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NCOTATION

Some symbols which have been defined locally and used only within

a single section of the report do not appear in this table.

A, Ap
a

B

]|

ol

erf(2)

cal

> i

defined in Egq. 8 of Bec. 4.1

Vi

constant appearing in the Mott-Smith shock structure sclufion
(see page 10j.

coliisional iwmpact parameter

c/en

random molecular velocity about the species mean

most probable random speed of a Maxwellian distribution
diffusion coefficient

(part 2) electric field strength (induced by charge separation
in the ionized shock)

{part 2) electrostatic charge
base of natural logarithms

o
E% e_zzdz

0
(part 1) distribution function of moleculsr velocities
{part 2} concentration in wnits of its upstream value
centre of mass velocity of a colliding pair of molecules
relative velocity between a colliding psir
unit vector pointing in the flow direction.

signifies Lhe complete elliptic integral of its argument

force constant in the inverse fifth power repulsion molecular
interaction (Maxwellian molecules)

Boltzmann's constant
downstream infinity Mach number

upstream infinity Mach number

ml/(ml+ Mo )



Mo

mgml,mg

>

cl

e =

<4

=

YACIRAL)

molecular mass

mp o

molecular nuaber density in units of the upstream infinity value
molecular number density

unit vector along the line of centres at the point of closest
approach in a binary molecular collisions

probability distribution associated with event 2
pij - 5ijp

pressure tensor

hydrogtatic pressure

heat flux vector

numbers selected from the random number generztor
hard sphere molecular radius

radius of influence for colliding hard spheres (e.g, for He-A
collision = rge + rp)

(part 1) hard sphere collision cross-section

(part 2) ambipolar Schmidt number defined on page 43
mu® /KT

temperature

bemperature based on the one-one pressure tensor component
(T" = py1/nk)

(Pop + pp3)/enk

Lime

unit vector perpendicular to the line of centres at the point
of closest approach and in the collision plane as viewed 1n
centre of mass coordinates

mean flow velocity

velocity ratio across a normal shock

melecular velocity

diffusion velocity (species mean velocity relative to the overall
gas mean velocity)

vi



e flow-direction coordinate

dv elemental volume in veloclty spece e.g. dv = dvldvgdv3 in
cartesian velocity cocrdinates

dc similar to dv but with the origin of velocity coordinates at
the mean flow velocity (T = ¥ - W

Greek Eymbols

¥ ratio of specific heats
G, . = 1 for i = j
12 . .
= 0 for 1 # j
M thermal conductivity
hl upstream mean free path (for mutual collisions between light gas
pairs)
i viscosity coefficient
1 friction coefficient for momentum transfer between diffusing
speclies
o densgity
“ molecular mass ratio mpeayvy/myight
Pi shock wave thickness based on the maximum slope of the density
profile
AD{V) ) coliisional contribution fo change in &(¥)
@{v) polyromial function of the molecular velocity
Cubscriprs
i,1,K,4 indicate vector components
e,l i part 2 refer to electrons and ions respectively

Superscripts

rr

parallel to the direction of mean flow

L perpendicular Lo the direction of mean flow
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L. INTRODUCTION

shock wave structure studies are to some exbtent the resuli of
proverbial “mountain climber" motivation, The shock is there, Tt otruct-
e could be ignored for most practical purposes, however, it is certainly nol
a Lrue surface discontinuity in the gas and the question naturally vpresents
iteelf - How thick is the shock and how severe are the gradients within the
compression region? On the other hand, these studies do indirectly serve a
rery important and fundamental purpose. The plane gas dynamic shock wave 1s a
ore-dimensiopal transition flow problem {in the sense that significant flow
changes take place over a distance scale of the order of a mean free path) with
simple boundary conditions and no gas-gurface interactions., It is an ldeal,
though rather severe, test of the kinetic theory methods used for solving non-
equilibrium problems in rarefied gasdynamics.

