
42		0.10	1.08	0.0	1			
Avg.		0.09	1.00	0.0	1			

(pənụ̣uoว) I घาqvL
TEST METHOD 5906 - hortzontai

TABLE I (Continued)
THINOZIYOH - 906S COHLIAN LSEL

Material		Ignition	Flaming Time (min.)	Burn Length (Measured From \qquad (in.)	Burn Rate (Measured From Start Wire) (in.lmin.)	Burn $\frac{\text { Rate }}{}$$\frac{\text { Final }}{1.5 \mathrm{in} .} \quad 10 \mathrm{in}$.(in./min.)(in./min.)		Remarks
No.	Code	Time						
		(min.)						
49	F2	0.05	1.30	1.8	2.2	3.5	11	Heavy smoke
49		0.07	2.64	6.3	2.9	3.6	11	
49		0.07	1.22	1.5	2.0	3.7	11	
49		0.05	3.07	8.4	3.2	3.4	11	
Avg.		$\underline{0.06}$	$\underline{2.10}$	4.5	2.6	3.5	11	
50	F2	0.05	2.50	3.4	1.7	3.7	11	Heavy gray smoke; acrid odor
50		0.05	3.22	10.4	X	4.7	3.5	
50		0.05	3.94	7.8	2.2	4.7	11	
50		0.05	2.30	3.5	1.8	4.7	11	
Avg.		0.05	3.0	6.2	2.3	4.5	山	
51	F2	0.05	0.28	0.0	I			Light gray smoke
51		0.05	0.30	0.0	I			
51		0.05	0.32	0.0	।			
51		0.05	0.23	0.0	I			
Avg.		0.05	0.28	0.0	1			
52	F2	0.05	0.38	0.0	I			Moderate to heavy smoke
52		0.05	0.38	0.0	,			
52		0.05	0.32	0.0	1			
52		0.05	0.37	0.0	I			
Avg,		0.05	0.36	0.0	I			
53	F2	0.03	0.75	0.0	I -			Moderate gray smoke
53		0.03	0.77	0.0	,			
53		0.03	0.80	0.0	I			
Avg.		0.03	0.77	0.0	I			
54	F2	0.05	0.80	0.0	1			Moderate gray smoke
54		0.03	0.67	0.0	I			
54		0.03	0.84	0.0	1			
54		0.05	0.50	0.0	I			
Avg.		0.04	0.70	0.0	I			

$z-8$
Part I - General Tests - Representative Materials

Material		Ignition	Flaming Time (min.)	Burn Length (Measured From	Burn Rate (Measured From	Burn Rate Initial Final 1.5 in. 10 in. (in. $/ \mathrm{min}).($ in. $/ \mathrm{min})$.	Remarks
No.	Code	Time		Start Wire)	Start Wire)		
		(min.)		(in.)	(in./min.)		
55	F2	0.05	1.75	0.0	I		Heavy gray smoke; acrid odor
55		0.05	1.84	0.0	I		
55		0.05	1.00	0.0	I		
55		0.05	0.92	0.0	I		
Avg.		0.05	1.40	0.0	I		
56	F2	0.03	0.33	0.0	I		
56		0.02	0.28	0.0	I		
56		0.02	0.32	0.0	I		
56		0.02	0.27	0.0	I		
Avg.		0.02	0.30	0.0	I		
57	LI	0.03	0.33	0.0	I		Moderate gray smoke; acrid odor; mylar melts
57		0.03	0.35	0.0	I		
57		0.03	0.33	0.0	I		
57		0.03	0.30	0.0	I		
Avg.		0.03	0.33	0.0	I		
58	L2	0.02	0.42	0.0	I		Melts
58		0.03	0.42	0.0	I		
58		0.03	0.43	0.0	I		
58		0.03	0.45	0.0	I		
Avg.		0.03	0.43	0.0	I		
59	L2	0.03	0.59	0.0	I		Moderate gray smoke; acrid odor; melts and flashes
59		0.03	0.62	0.0	I		
59		0.03	0.65	0.0	I		
59		0.03	0.69	0.0	I		
Avg.		0.03	0.64	0.0	I		
60	F2	0.03	0.75	0.0	I		Light smoke; acrid odor
60		0.03	0.59	0.0	I		Light
60		0.05	0.75	0.0	I		
60		0.03	0.79	0.0	I		
Avg.		0.04	0.72	0.0	I		

TABLE I (Continued)

TABLE I (Continued)
 Heavy blue-gray smoke
Moderate heavy smoke; acrid odor
Test stopped. Drips, burns

table I (Continued)

TVLNOZİOH - 906S GOHLAN LSAL
$($ pənu!̣uoд) I glqVL
TVLNOZIYOH - 906S GOHLAN LSAL
(pənu!̣uoд) I gTqVL
Remarks
Pad burns more than nap
Heavy smoke; acrid odor
Heavy, sooty smoke; acrid odor

TVLNOZİOH - "906S GOHLAN LSヨL
(pənu!̣uoว) I gาqVL
TVLNOZİOH - "906S GOHLAN LSヨL
(pənu!̣uoว) I glavL
Part 2 - Special Tests - New, Used and Cleaned Materials
Remarks

