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ABSTRACT

A method is described for improving the transient gas concentration
measurement In a relatively fast-developing fire or in aﬁ} changing environ-
ment with a characterlstic transient time that 1s comparable to the response
time of the sampling system (including analyzer). Under such conditions, the
measurements can be signlficantly altered in both time and magnitude and,
hence, be of limited usefulness. The method utilizes the resultrof a simple
laboratory test - the response of the measuring system to a step loput -

to determine the sampled concentration history from the analyzer record.



INTRODUCTION

In many fire research projects, the concentration of varicus gas species
is of prime Importance, and, in scme cases, a continucus time vecord of this
quantity is desired, This is achievable with the use of centinuous-flow gas
analyzers. In most cases, to ensure accuracy and instruﬁént proteétion, it
1s necessary lo aspirate the gas entering the sampling port through a system
of condensers, filters and desiccatars before it passes through the analyzer.
If the flow through this system were ideal plug flow, the measured ocutput would
represent the input to the sampling port accurately although shifted in time
by the transit time through the system. However, as a result of viscosity
effects, diffusion, turbulent mixing and analvzer response, the actual tran-
sient record from the analyzer is delayed and distorted with respect to time.
For a steady-state experiment, this presents no problem, but for a transient
measurement, the ocutput of Lhe analyzer can be significantly different from
the input teo the sampling port. This paper describes a method of improving
the accuracy of such measurements, both in time and mdgnitude.

It is well known that, for a linear, time-varying system inveolving a
single dependent variable, an input/output relationship can be obtained by
solving the ordinary differential equation that describes the system. This
approach 1s quite useful in practice when the differential cquatien is known,
¢.g., in clectrical clyreule theory.

In those cases where the differential cquatlon of an ecxpevimental system
is not known, a simple laboratory test - the system responsc to a step In-

put - can be uscd to determine the input/output relationship. This has been



used successfully 1) in reactor theery to analyze f{low through packed beds
via a residence time distribution (Levenspiel, 1962) and 2) in control
theory via an open loop transfer function {(Harriott 1964). The response to
the step input is utilized to generate the governing differential equatior,
or, equivalently, the open loop transfer function. With rhese mathematical
approximations, one can predict the system output for any dinput of interest.

Most present-day applications are concerned primarily with“determining
the output for a given input or determining any input that ylelds a prespeci-
fied output. In the present application, in which the input corresponds to
the actual gas concentration at the sampling port and the output corresponds
to the analyzer record, the objective is to determine the input that causes
the measured output.
GAS CONCENTRATION MEASUREMENTS IN FIRE TESTS

Fire tests can range from small, well contreolied laboratory experiments
to very complex, full-scale investigations. In a recent study of vented en-
closure fires {(Croce 1974), che enclosure environments, including the concen-—
tration of various gas species, were compared in large and small scale. Wood
cribs that were appropriately scaled with the enclosure size were used as the
fuel bed. For the small laboratery size enclesure with ample ventilation,
the quasi-steady burning duration was on the order of 1-2 min. A magnetic
susceptibllity oxygen analyzer can have an inherent rise Uime® (tr) of
10-40 sec. When éonncctcd to a series of condensers, fllters, desslcators,
*Time rvequired to rcspond from 10 percent to 90 percent of a step concen-—

tration input.



etc., the system delay time¥* (td) can become one minute or more. These

times are depicted in Figure 1 (in which ¢ is the instantancous concentration
and CO, the constant input concentration). If such a system is used to moni-
tor the oxygen environment cof a laboratory crib fire, thg_resulting concen-
tration record is of very limited usefulness in determining either the con-
centration at any instant of time during the burn, or the average concentra-
tion throughout the burn interval. This is illustrated in Tigure 2.

To dmprove the accuracy of this measurement, assuming the analyzer to be
sufficiently linear, the typically exponential response to the step input,
i.e., the output curve of Figure 1, is fitted to an exponential function with
the desired degree of accuracy (#2 percent of maximum value is not unreason-
able); several methods are available, the easiest of which, especially for
functions involving more than one exponential term, is a graphical method
that is outlined by Harriott (1964). The function is chosen such that it
represents a series of linear, non-interacting, expenentially-responding ele~
ments (one or more, as needed} that approximates the actual gas concentration

measuring system. The graphical method yields the lag time (EL) and

time constant (tc) of the various elements®® of the equivalent analytical sys-

tem, quantities which are necessary for the develepment of this method.