ot
X
m

The quantitative description of the shock transition has been

the subject of a large volume of thecretical and experimental work, particularly
1n the last decade, although the pioneering papers appeared much earlier under
the names of Becker, Thomas, Mott-Smith et al (Refs. 1, 2 and 3). Concurrent
with this accumulation of knowledge about the structure of shock waves in single
component gases, there has developed an interest in the study of shock btransi-
Liong in gas mixtures with emphasis on mixtures of inert gases, since they are
enerally easier to handle both experimentally and theoretically. There have
~en two major contributions to this subject. The first of these, a paper
published by Sherman in 1960 (Ref., 4}, has been the stimulus for oy of ths
work which followed. GSherman used Navier-8tokes eguations for the over-all
gzs comblined with a diffusion equation which is somelbimes referred to as I'ick’
law of diffusion. This combination corresponds to the Chapman-Enskog second
approximation sclution of the Boltzmann equations for the binary mixture. From
thie system of differentisl equations Sherman calculated, numerically, the
dengity profi]eq for the gpecics zhock compressicns and the overall ;aq rbmpera-

ree profiles for various combinaticns of equilibrium concentration and mas:
at:o, The interesting result waz an unexpected prediction for the Q?ﬂFLEU
profile of & small concentration of heavy species (argon) in & predominantly
1:qht gas (helium) shock., Sherman's calculations predicted an initial pre-
xpansion of the argon before it compressed. The controversy over this resuylt

=
has not been completsly resolved.

1-

The second important contributer is Oberal (Ref. 5) who has
golved the binary shock problem using an extension of Mett-Smith's famous
timodal solution for single component shock waves. The method does not reproduces
the wtnusual  result found by the Chapman-Enskog method bufprediects, for all

mixtures regardless of concentration ratio and mass ratio, monctonic density
profiles. However, this method iz based on mathematical approximations the
severity of which is as difficult to evaluate as 1g the penalty for the approxi-

maticns of the Chapman-Enzkog expansion.

The main topic under consideration in Lhis report is sheock
wave structure in binary mixtures with a small concenftration of heavy species.
ection ITIT, an attemph is made to isolate the origin of Sherman’s result
In Section IV a Monte Carlo solution for this problem is outlined, In Section
V a2 number of moment solutions are compared in detall with the Monte Carlo
lution. Section VI concerns a different physical problem - shock structure
in a weakly ionized gas with elevafed electlron temperature. This zectlion
contains 1ts own introduction to the specific plasma shock problem which is
congidered therein, however it should be noted here that the ionized gas shock

idered in Section VI are characterized by significant diffusive

waves con

L)
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broadening of the va“rgcflon ZOone 2ilmi to that observed for the nsutral

binary mixtures with widely ralbe

Zome of the solations for single compon nt shock siructure are
ol lined in Sechior 1T, This i not o comprehensive ceview of that fapic but
a collection of thoss [urianant:l s which wil)l be used direclly or re-
tferred to in the discussion of in gas mizturces.

CK WAVE TIHORTES

The Jigt of inportant conbributions to the sutject of plane shock
wave theory io gqaite lonsy howeover, only & emall number of fundamentally differ-
ent methods hove boen used bo attack this transition flow problem, It will be
necessary to refaer fo come of i methods in detail in later sections. Although
the multi-comporent shock ri; 1 e }TQ lem differs in many respects {rom tLhe
sinzle component case, the coture, namely, significunt changes in flow
properties over Lhe ﬁiﬂfnnc- o“ % omean Lree pwfh, is common Lo both., Moreover,
or the praoblems fre; ort, one specles is present 1n very small
guantitices with the re chal the dominant specles shock 1s essentially
ore~comporlent i naturn. 8 co!lection ol some of Lhe fundazuwent ideas of the
ane-component solullons wil) =grve as an introduction to shock wa theory as
well as a roview of com ol bhe more important =pproximpate seolution methods for

he Foltzmann eguation.,  Yne ne methods will be reviewed: the Chapman-
Erskog expanzion method, the moment stbion approximation and BGK modelling of
the Boltzmann colliision torm. (Hg¢ lers familiar with this material should
—urn to the binary mixbure copsiderationsol Section ITI.)