Light smoke; melts, drips to bottom
of cabinet and burns

Light smoke; melts, drips to bottom
of cabinet and burns
чเธินวา u.ing
wost painseaW
afey uing
Wire)

$z-18$

sIrııəן

Burn Rate
Measured From

$$
z-z l
$$

TABLE II (Continued)
TEST METHOD FSS Release 453

Part 1-General Tests - Representative Materials

TVJLLyan - z06s aohlan LSel
(panu!̣uoд) III giqvi

Part 1 - General Tests - Representative Materials

$$
z-z 6
$$

Part 1 - General Tests - Reprcsentative Materials

$$
z-z 7
$$

table iII (Continued)
TEST METHOD 5902 - VERTICAL

$$
z-z 8
$$

TABLE III (Continued) TEST nethod 5902 - VERTICAL									
Part 1-Gereral Tests - Representative ylaterials									
$\begin{aligned} & \text { Material } \\ & \text { No. } \end{aligned}$		13 nition	F1aming Time (ifeasured After 12 sec . Burner	Glow Time (Hcasured After	Blım	Char	$\mathrm{Bu}=\mathrm{n}$ it. 12 sec. Time In	te vurner luae	
		Time	Removal)	Flameout)	Length	Length	0-12 in .	Tin.	Remarks
		(min.)	(mir.)	(Illin.)	(in.)	(in.)	(in-inin.)	(in.\%.in.)	
45	Fl	0.05	1.28		12.0	12.0	x	8.4	
45		0.03	2.28		12.0	12.0	x	4.9	
45 4. 4. 4.4 4		0.03	1.25		12.0	12.0	x	8.5	
4.5		0.03	1.35		12.0	12.0	x	7.9	
Avg.		0.03	1.54		12.0	12.0	x	7.4	
40	F2	0.05	$0 . \mathrm{G} 7$		1.8	1.0	8.3	I	
46		0.07	0.23		2.5	2.2	6.8	I	
46		0.05	0.00		1.7	0.7	11.3	I	
46		0.05	a.oo		1.6	0.2	10.6	I	
Avas.		0.06	0.08		1.9	1.0	9.2	I	
47	S1	0.03	0.64		12.0	12.0	\times	15.0	Heavy, black smoke
47		0.03	0.59		12.0	12.0	\times	16.0	
47		0.03	0.62		12.0	12.0	x	15.3	
47		0.03	0.50		12.0	12.0	x	18.0	
Av		0.03	0.59		12.0	12.0	x	16.1	
48	F2	0.07	0.00	0.08	2.0	0.6	14.6	I	Heavy smoke
48		0.05	0.00	0.20	2.0	0.9	13.3	I	
48		0.07	0.00	0.23	1.2	1.2	8.8	I	
48		0.07	0.00	0.22	2.0	0.9	13.3	I	
Av		0.06	0.00	0.18	1.8	0.9	12.5	I	
49	F2	0.05	0.10	0.22	3.4	0.5	13.6	I	Moderate, very sooty smoke
49		0.05	0.07	0.22	3.2	0.5	14.7	I	
1,9		0.03	0.10	0.23	3.4	0.6	12.7	I	
49		0.03	0.10	0.20	3.6	0.6	13.4	I	
Avas.		0.04	0.09	0.22	3.4	0.6	13.6	I	
50	F2	0.03	1.02		12.0	7.0	x	10.1	
50		0.03	0.52		12.0	5.0	x	17.5	
50		0.03	0.75		12.0	10.0	x	13.1	
50		0.03	0.64		12.0	4.0	\times	15.0	
Avan.		0.03	0.73		12.0	6.5	x	13.9	

TABLE III (Continued)
TEST METIOD 5902 - VERTICAL
Part 1-General Tests - Representative Materials

Material		$\begin{gathered} \text { Ignition } \\ \text { Time } \\ \hline \text { (min.) } \end{gathered}$	Flaming Time (Measured After 12 sec . Burner $\frac{\text { Removal }}{\text { (min. })}$	$\text { (Measured After } \begin{gathered} \text { Glow Time } \\ \text { Flameout) } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Burn } \\ \frac{\text { Length }}{(\text { in. })} \end{array} \end{gathered}$	$\begin{aligned} & \text { Char } \\ & \text { Cength } \\ & (\text { in. }) \end{aligned}$	Burn Rate (12 sec. Burner Time Included)		Remark
No.	Code						$\frac{(0-12 \text { in. }}{(\text { in. }}$	$\begin{array}{r} 12 \text { in. } \\ \text { (in. } / \mathrm{min} . \text {) } \end{array}$	
51	F2	0.03	0.00		2.5	0.2	15.0	1	Light gray, sooty smoke
51		0.03	0.00		2.5	1.0	15.0	I	
51		0.03	0.00		2.5	1.0	15.0	I	
51		0.03	0.00		2.3	1.0	13.8	I	
Avg.		0.03	0.00		2.5	0.8	14.7	I	
52	F2	0.03	0.00		2.4	1.0	14.4	I	
52		0.03	0.00		1.2	0.5	7.2	I	
52		0.03	0.00		1.2	0.0	7.2	I	
52		0.03	0.00		1.1	0.0	6.6	I	
Avg.		0.03	0.00		1.5	0.4	8.9	I	
53	F2	0.03	0.00	0.02	4.5	0.2	27.0	I	
53		0.03	0.00	0.02	4.0	0.3	24.0	I	
53		0.03	0.00		4.2	0.2	25.1	I	
53		0.03	0.00		4.2	0.2	25.1	I	
Avg.		0.03	0.09		4.2	0.2	25.3	I	
54	F2	0.03	0.00		1.8	0.0	10.8	1	Black, sooty smoke
$5 t$,		0.03	0.00		1.0	0.0	6.0	1	Bubbles, gaseous flame
54		0.03	0.00		1.0	0.0	6.0	I	
54		0.03	0.00		0.8	0.0	4.8	I	
A"g.		0.03	0.00		1.2	0.0	6.9	।	
55	F2	0.05	0.00	0.07	2.0	0.0	13.0	I	
55 55		0.03	${ }^{0.00}$	0.00	1.8	0.0	10.8	1 -	Moderate, gray smoke
55		0.03	0.00	0.07	1.6	0.0	9.6	I	
55		0.03	0.00	0.10	2.1	0.0	12.6	I	
Avg.		0.03	0.00		1.9	0.0	11.6	I	
56	F2	0.03	0.00	0.03	2.0	0.6	12.0		Bluish gray smoke
56		0.03	0.00	0.02	3.0	1.3	18.0	I	
56		0.03	0.00	0.03	2.6	1.0	15.6	I	
${ }^{56}$		0.03	0.00	0.03	2.7	0.8	16.2	I	
Ayg.		0.03	0.00		2.1	0.9	15.5	।	