¥  Time roqulred to respond to 90 percent of g step concentration Input.
#% "Lag time' is the duration of the zero-response portion of the output curve
of Figure 1; the "timc constant' of a single, linear clement is the time

required to respond to 63 percent of a constant Input value.
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Physically, the chosen exponential function can be interpreted as represent-
ing the entire, real, constant flow system as a series of well-stirred tanks
(linear elements), cach with its own characteristic hold—-up time* (rime con-
stant); the number of tanks and thelr appropriate time constants are deter-
mined, through the graphical curve-fitting method, such that the overall ef-
fect of viscosity, diffusion and turbulence in all of the components of the
total system is adequately modeled.

Once the response to the step input has been curve-fitted satisfactorily,
several techniques may be used to obtain the input (the true gas concentration
history at the gas sampling port) corresponding to the measured system output
(the time record of gas concentration as generated by the analyzer). Three of
these techniques were investigated - the differential-equation technique, the in-
version integral technique, and the transfer function technique. These tech-
niques will be discussed briefly here and presented in detail with the use of an
example in the Appendix; since the recorded output for burn tests is usually not
easily expressed analytically, the varicus technigues are treated numerically.

Differential Cquation Technique

For this approach, one must determine the linear differential equation
which is satisfied by the curve~fitted approximating function. TFor simple ex-
ponential functious, the desired differentrial equation is easily found by work-
ing backwards from the characteristic equation of the differential equatlon
(Uildebrand 1962). The dif{ferential equation will luvolve the constants tL

and t., a forcing function (2 counstant for the step response) and necessary

*Tank volume divided by volumetric flow rate



initial and lag time conditions. If the actual forcing function for the test
burn (the sampling port concentration is substituted for the step forcing
functicn, the result is a differential equation that describes the measurement
for all time (subject to initial and lag time conditions) during the test.
This equation can, therefore, be applied at any instant of time to determine

the only unknown - the concentration at the sampling port - in terms of « L

L!

and derivatives of the recorded output curves (see the Appendix).

Inversion Integral Technique

In this apprecach, the measured ocutput is formulated as the integrated
summation of step responses corresponding to the infinitesimal input step
changes over the desired time interval. The resulting integral is then in-
verted to obtain the input (sampling port} concentration history. For suf-
ficiently simple step response functions, the integral can be inverted analy-
tically, but in most practical situations, the inversion must be treated
numerically (Bellman et al. 1966). The present treatment is shown in the
Appendix.

3 . .
Transfer Function Technicque

In control theory, the open loop transfer function of a linear input/
output (I/0) system can be found using Laplace transforms. Basically, the
transfer function is the ratio of the transformed output te the transformed
input and remains invariant in the Laplace transform varlable domaln
(Harriott, 1964). ilence, if it is known for one 1/0 condition, it ls known

for all I/0 conditions. The transfer function for the gas concentration

3



measuring system can be found for the step input case using the fitted ex-
ponential function for the ocutput. Thus, to obtain the frue gas concentration
history, one need only divide the Laplace transform of the measured output by
the transfer function and determine the inverse Laplace transform of the
quotilent.

The result using any of these techniques 1s a calculated value of the
input to the gas concentration measuring system. DBefore any of the techniques
can be used reliably, however, it must be verified; the results of an indepen-
dent laboratory test are described in the next section.

RESULTS

The various techniques were tested by sampling a series of coupled C02 and

O2 concentration steps of arbitrary, but controlled, magnitude and duration,
and comparing the known input to the input determined from the cutput {analyzer
record)., The apparatus is shown in Figure 3: a steady-state calibration of

the rotameter was performed beforehand. The system allowed a CO, range of

2
0-25 percent (by volume) coupled with a 21-14 percent variation of 0, The
arbitrary concentration steps were obtalned by opening or closing the control

valve rapidly (2-3 sec). The total test duration was 9 min. The results for

O2 and CO2 are presented in Figures 4 and 5, respectively, and include the

measured input, the measured analyzer output and calculated input.* Immediate-

ly obvious in the f{igures is how misleading the recorded cutput can be when

*For these tests, tL = 21.3 sec and tc = 14.4 see for O2 and t] = 21.3 sec

a

and t. = 1.5 sec for COZ' The analyzers used were a DBeckman Model T'-3

(magnetic susceptibility) for 0, and a Beckman Medel 315A {(infrared

2

absorption)for C02.
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compared te the measured input (especially for 02). The figures alsc show that
the calculated inputs provide significantly better measures of the true inputs
than do the measured cutputs.

The calculated imputs shown in Figures 4 and 5 are the results of apply-~
ing the differential equation technique to the measured aﬁtput curées. The
results of the inversion dntegral technique were essentially identical, al-
though the differential equation technique responded slightly faster to the
rapid step changes. A comparison of the results of these two techniques is
shown in Figure 6 for the 6-9 min 02 test interval.