¥

=
L

Toilowi

2.1 Havier-Stokes Shock Shructure

A important ceontribution to Lhe shock sbructure werory is based
or. =he Navier-fitokos eguaiions of continuum fluid flow. Alfthough the general
shock strucliure problem with ite sironr flow cranilents on a mean free path
zoale violates the basic assumptions of the conftinuuam theory, experimental
syidence confirms that r-Stokes (N.f.)! shock wave theory is a reasnsnable
deseription for low Muct nbers (M < 20, Zince the equations themselves are
arlversally familiar to fluid-dynumicists, this is an instructive intro-

iuction to shock structare us well Iiistorically the starting point
lor ‘“r b ieot.
Plie Mooy suntitions are usually derived, in their con-

H
! stions for tne conservation of mass,
in conjunction with the classical ¥ourier law
alion botwcen shear stress aad rate of de-
ol the N,&. enuations correspond to the
-lnekos (C.-E. JSOJJL,O“ for the Boltzmanr

finuum context, as muovar
nomentum, and enercy of
of hea' canduction and

Formation. Ib iz knour
gsecond approrinmation in

kinetic bae such s nsity znd mean velocity,
are def e Irmetis T ol the . tritmtion funciion f(v,x,%)
where [ : ix-dimensionul (¥,%X) - space

[ -prebable in
large numher of
microscoplc bou
flow.) The gywbol Tor locoal e
rrmber density sinco

to represent an average over 5

% : weroscopie provleom wilth different

lary or inilial conditions for the individual particles in the
iy, n {Z,5, ther represents a probakle

1]



H(_}Z,E) = ff(;,;,t) @X (l)

where dv represents an infinitesimal "volume” elewent in velocity space e.g,
dv = dvydvedvy in a cartesian coordinate frame.

This distribution function must satisfy the Boltzmann integro-differential
equation (B E) for conservation of mass in phase space, For the one-
dimensional steady shock problem the B E has the form

- fﬂ (£(v) £(7]) - £(9) £(v)) ) [v- ¥, | bovdedy, = %)cou =

where b and € are the impact parameter and collision orientation angle shown
bhelow

v is the wvelocity of the observed group before collision

?l is the velocity of the collision partner group before collision

The primed velocities are the resulftant velocities of the two groups
after collision

COAMAIXX XXX XHXKX M>

reference

rlane
2 /
7
/ s
v - = __ / s ; -
- - - ,,-Q Cenfre -
- Mags b

/ -
/

e
collision
plane
/




The Chapman-Erskog scheme looks for sclutions to the B.E.
for which the distribution function is expanded as a series of correction terms,

[ T U VU (3)
and where fo is a local Maxwellian

£ L M (u)

(EWk/mT)j/‘

EAEN \
+ocD Ls used)

3

[+ In3

. . o
(the rectangular cartesian tepsor notation cyCy = ©y% + =

=f¢ dv 1s the locsl mean number density

u, == [ v, £ dv the local mean velocity

4
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¢, - u. the particle random velocity component

BB[\ K K * £ dc  the kinetic pressure

T = p/nk  the temperature,by definition.

The formalism for setting up and solving the approximate equations for the
fL,f% ....in order is elaborated in Chapter 7 of Ref, 6 and will not be repor-
duced here ir detail. The exact conservation eguations gre derived by multi-
plying Eq. 2 by m, mvy, vavK/Q, ir Lurn and integrating over all of velocity
space. The collisional term on the R.H.S. contritutes nothing to these moment
egquaticons since, for a single component gas, mass, momentum and energy of the
species are conserved in each collision. The resulting moment equations are

then:

%; (na) = © (5)
A (6)
3R, B gt o )
Py = nf ey £ de
aQ = % f Clc?f de

Tre Influence of the collisicn term shows ap only irndirectly 1n 1he expressions
for Pyps ag,

At each gtage the approx1ma+e equation is solved for f and the distribution
function approximated by all terms up to and including fr iz used to derive
aprroximate values of q| Ir: this solution method the successive correction
terms for f are repres e% in terms of the three basic flow quantities n,u,T
ard their gradients. The conservalion equations with the approximate formq of

4



; ’p“l represent a closed system of differential eguations which can be,
Lﬁeofetically at least, solved for the appropriate boundary conditions.