Part 1-General Tests - Representative Materials

$z-3 z$
TABLE III (Continued)
TEST METHOD 5902 - VERTICAL
Part 1-General Tests - Representative Materials
 Moderate sllloke
Tremendous heat

TABLE III (Continued)
TEST METHOD 5902 - VERTICAL

TABLE $\boldsymbol{I I}$ (Continued)
TEST METHOD 5902 - VERTICAL

TABLE III (Continued)
TEST IETHOD 5902 - VERTICAL
Part 2 - Special Tests - New, Used and Cleaned Materials

TABLE III (Continued)
TEST METHOD 5902 - VERTICAL
Part 2 - Special Tests - New, Used and Cleaned Materials

No.	Code	$\begin{gathered} \begin{array}{c} \text { Ignition } \\ \text { Time } \end{array} \\ \text { (min.) } \end{gathered}$	Flaming Time (Measured After 12 sec. Burner Removal) (min.)	Glow Time (Heasured After Flameout) (min.)	$\begin{gathered}\text { Burn } \\ \text { Length }\end{gathered}$ (in.)		$\frac{0-12 \text { in. }}{\text { (in./min.) }}$	in_{1}	Remarks
27 U	R2	0.05	2.94	1.33	5.0	3.8	1.6	I	
27 U		0.05	6.18	1. 28	12.0	9.5	X	1.9	
Avg.		0.05	4.56	1.31	8.5	6.7	1.8	I	
27UC	R2	0.05	0.97	1.17	1.0	0.2	0.9	I	
27UC		0.05	1.52	1.33	1.3	0.4	0.8	I	
Avg.		0.05	1.24	1.25	1.2	0.3	0.8	I	
99 N	R2	0.07	0.94	1.17	1.2	0.2	1.1	I	
99 N		0.07	1.08	1.33	1.1	0.2	0.9	I	
Avg.		0.07	1.01	1.25	1.2	0.2	1.0	I	
99NC	R2	0.05	0.85	1.17	1.5	0.2	1.5	I	
99 NC		0.05	0.84	1.25	2.0	0.3	2.0	I	
Avg.		0.05	0.85	1.21	2.8	0.3	1.7	I	
99 U	R2	0.05	3.25		5.0	7.0	1.5	I	
99 U		0.05	7.33		12.0	12.0	X	1.6	
Avg.		0.05	5.29		8.5	9.5	1.6	I	
99UC	R2	0.05	2.74		4.0	5.0	1.5	I	
99UC		0.05	3.00		3.0	3.2	1.0	I	
Avg.		0.05	2.87		3.5	4.1	t. 2	!	
100N	Rl	0.05	0.40		2.5	0.1	4.5	I	Moderate smoke
100 N		0.05	0.38		2.6	0.1	l'. 9	I	
Avg.		0.05	0.39		2.6	0.1	4.7	I	
IOONC	Rl	0.05	0.53		2.0	0.1	2.9	I	
100NC		0.05	0.20		loB	0.1	5.1	I	
- Avs.		0.05	0.37		L9	0.1	4.0	I	

TABLE III (Continued

- VERTICAL

$z-40$
SI GTGVL
test method nbs radiant panel

	$\begin{aligned} & E \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & E \\ & 0 \end{aligned}$	$\begin{aligned} & 0_{0}^{0} \\ & E \\ & E \\ & 0 \end{aligned}$	J000
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\frac{\stackrel{\rightharpoonup}{0}}{2}$	－
	E	E	E	O
	$\stackrel{\text { İ }}{\stackrel{\rightharpoonup}{c}}$	$\stackrel{\text { İ }}{\stackrel{3}{\pi}}$	$\stackrel{\overparen{\pi}}{\stackrel{\rightharpoonup}{\pi}}$	］
	$\frac{\pi}{\infty}$	$\frac{\approx}{\sum}$	$\frac{\stackrel{\pi}{0}}{\sum_{i}^{2}}$	$\frac{\square}{3}$