The transfer function technique did not perform so well; an instability
in the Laplace transform inversion computatien, a not uncommen problem
{Bellman et al. 1966), led to results which were not useful; some calculated
points by this technique are also shown in Figure 6. Since both of the other
techniques yielded very satisfactory results and were considerably less complex
to feormulate, ne further work was done to improve or refine the transfer function
technique.

DISCUSSION

This method for improving the time record of a gas species councentration
measurement is helpful whenever the analyzing system response to a step input
1s significantly spread out over a time that is comparablce to or greater than

an important characteristic cxperiment time (tC }, 1.c., whenever trnt or

h ch

Lt (see curve (b) of Tigure 7). The analyzing system must also be suf-

ficiently linear. The method is not advantageous to use when the rise time
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1s small compared to the charactexristic experiment time, i.c., L est b
c
(curve (a) in Figure 7); in this case, & mere time shift equal to the delay

time, is adequate (see, for example, Figure 5).

tyr
Both the differential equation technique and the inversion integral tech-
nique yielded satisfactory results. The former is very simple and straight-
forward to uge and can be applied locally in time, which is a desirable
feature for numerical calculaticns; however, this technique is susceptible

to inaccuracies associated with numerical differentiation, The latter
technique, on the other hand, has the advantage of being less sensitive to
local irregularities since the calculated input value at 2 particular instant
of time depends on the entire previous data history. Both of these techniques

have been used successfully in the data reduction by computer of laboratory

-and large-scale fire tests.
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APPENDIX
DIFFERENTIAL EQUATION TECHNIQUE

Let x(t) be the unknowm but desired input to the gas sanpling port and
y(?) the recorded output of the analyzer; xs(t) and yS{t)'are the correspond-
ing quantities for the step input and response. For each gas speciles concen-
tration measuring system in our laboratory setup, a normalized step Input,
i.e., c/CO = xs(t) = 1.0 for t>0Q, vielded an output that was closely approxi-

mated by

0, for t<tL,
y () = { (1)

L= (L (eme)/e ) exp(-(e-t ) /eel, for ¢ >t

where t is time and tL and te are, respectively, the lag time and time con-

stant (different set for each gas specles measuring system). Thils functien

represents a series of two linear elements, each with the time constant € .
c

1f we let t* = t~tL, we have

ys(t*) =1 - {1+ t*/tc] exp[-t*{tcl, for t* > Q. (2)

This function satisfiles the following differential equation, which may

be interpreted as a description of the measurcment:

g f ZLC — 5ty (¥ =L, for-t* > 0. (3)

11



NHote that the left hand side describes the system while the right hand slde
is the feorcing or driving function, xS(L*}. If the system remalns unchanged

when the actuzl measurement 1s made, the forcing function is x{t*) and we have

2
2 it - 7
¢ ﬂq¢££_l,+ 2t QXﬁi_l. + y(t*) = x(t*), for t* > Q. (4)
c c dt
dg*
In real output time, this is
2y (o) dy (o)
+ 2 =2 = - >
tC 2 tc T + oy (t) x(t tL), for t > tL, (5)
dt
and in real. input time,
2 - -
5 d y(L+tL) dy(t+e_ )
= - —_—— ——n - - e .
x(t) LC dt2 + 2tC s + y(L+tL), for > 0 (6)

Thus, 1in a numerical scheme, the actual input at time t is determined by the
constant tc and the flrst and second derivatives of the measured output, ¥,
at the time t+tL.
INVERSION INTEGRAL TECHNIQUE

With the same notatien, assume x{t) to be a scries of steps, as in
Fipure Bb, cach of which gives rise to a response function of the type measurad,
ys(t), as in Fipure 8. Tor infinitesimal steps, the measured ocutput, y(t),

can be expressed as an Intepgrated summation of correspondlng step responses,

1.e.,

12



FIGURE 8. (a} SYSTEM STEP RESPONSE, AND (L) RECORDED OUTPUT WITH EQUIVALLNT
INCREMENTAL STEDP TNPUT



t a
y{g) = J ys(t—"r) 1 dt. (7
Q

If the integrand is sufficiently simple, the equaticon can be analytically
inverted to obtain dx/dT as a function of T and, hence, x{(t). In practice,
thig is usually dlfficult, and one resorts to numerical technlques
(Bellman et al., 1966)

In the present case, y(&) is known (weasured), and x(t) is to be deter-
mined. The computational scheme proceeds as follows: On the measured res-

t ).% Move

ponse curve, ys(t) (Flgure 8a), choose a reference point (yref’ cof

in time along the y{t) record until the first measurable increase in vy, Yy» is
detected. This dndrease 1s interpreted as belng generated by a step in x at a

time L. earlier and of a magnitude, &x, = yl/yref' The step &xl produces a

ef

corresponding response function which is subtracted from the entire remaining

1

v{(t} record. One then advances to the next time step, observes the adjusted

Yoo interprets it as a new 4x, at a time tr carlicr and again subtracts the

2 ef

corresponding response function from the remaining y(t) recerd. This pro-

cedure is repeated step by step in tire to obtain »(t}), the duput gas concen-

tration as shown 1in Tigure 8b.