ITn first approximation
T

(pll)o =p

O =
2]

o this approximation the flow equations are the non-dissipitive Euler eguations;

d _ .
3 () =0 (3)
du 1 dp _
U + T O (9)
2. 9p 3 du _
2V TP 70 (10)
The second approximation yields
£~ 9+
4 du
1= ==
{(pyy) = o
dT
S . al
(ql) A dx

The second approximation {(N.S5.) egualions are

= fnu) = 0 (11)
dqu ldp 414 du .
—_— e e o o — —_— = l
dx ’ podx P dx <F dx © (12)
=
5,4p 3 du b fduy 4 dat _
V% 2P 3P\ T wm V) O (13)

where p, A are respectively the coefficients of viscosity and heat conduction.
Values Tor these coefficients can be derived for any specific molecular
collision model or may be specified from empirical data. (See Appendix B.)

This set of coupled differential equations must be solved with
the plane shock wave boundary conditions.

-CdE—H)O as x » 7%

o, T, u—= p , T ,u &8s X —- ®
R 4 1 1

Integrated once with respect to x Lhe WN.5. conservation eguations become:
=8 ke Q



O U= constant = £ U {15)

1
du 2

z
P+QU-M&—P1+01UJ (16)
5 /ot ud) du o, 4T 5B, 2
ou (2 p/p 4 u,%) - uu g A ax - PLu (é 5 tule (17)

The pair of first order ordinary differential equations, Eqs. 16 and 17, must
be integrated numerically, incorporating in the solution a specific temperature
dependence for the transport coefficients u, A. Gilbarg and Faclucci (Ref.7)
have summarized the results from a number of different choices for this
temperature dependence. Their paper is an extension of the early works of
Becker and Thomas, who first treated the detailed shock structure using N.S.
eguations.

Some interesting features of this second approximatbtion solution
can be cbserved from the phase space (velacity, temperature) diagram for N.S.
shock structure sketched in Fig. 1. The equilibrium points ¥y and Xg corre-
spond to the x = - o and x = + « Dphysical coordinates rezpectively. Roohs
of the characteristic equation for the systewm show that Xo is a saddle point
and X7 is nodal. The stable nature of integration procedures which proceed
along the integral curves toward the nodal point is illustrated in Figure 1.
The solid line represents the integral curve corresponding to the shock wave
boundary conditions at Xq. The dashed lines represent solutions to this set
of differential equatiocns which do not pass through the downstream equilibrium
point. All solutions converge toward the ncdal point. The stable direction
for numerically integrating the system 1s, then, from downstream to upstream
i.e. from X, to Xy. This 1s a peculiar feature of the C.E. equations. Other
methods used for sclving the shock structure problem inlegrate stably from up-
stream to downstream. The envelope curves (a) and {b) correspond tc » - 0 and
A = O respectively. There is a continucus N.S, solution to the shock structure
problem for zero heat conduction or zero viscosity but not for both pu = O,A = O,

Since the Navier-Stokes solution assumes implicitly that grad-
lents on a mean free path scale are small it might be anticipated that the
solution could be improved by including further terwmg in the expansion.3hock
structure calculations have been made using the next higner order set of
equations in this sequence however, the third approximation equations
{Burnett equations), unlike the N.S. equations, do not give solutions to the
shock wave problem for Mach numbers greater than about 2.2.