L	て0t	$6 \mathrm{I}^{\circ} 0 \varepsilon$	85	$L^{\circ} 0$						
	てLE	LI＇LZ	09	8.0		＋¢ I			L	
	て\＆t	Iでと	LS	$9^{\circ} 0$		＋¢ I		1コ	L	
εL	861	91．8I	0t	$9 \cdot 0$				\bigcirc		
	8I	00\％ 1	8			6－9			9	
		$\downarrow \mathcal{L}$ ¢ ${ }^{\text {c }}$	t9	$\mathcal{E} 0$		＋SI			9	
	¢0Z	\＆I＇6I	$L t$	$8^{\circ} 0$		＋SI		13	9	
$8 t$	06 I	E9．8I	Z \dagger	ς^{\prime} 亿				2H		
	182	しI＇ちて	IS	s^{\prime}		¢ I－てI			\bigcirc	
	86	$80^{\circ} \mathcal{E}$ I	$\varepsilon \varepsilon$			2I－6			S	
0	0	00＊I	0	$0 \% 0$		0		$\stackrel{\text { ¢ }}{\square}$		
	0	00＊ I	0	$0{ }^{\circ} 0$				1J	$t$$\dagger$$t$$t$	
	0	00＊I	0	$0{ }^{\circ} 0$		0				
	0	00＊ 1	0	0%		0				
	0	00＊I	0	0%		0				
0	0	00＊	0	000		0				
	0	00＊I	0	0%				$1 \pm$	$\mathcal{\varepsilon}$$\mathcal{\varepsilon}$$\mathcal{\varepsilon}$$\mathcal{\varepsilon}$	
	0	00＊${ }^{\text {I }}$	0	0%		0				
	0	00＊I	0	0%		0				
	0	$00^{\circ} \mathrm{I}$	0	0%		0				
OS	II	LS＇E	8	0.0	6%		$91^{\circ} 0$	¢ $\frac{\text { ¢ }}{}$		
	27	$\mathcal{E} 1^{\prime} 9$	9I			6－9		$1 \pm$	乙$乙$	
	0	00＊ I	0			0				
†9	$\dagger \tau$	$\dagger S^{\circ} \mathrm{t}$	$\varepsilon \tau$	$\chi^{\prime} \mathrm{I}$	$\nabla^{\prime} \mathrm{I}$		で＊	＇sinv		
	ZI	E6 ${ }^{\text {I }}$	87			6－9		It	I	
	st	9 $L^{\prime} 9$	62			6－9				
	$\dagger \mathrm{I}$	S6．	ZI			6－9				
（†uәว．ıəd）	$\begin{aligned} & \frac{\left({ }^{\mathrm{s}} \mathrm{I}\right)}{\text { xəpuI }} \\ & \text { peəIdS } \\ & \text { әuriH } \end{aligned}$			（8m）	（＇u！̣u／•u！）	（ $\cdot \mathrm{UIT}$ ）	（＇u！̣u）			
uo！pe！te Λ				$\begin{aligned} & \text { IOIDE } \\ & \text { әyous } \end{aligned}$	（บเธบวТ ، \＆	$\begin{aligned} & \frac{\overline{\text { पाउuə }}}{\text { u.ing }} \end{aligned}$				
јо										
					วฺ¢					
TGNYd INYIGV¢ SgN GOHLAW LSEL										

TABLE IV（Continued）
test method nbs radiant panel Coefficient
of
Variation
（percent）
$\cdots \quad 0$

		0000	シiỡ	そin 0	－ioncoub		\mathfrak{n} 윽윽
		88888	$\begin{aligned} & \text { NFi } \\ & \text { ṄN } \\ & \text { Nin } \end{aligned}$				
	$\stackrel{\infty}{\sim} \sim$	0000	セ゚ロ゚	子边枵	ㅈㅜㅇㅀ	がっさらて	$\underset{\sim}{\infty} \propto \infty$
	$\dot{\min } \dot{\operatorname{con}}$	$1000-0$	0.4	$\stackrel{\infty}{\infty} \underset{-}{\sim}$	\rightrightarrows	$\underset{-1}{3}-\underset{0}{0} 0$	tnnon
					$\stackrel{\infty}{i}$		$\infty \infty \infty, \infty$ $\mathfrak{\sim} \rightarrow \infty$
E	$\stackrel{+}{+}$	000	$\stackrel{\text { }}{\text { ² }}$	¢n mis cis	＋＋＋＋	古古古古	古古古古
$\overbrace{y_{0}}^{\Xi_{n}^{0}}$					\cdots	$\frac{n i n}{0} \frac{\infty}{0} \frac{1}{0}=\frac{1}{0}$	$\underset{\substack{0 \\ 0}}{\substack{4 \\ 0}}$
	不	T		\cdots	$\stackrel{\sim}{2}$	石	匹

test method nbs radiant panel

TABLE IV (Continued)
TEST METHOD NBS RADIANT PANEL
Part 1 - General Tests - Representative Materials