*Chosen such that Y e is sufficiently small for resolution and sufficiently

{

large for accuracy; a value of Vier © 0.1 has been used successfully.

12



TRANSFER FUNCTION TECHNLQUE

With the same notatlon, we have, as beforce:

0, for t <t
v, (8 ={ v
1 - [1+ (t—tL)/tC] exp["(tth)/tC], for £ > Lo (8)
and xs(t) =1, for t > C. {9)
The Laplace transform of a function f(t) 1s (Hildebrand, 1962)
Fs) = L {f(t)} = [W exp{-st)f(t)dt. (10)
o}
Hence,
Y (s) = JO {exp(-st)1{l—[l+(t*tL)/thexp{—(t-tL)/tc]}dt,
exp{-st_)
= _w_,_LZ , (1)
s(l+tcs)
and
Xq(s) = J exp{-st){(1)dt,
) o
- l , (12)

14



I1f we let G(s) denote the transfer function, then

- YS(S)
G(S) “ iu(ug.)ﬁ f

exp{-st.) )
L
> —— (13)
(l+tcs)

which is Invariant in the s-domain.

Since y(t) is usually known or treated numerically, it must be expressed
numerically so as to allow Laplace transformation, division by the transfer
function and inverse transformation. This can be done by fitting a second
order polynomial yn(t), with continucus first derivative between successive
data points. If y{t) is known at times tn = nit with discrete values Y it

can be shown that

o™ vy @

_ _n+tl “a’ n . 82
yn(t) =y, an(t-tn) + 3 e (t tn) ) (14)
At
2 _— oy
where a = (yn—_iE:L)— a (15)
n Lt n-1"'
M
and y(e) = ]y (). (16)

! n=o

where N is the total number of discrete data values. Accordingly, the lLaplace

transform of y{(t) is

‘ y a 2a 2(y .~y ) HN-1 s
¥(s) = 2+ -2 - 2 1 Jo v Zexplesnbt) o, Ryexp (-sNoe)  (17)
s 3 23 23 n
s Ats AtTs n=1 Lt7s



where An = (y“+l— éyn + Syn-l + Zan_lﬂt), (18)

¥ a,. a
. N N N .
and RN =3 + " + 3 (19)
3 §74t )
For tL »At, which is wsually the case, yle and, since yo a = 0 by
physical argument,
N-1
Y{s) = z 2exp (~sult) A - RNexp(—SN&t) . {20)
n=Jl &tz 3 n

To find the input gas concentration, the transformed input is determlned

using the transfer function, i.e.,

e
Pt
O}
Mot
fl

Y{(s)/G(s}

i

N, .
exp(stL)(l+tCs)2 nzl {ﬁﬁzféggﬂékl. An - RNexp(—sN&t)}. (21)

The transformed input, X{s5), is 1lnverted to obtain the input 1in the time

domain, i.e., with t=nit,

x(L) = Lul [X(s)}
G 2t 2

M-1
x(mAL) = 5 A [ (m=n+N )2 +-*~£-(m—n+N )+ —hg—‘)u[(m~n+N yhel, (22)
=N n 0 t o 4 v}

4 e
o

16



for which

L_ ]
= _l‘, . ' = oW 1 By
NO X where tL tL FEAE, with 0<BE<l such
) that ND is an Integer; -
) 0 for (m~n+N0)<O
u{(m—n+NO)ﬂt] = -[1/2 for (m-n+No)¢O ;

1 for (m—n+NO)>O

and

2
AN t
o ©
x{o) = — (23a)
At
and
-1 Z A e ?
‘ milo ” 4tc 2tc m+NO C
x{mht) = A Llm=n+t )7 4+ ~— (m-n+N )+ ] +— {231)
e 1l 0 iy o &tZ ﬂtz

1 o

for 1 < m < N-¥ -1.
- = o

This expression must be summed over n for cach value of m. Thus, at each
instant of time, the input to the gas sampling port 1s determined in terms of

t to Ot and measured cutput data points.

L,

17
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