2.7 Moment Egquation Methods

Unlike the Chapman-Enskog method in which a series soluticn of
the Boltzmann equation is attempted a different method consists of replacing
the Holtzmann equation by a system of velocity moments of that eguation. These
so-called moment ecuations are derived by multiplying the entire BE by &
sequence of particie velocity ~omponent polynomials and, for each member of the
sequence, integrating over the entire range of veloclity space,

For instance, if ¢{¥) is one of a sequence of velocity poly~-

nomials
(@ = m, mvi; m\rg,,,,,)

the corresponding moment equation is

oy [ of of . Fioor _ Jor
L/ @(V) [g -+ \.?'i a_X]j F gl = \gt' COll] dv (l)

The crpendent variables of this sysfem of eguations are the moments of the dis-
tripution function resulting from the integration indicated in the general
moment egquation i.e.

— l ar
u, = = / Jif dv
and where C;E VT
pij = f cicjf de
F..=a [ {(c.c. - L. 5, . )fde
il 1 3 )7 —

(Pij iz the complete pregsure tensor; Pij is formed from py. by subtracting

the trace from each diagonal term i.e. Pij = Py - éijp wherd p = = [ cZf de,
the so-called hydrostatic pressure). ' o

In this way, the single Boltzmann integro-differential equation can be replaced
by a set of coupled partial differential equations. However, no finite group

of momert equations, in the general case, will form a closed set. The essential
step in the moment method is Lo prescribe the form of the distribution function
in terms of a finite number of its momentz. The number of independent variables
in the momenil equations will then be limited to the number used to descrive T
and this same number of moment equations will necessarily form a closed setb.

The most famous example of the moment method is the Grad 13-
moment solution to the BE. The 13-moment equations have been used to solve
a wide range of kinetic theory problems including shock structure for a limited
set of low Mach number cases. In this approximate solution the distribution
function is expanded sbout a local equilibrium state in ferms of Hermite
velocity polynomials keeping the first thirteen terms (Ref. 8,9):

T
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;- n o 2KT {l YA ang)
(QWKfmT)3£2 2nkT \h/m T
o )
nki R/ 5K mmf (2
The 13 unknown flow variables in this casne are;

n(or p), u s T (or p)s Fij. u

The 13-moment equations are derived by chooszing

1
¢ - om, me,, me? m(cicj -3 SiJ c®), m cl02
and the equations then can be written:
op 3
+ (puy) =0 (3)
v K
ot SAK
dui N aLJi 1 aPiK N (43
& "Mk TE 3, T \
3,
3p S 2 Adui 2 THk
5t e, (puk) + 3 Pyy 5y 5w T 0
.
P (epy 2 (S, 22X
ot Exy K F1g 5 SE 6»1 F 6<K y
auﬁ 6ui 5 3
4 —te A ~ . —— - ==
p—-K a)\K 1JK (BXK 3 blu p}(,z (‘\12
du, du du,
n 1 - g « //\ 5
P \sxi ! ¥ 3 5jj 6;; J 1*\“0LH \2)
62‘ + 0 (ug 4.) * : i + = a SUK + 2 ] énK
ot axK 4; 5 %K ke v E 5;: 5 i 5?;
f EXK > Pix BKK 0 A%y



(Api.) 110 (EE;)C 1] 8re the collisional contributions to stress and heat
Plux’ eS%8ti ons ardQPend upon the moleculsr collision model. This set of 13
first order partial differential equations is hyperbolic, that is, the system
will propagate disturvances at a set of finite characteristic speeds. This
Feature of moment equation solutions has been discussed by Grad (Ref. 10} and
Holway {(Ref. 11) and will be dealt with in connecticn with the binary shock
problem in Sec. V. However, at this point it should be noted that the fastest
charascteristic speed of the gsystem represents an upper limit on the shock speed
for which these equations can give a continuous unique solution. The
characteristic speeds for the 13-moment equations are:

r =0, +*~NL.5L k/mT , * N.E6L kol

These equations are incapable of describling the structure of shock waves
travelling at Mach numbers greater than M = 1.65
G