Material		Ignition	$\begin{aligned} & \begin{array}{c} \text { Burn } \\ \text { Length } \end{array} \\ & \text { (in.) } \end{aligned}$	Burn Rate (Initial 3" Length) (in ./min.)	Smoke Factor (mg)	Heat Factor (deg. C.)	Flame Spread $\frac{\text { Factor }}{\left(\mathbf{F}_{\mathbf{s}}\right)}$	Flame Spread $\frac{\text { Index }}{\left(I_{s}\right)}$	Coefficient of Variation (percent)	Remarks
No.	Code	Time (min.)								
27	R2	0.15	15+	3.1	3.6	82	10.13	189		
27		$0 \cdot 11$	15+	3.1	3.9	83	11.28	214		
27		0. 18	15+	2.9	3.3	107	10.38	253		
27		0.14	15+	3.2	1.2	90	13.05	268		
Avg.		0.15		3.1	3.0	91	11.21	231	14	
28	F2	0.14	0-3		0.7	9	1.00	2.1		Flashes; burning around pilot
28		0.13	0-3		0.7	8	1.00	1.8		
28		0.06	3-6	13.6	0.8	16	4.57	17		
28		0.05	0-3		0.7	22	1.00	5.0		
Avg.		0.09		3.4	0.7	14	1.89	6.4	95	
29	L1	0.11	3-9	15.8	3.7	35	4.33	35		Flashes;large flame at top of specimen
29		0.09	9-12	9.7	2.8	28	7.00	45		
29		0.12	9-12	15.0	2.8	46	7.54	79		
29		0.12	0-3		3.1	50	1.00	11		
Avg.		0.11		10.1	3.1	40	4.97	42	57	
30	S3	0.25	9-12	3.8	25.4	63	5.22	75		Large flame at top of specimen
30		0.21	9-12	4.7	25.1	55	3.24	41		
30		0.12	9-12	4.8	24.2	71	5.41	88		
30		0.25	9-12	7.3	24.6	42	6.79	65		
Avg.		0.21		5.1	24.8	58	5.17	67	26	
31	S3	0.22	9-12	2.9	19.2	38	2.63	23		Flashes throughout test
31		0.11	9-12	4.6	16.8	43	6.29	61		
31		0.09	9-12	2.9	16.6	59	2.89	39		
31		0.22	9-12	2.3	18.1	53	2.96	36		
Avg.		0.16		3.2	17.7	48	3.69	40	35	
32	S3	0.17	9-12	5.8	21.0	73	6.17	103		Flashes
32		0.16	9-12	5.8	19.2	62	5.15	73		
32		0.24	9-12	5.4	1.3	68	4.62	72		
32		0.29	12-15	5.1	17.4	77	5.57	98		
Avg.		0.22		5.5	14.7	70	5.38	86	16	

TABLE IV (Continued)

TAnLE IV (Continued)
test nethod nbs radiant panel

	$\xrightarrow{\text { codial }}$	$\begin{gathered} \text { lenition } \\ \text { Time } \\ \hline \text { (min.) } \end{gathered}$	$\begin{gathered} \text { nurn } \\ \substack{\text { Len: } \mathrm{th} \text {. } \\ \text { (in.) }} \end{gathered}$	Burn Rate (Initial (in Length) \qquad	$\begin{aligned} & \text { Smoke } \\ & \frac{\text { Fector }}{(\mathrm{mg})} \end{aligned}$	$\begin{gathered} \text { Heat } \\ \text { Factor } \\ \text { (dez. } \mathbf{C l} \text { C.) } \end{gathered}$	Flame Spread $\frac{\text { Factor }}{\left(F_{s}\right)}$	$\begin{aligned} & \text { Flame } \\ & \text { Spread } \\ & \frac{\text { Index }}{\left(I_{\mathrm{s}}\right)} \end{aligned}$	$\begin{aligned} & \text { Coefficient } \\ & \text { of } \begin{array}{l} \text { of } \\ \text { Vaition } \end{array} \\ & \hline \text { (percent) } \end{aligned}$	Remarks
46	F2	0.18	12-15	6.1	3.3	27	7.96	49		Flashes
46		0.17	12-15	5.7	2.9	2 ,	8.83	48		
46		0.07	12-15	2.7	3.1	45	8.63	89		
46		0.07	12-15	3.3	3.3	39	10.78	96		
Avas.		0.12		4.4	3.2	34	9.05	70	31	
47	S1	0.09	9-12	33.3	0.4	15	32.3	111		
47		0.08	12-15	37.5	1.6	17	33.7	131		
47		0.05	${ }^{15+}$	27.3	1.3	37	42.0	354		
47		0.06	12-15	30.0	0.9	39	34.2	303		
Ave.		0.07		32.0	1.1	27	35.5	225	47	
48	F2	0.11	9-12	2.8	1.2	30	7.58	52		Flashes
48		0.09	6-9	2.6	1.5	16	6.14	22		
48		0.07	9-12	2.5	0.9	36	7.11	58		
48		0.07	9-12	2.7	1.3	36	6.80	56		
Avg.		0.09		2.6	1.2	30	6.91	47	31	
49	F2	0.12	12-15	3.8	2.8	49	14.83	166		Flashes
49		0.15	$15+$	33.3	2.3	45	19.32	198		
49		0.12	9-12	23.1	2.1	45	11.15	114		
49		0.13	9-12	25.0	2.5	45	8.25	137		
Avg,		0.13		21.3	2.4	41	13.39	154	20	
50	F2	0.11	12-15	27.3	1.8	59	30.07	405		
50		0.09	12-15	23.1	2.1	46	20.19	212		
50		0.15	12-15	21.4	1.7	50	31.29	357		
50		0.06	9-12	15.0	1.5	${ }_{5}^{62}$	22.57	376		
Avg.		0.10		21.7	1.8	52	26.03	337	22	
${ }_{51}$	F2	0.05	0-3		1.0	18	1.00	4.1		Flashes to 6 inches
${ }_{51}^{51}$		${ }_{0}^{0.05}$	${ }_{6}^{0-3}$		2.7	13	1.00	${ }_{182} 2.9$		
51 51		0.05 0.04	6-9 6	6.8 7.5	0.7 0.9	${ }_{21}^{22}$	36.37 10.94	182 52		Flashes
Avg.		0.05		7.2	1.3	19	12.33	61	121	

TABLE IV（Continued）
TEST METHOD NBS RADIANT PANEL

		$\begin{aligned} & \mathscr{0} \\ & \frac{0}{n} \\ & \stackrel{\rightharpoonup}{I} \end{aligned}$	$\begin{aligned} & \stackrel{\pi}{0} \\ & \frac{0}{\pi} \\ & \frac{\pi}{I I} \end{aligned}$		$\begin{aligned} & \text { 0 } \\ & \frac{0}{n} \\ & \frac{\pi}{x} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \frac{0}{\pi} \\ & \frac{\pi}{I} \end{aligned}$
	8	5	\pm	寸	¢	$\%$
		aingNo				$\underset{\sim}{\sim}$
	ત્入入入入ત			ス8ばが		$\cdots \infty \sim$ ®
	Mrironoo	$\begin{aligned} & -0 n_{n}^{\infty} \infty \\ & -0 \\ & -0 \end{aligned}$	NAn	$0 \infty \cdot n \rightarrow m$ nistion	ancono on	
				$\infty \infty$ n－ $\dot{\text { ivinci }}$	$\begin{aligned} & 0.000 .0 \\ & 0 . i n \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & 0 \text { moo o } \\ & \text { or in in in } \end{aligned}$
	فً	ف̆0̧ô	ف̂ôto			
	$\begin{array}{lll} n & n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$	둥ㅇㅇㅇ 0.00°	$\begin{aligned} & 0.0 \\ & 0.0 .0 . \\ & 0.00 \end{aligned}$	$\stackrel{n}{n} \underset{0}{\infty}=\frac{\pi}{0}$	0000°	ぞったずく 0.000°
훙	込	穴	¢	®	江	コ
${ }^{\text {Na }} \text { io }$	incinc	ninnin	示出志念荷			$\text { in ininin } \frac{\dot{\alpha}}{\frac{\alpha}{4}}$