(M = 1.65 corresponds to the fast characteristic speed, 7 = 4.5k k/ol = l.65h-la%

—

A second moment method, much siampler but very well suited for
the particular problem of steady plane shock structure is the solution first
proposed by Mott-2mith¥ As in the previous case, a form for the distribution
function iz assumed, this time & so-called "bimodal" Maxwellian is chosen
rather than an expansion about a local eguilibrium state. The bimodal distri-
butior has the following form:

o . 0 _
T = nl(x) £ ng(X) £, (1)
Here £ = (—m )3/2 epr - C AT }
o 2mkT L 2kT J
- A _
h, =1 Yy (x =1, 2)

where ? is the 1-D {low-direction unit vector

and (uq,T,), {u,,T,) are respectively the upstream infinity and downstreaw
infirity values of the mean velocity and ftemperature. For given initial con-
ditions (uq,T;) the Rankine-Hugoniot values for {u,,Tp} are given by the moment
equations for the conserved guantities - mass, momentum and energy.

(1) & =1
b, 4m dne _y, i U, + nol, = 1 {(8)
S v T T i.e. myuy + nyuy = npguy
(2) D = vy
2, L=y dny 2 2y 4 np
(v * ay%) oo ¢ (wfr ap ) = -0 (9)
aiz— k/m Ty
(3) ¢ =2
dn d
(w2 580%) b+ up (up®r 5ap%) = = 0 (10)

The boundary conditions on the two dependent variables ny(x), np{x) are:

*Mott-Smith (M.5.)



n,(x) -n 48 X — -

St
n.{x) -0
: (11)
nl(x) as x oo
(x) ul/d

Eguations {9) and (10) give the Ranke-Hugoniot relations:

ulE + a12 = ul/ug (1122 + 522)

= - = _ = I =
1 -+ . = + =N
1 28y 2 7

Equation (8} gives np(x) in terms of ny(x).

Une further moment eguaticon is required for the determination of the spatial
dependence of nj(x). Usually the equation corresponding to ¢ = v,% is used.

dnl dn2
2 + —_— 2 =
Uy (uy Bafﬁ us(up® + 38y ) (&4 sz)coll (12)
where
(Avxz)coll is the total collisional contribution

F U2 - v,®) £(v) f{?l) [v - vi| b db de dv dvy

{see sketch on page 3)

This integral was evaluated for hard spheres and the Sutherland collision model
by Mott-Smith. (The necessary integrations are reproduced in Appendix A for
hard spheres and Maxwellian molecules.}

The solution of Egq. 12 is:

n]_o
s BN

nl(x) =

where B is a function of the shock Mach number derived from the collision
integral and can be found in tabular form for various molecular models in the
literature (Ref. 3, 11). The guantity Ay is the upstream equilibrium mean
free path and the distance scaling parameter for the problem.

This simple scoluticn 1s, perhaps unexpectedly, a very good
approximation for the structure of high Mach number shocks (M > 2). In these
cases the shock region is relatively thin, in the range of 2 to 4 upstream
wean free paths. It is, then, reasonable to assume that at any point in the
compreseion region, the distribution function contains contributions from both
the bounding Maxwellians which have not suffered collisicns in the compression
zoae. This is especially true of the upstream cold Maxwellian which 1sstreaming
into the shock. The Mott-Smith distribution funection reproduces this feature
of the high Mach number shocks in detail. I% is not surprising that this solution

10



becomes less accurate (on the basis of density profile thickness comparisons
with experimental values) at very low Mach numbers where the shock wave repre-
eents a much more graduval change involving many collisions, on the average, per
particle. The distribution function in these cases evolves with only minor
distortions from local Maxwellian and does not develop the two stream nature,

Many modifications have been made to these two basic moment
methods. Ziering et al tried to improve the simple Mot{-Smith solution by using
a 3-mode Maxwellian distribution: (Ref. 12)

(vy - u3) o

f = nl(x)flO + ng(x)fgo + ng(x) a1y s

(The first two terms are the same as in Mott-Smith's solutior. Term 3 is a
modified intermediate Maxwellian.)