TABLE IV (Continued)
test method nis radiant panel

(pənu!̣uoว) Λ I gาgฟL
TEST METHOD NBS RADIANT PANEL

TABLE IV（Continued）
test method nbs radiant panel

	IE	89	$8 \varepsilon^{\circ} \mathrm{t}$	89	$9 \cdot \downarrow \mathcal{L}$	$9^{*} \mathcal{E}$		91＇0		－ชヘも
		69	E0＇s	69	I＇$\varepsilon \varepsilon$	$6^{\circ} \mathrm{E}$	¢ I－ZI	¢ ${ }^{\circ} 0$		9 L
		$1 /$	LE＇t	LL	でゅを	$8 \cdot \mathcal{E}$	¢I－ZI	$\dagger I^{\circ} 0$		9 L
		29	しで \dagger	t9	9×8	$\mathrm{I}^{\circ} \mathrm{E}$	¢I－てI	LI＇0		9 L
		6 S	¢8． \mathcal{E}	L9	ャレを	$9^{*} \mathcal{E}$	てI－6	Oで0	V	9 L
	$6 t$	¢Z	E8．0I	II	8 ${ }^{\text {I }}$					－¢ิV
		8ε	09＊9I	0I	8°		てI－6			SL
ңгә		\mathcal{E}	SO＇S．	II	$L^{\circ} 0$		6－9		V	SL
	81	EE	689	27	L＇Z	0%		$\varepsilon \chi^{\circ} 0$		－¢ิ $\bar{\square}$
		LZ	$08^{\circ} \mathrm{L}$	SI	L＇Z	$L \cdot \mathrm{~S}$	ZI－6	¢ I 0		tL
SOYSEIH		8ε	$66^{\circ} \mathrm{S}$	82	L^{\prime} 乙	$\varepsilon \cdot 8$	¢I－てI	IE 0	V	$\dagger L$
	02	I6I	8S＇6I	で	$9 *$	$\varepsilon \cdot L$		S0． 0		$\cdot{ }^{\mathbf{B}} \mathbf{4} \cdot \underline{V}$
		60I	0t＊¢ I	İ	$\dagger^{*} \mathcal{E}$	ャ＊9	＋¢ I	90°		EL
		96	七L＇6I	IZ	ε^{*} S	6.9	てI－6	S0\％ 0		εL
		Scz	76．91	99	$8^{\circ} \mathrm{L}$	$0 \cdot \mathrm{I}$	＋5 5	LO 0		εL
soysein		S0E	¢で9て	IS	I＇乙	$0 \cdot 9$	¢I－てI	S0\％	V	EL
	IE	s．ti	しナ＊	$\varepsilon 乙$	6.0	$\mathcal{E}^{\prime} \mathrm{I}$		S0．0		
u．ing $\mathfrak{1 0}$		$S^{\circ} \mathrm{L}$	00＊${ }^{\text {I }}$	$\varepsilon \mathcal{E}$	6.0		E－0	¢0．0		ZL
pou səop unu！̣unje＇suinq［Ku！̣ィ $K_{\left[{ }^{U} O\right.}$		IZ	S8 ${ }^{\circ} \mathrm{L}$	ZI	8.0	9° Z	ZI－6	SOO	V	ZL
	61		$00 \cdot 1$	SE	9×0			LO＇0		¢ิท
		0I	00＊I	St	$\checkmark^{\circ} 0$		$\varepsilon-0$	80%		LL
		$\nabla^{*} 9$	00＊I	82	$8^{\circ} 0$		$\varepsilon-0$	¢0．0		LL
 syırшәу		I ${ }^{\circ}$	00＊I	IE	$\mathrm{S}^{\circ} \mathrm{O}$		$\mathcal{E}-0$	LO＊	V	LL
	SL	¢z	LS． 8	SI		0.8		$60^{\circ} 0$		－ิกV
		七I	カナ＊ 8	L		［ 6	6－9	80%		02
		七I	$00^{\circ} \mathrm{E}$	IZ		$\varepsilon \cdot L$	$9-\varepsilon$	60%		0 L
		$\varepsilon 1$	8 L° Z	02		S＇9	$9-\varepsilon$	$0 \mathrm{I}^{\circ} 0$		0 L
		SS	t0．02	ZI		I＇6	6－9	$60^{\circ} 0$	IH	0 L
		$\left({ }^{\text {s }} \mathrm{I}\right)$	$\left({ }^{5} d\right)$	（\％）						
		xopuI	IOT08		$\overline{\text { O¢0¢ }}$	（บเธี่นวา．＂E	प15\％\％	$\partial W!L$	әроך	${ }^{\circ} \mathrm{ON}$
		peords әше！	peo．ldS әшвІД	$1 \times 2 \mathrm{H}$	әуошS	əృey uing	u．ng	แo！̣！${ }^{\text {® }}$ I	［ए！	1eN

TABLE IV (Continued)
TEST METHOD NBS RADIANT PANEL

Mat No.	rial Code	Ignition Time (min.)	$\begin{aligned} & \text { Burn } \\ & \frac{\text { Length }}{\text { (in.) }} \end{aligned}$	Burn Rate (Initial 3" Length) (in./min.)	Smoke $-\frac{\text { Factor }}{(\mathrm{mg})}$	Heat Factor (deg. C.)	Flame Spread $\frac{\text { Factor }}{\left(F_{s}\right)}$	Flame Spread $\frac{\text { Index }}{\left(I_{s}\right)}$	Coefficient of Variation (percent)	Remarks Melts, drops fall to floor and cause
77	S3	0.19	15+	3.8	3.3	198	8.39	379		large fire on floor
77		0.20	15+	4.0	4.0	190	8.01	347		
Avg.		0.20		3.9	3.7	194	8.20	363	14	
78	A	0.57	15+	6.8	16.7	94	6.55	140		
78		0.37	15+	17.6	18.2	89	15.38	312		
78		0.21	15+	4.2	17.1	96	7.16	157		
Avg.		0.38		9.5	17.3	93	9.70	203	38	
79	A		12-15		6.4	42	4.49	43		Continues to glow for approx. 30 mins. after test
79			12-15		4.2	29	4.67	31		
79			9-12		7.1	49	3.57	40		
79			12-15		6.7	47	4.72	51		
Avg.					6.1	42	4.36	41	17	
80	A	0.30	6-9	4.7	7.2	49	4.62	52		
80		0.33	9-12	5.0	3.8	59	9.37	126		
80		0.36	6-9	4.5	3.3	69	4.24	67		
80		0.40	9-12	6.5	2.4	58	6.01	80		
Avg.		0.35		5.2	4.2	59	6.06	81	34	
81	A	0.35	9-12	3.7	6.0	54	5.32	66		Continues to smoulder after flame out
81		0.51	9-12	4.4	3.0	56	5.17	66		
81		0.58	9-12	5.2	2.8	70	5.60	89		
81		0.37	9-12	4.4	3.1	73	4.99	83		
Avg.		0.45		4.4	3.7	63	5.27	76	14	
82	A	0.18	9-12	1.6	4.7	55	4.21	53		
82		0.15	6-9	2.2	7.5	54	2.95	36		
82		0.14	6-9	2.0	3.9	62	5.62	79		Large flame at top of specimen
82		0.14	9-12	2.9	5.3	63	3.70	53		
Avg.		0.15		2.2	5.4	59	4.12	55	19	

TABLE IV (Continued)

TABLE IV (Continued)
TEST method nbs radiant panel

table iv (Continued)

table IV（Continued）

	†I	$\begin{aligned} & 8 \cdot z \\ & \tau \cdot \varepsilon \\ & \varsigma \cdot z \end{aligned}$	$\begin{gathered} 00^{\prime} \mathrm{I} \\ 00^{\prime} \mathrm{I} \\ 00^{\prime} \mathrm{I} \end{gathered}$	ZI tI II			$\begin{aligned} & \mathcal{E}-0 \\ & \mathcal{E}-0 \end{aligned}$		1コ	
		L＇Z	00＊I	ZI						\bigcirc
roolf uo sutuinq		L^{\prime} Z	00＊I	ZI			$\varepsilon-0$			ก6I
		L^{\prime} Z	00＊I	ZI			$\mathcal{E}-0$			ก6I
		$0 \downarrow$	6I＇6	61			¢I－ZI			ON6I
		8ε	$9 \downarrow^{\circ} 0 \mathrm{I}$	9 I			2I－6		İ	N6I
	LI	†LI	$6 L^{\circ} \mathrm{tI}$	IS	$7 \cdot 1$	6 LI		SI 0		
		切I	カ9＊	εt	6.0	$\mathcal{E} \dagger \mathrm{I}$	＋\uparrow	SI．0		วก8I
		t0z	$\dagger 6^{\circ} \downarrow \mathrm{I}$	09	$\dagger^{\circ} \mathrm{I}$	ナ＊IZ	＋¢T	¢ $\mathrm{I}^{\circ} 0$	IH	D＾8I
	S	991	06．¢ I	9 t	8.0	8.81		$8 \mathrm{I}^{\circ}$		\cdots
		SLI	$90^{\circ} \mathrm{LI}$	St	$8 \cdot 0$	$9^{\circ} \mathrm{LI}$	＋ 5	$8 \mathrm{I}^{\circ}$		ก8I
		8SI	$\dagger L \cdot \downarrow I$	$L t$	$L^{\circ} 0$	0%	＋¢T	LI＇0	IH	ก8I
	LI	L9I	cs．tI	OS	$\downarrow^{*} 0$	L．9I		こで0		
		L6I	しがカI	6 S	$\varepsilon \cdot 0$	8．9 I	＋ 5 I	七で0		ON8I
		$0 \downarrow$ I	t9 \dagger I	てt	$\downarrow^{*} 0$	$9^{\circ} \mathrm{LI}$	＋ 5	$0 \mathrm{Z}^{\circ} 0$		ON8I
		LOZ	t8 ${ }^{\circ} \mathrm{LI}$	IS		0 ¢ $¢$	＋SI	$\varepsilon Z^{\circ} 0$	$1 \pm$	N8I
	S	26S	カI＇IZ	EZI	$9 \cdot 0$	$9 \cdot \mathrm{I}$		LIO		－8＾V
		8S¢	II＇IZ	91I	$\dagger^{\circ} 0$	$0^{\circ} \mathrm{S}$ I	＋ 51	LI＇0		วกย1
		LZ9	91＊IZ	0عI	$8^{\circ} 0$	$\varepsilon \cdot \downarrow \mathrm{I}$	＋¢T	LI＇0	IH	วกย1
	\mathcal{E}	295	ع8．02	8II	S． 0	9.91		$6 \mathrm{I}^{\circ} 0$		\bigcirc
		97 S	08．6I	IZI	$\nabla^{\circ} 0$	9.91	＋$¢$	$8 \mathrm{I}^{\circ} 0$		กยะ
		8 ${ }^{\text {c }}$	98＊ Iて	9II	L＇0	9.91	$+\zeta \tau$	$6{ }^{\circ} 0$		กยเ
		$0 \downarrow \mathcal{E}$	$8 セ^{\circ} \mathrm{t}$ I	E0I		$9^{\circ} \mathrm{LI}$	＋SI	SI．0		ONEI
		$96 乙$		26	8.0	S＇II	＋¢I	SI＇0	IH	NEI
8yIbumay		（ ${ }^{8} \mathrm{I}$ ）	（ ${ }^{8} \mathrm{~d}$ ）	（\％\％\％р）	（डิण）		（－ut）	（ \cdot u！w）		
		хวриI	$\overline{\text { IOPDES }}$	lołoey	$\mathrm{IOPO}^{\text {¢ }}$	（ч1ธิ่บวา ぃย	पाธิบว	2uil	$\overline{\text { роД }}$	O_{N}
		$\begin{gathered} \text { peoids } \\ \text { exutd } \end{gathered}$	$\begin{gathered} \text { peo.idS } \\ \text { exut fu } \end{gathered}$	1 P －${ }^{\text {d }}$	ayous	［ $\mathrm{C}!\mathrm{y}$ ！uI） 238 uing	u．ng	uo！̣！${ }^{\text {a }}$ I	［ E ！	${ }^{12} \mathrm{~N}$

TABLE IV (Continued)
test method nbs radiant panel

[^0]: 65 were self-extinguishing within a burn length of 15 inches.

 44 had a Flame-Spread Index rating of 0-50.

[^1]: ':'Flame-retardant treatment
 Complete information not available

 Code: F - Fabl'ic
 1 - Uncoated, 2 - Coated,
 3 - Leather

 R - Rug
 1 - Unpadded
 2 - Padded

 S - Sheet, L - Laminate, A - Assembly
 1 - Flexible, 2 - Semi-rigid,
 3 - Rigid