Holway produced results giving similar agreement with experimental results over
a large Mach number range by wodifying the "downstream Maxwellian' part of the
M.S. distribution function. His wethod can be described as an expansion of the
distribution function less the upstream streaming portion, i.e. (f - ny{x)f1°),
in ellipscidal polynomials. In reference 11 Holway has carried out the solution
keeping only the first term of the expansion 1.e.

. _m - 7 z
ny(x) Zrry V7 o)

£
(QTTk/mTl)?? )

- __m 2 -.__0O 2. 42
Dok x (v -us) (v, =+ v5)
2(x) 1 ZhApp K 2T 2khgy 2 3

1
= = L =3
(2Wk/m)j?§7 K212 A22

ujl) are the upstresm disturbed mean velocity and temperature, us(x), hgl(x),

A Z%X) are additional flow variables to be defermined from the moment eauations
a%ong with n1{x), na{x). The quentities Ay, Asp are temperatures of the expand-
ed portion of the distrioution in the flow and perpendicular directions. The
downstream boundary conditions are then

up(x} Uy

M M - T

21* 22 2

where up,To are the downstream equilibrium mean velocity and temperature.

The extra freedom of this sclution also produces more agreeable low Mach number
results.

11



2.3 BGK Model Egquation

The two previous methods sought approximate solutions to the exact
3oltzmann equation., A basically different approach seeks exact soluticns to an
approximate form of the Boltzmann eguation which uses a simplified model for the
collision integral. Solutions to the BGK modelled B.E. {Ref. 13) for plane shock
boundary canditions are of this type.

The BGK egquation is not {¢ be considered a substitute for the B.E.
it will, at best, give a reasonable gqualitative indication of the important
effects or trends in a gas kineftic problem. However, because of its simplicity
and its proven performance in many other problems, the BGK shock wave solutian
iz of some interest. In particular, it shows that the distribution function in
high Mach number shocks is in fact strongly bimodal as the Mott-5mith solution
presupposes.

The BGK eqguaticn for the one-dimensional flow problem hasg the
following form:

A %f = nK[F-~f) (1)

where F has a Maxwelllan form with local mean velocity and temperature.

The complicated integral on the right hand side of the B.E. has been replaced
by a relaxation model. Molecules are disappearing from the V-group at a rate

L=nXf (2)
If K were considered to be a function of the meclecular veloclty ¥, this

"LOSS" contribution to the c¢ollisional change in f would have the same form as
the exact Boltzmann expression i.e.

Ly

nf [ £y|v-vy|b db de dvy

(3)

n f Ky (v)

Az a silwmplificestion, K is usually taken to be some mean collision frequency de-
pendent upon the local mean flow properties but independent of the velocity

group being considered. The "GATIN" collision term is. much more severely wmodelled,
The function F 1s 2 Maxwellian distributicon with mean velocity and temperature
equal to the true local values of these quantities. The molecules redistributed
by collisions are assumed to reappear, fully Maxwellianized, about the mean flow
velocity.

The mcdel can only be judged critically on the basis of its re-
sults. However, 1t is interesting to notice that the twe main assumpticns in
the modellied collision term find some support in the actual collisicnal behaviour
of two extreme collision models - hard elastic spheres and Maxwellian {5th power
law repulsive)} molecules. For Maxwellian molecules the collision frequency is
independent of molecular velocity as assumed in the collisional loss term of the
BGK eguation., On the other hand, in a collision between hard elastic spheres
the probability of scatftering the relative velocity vector in any direction about
the centre of mase velocity i1g proportional to the solid angle into which the
scattering occurs and is independent of direction i1.e. the scattering pattern

12



is symmetrical about the centre of mass velocity (see Sec. L.3). The BGK "GAIN"
term requires the scattering to be not only symmetrical but the velocity distri-
bution to be Maxwellian.

The Boltzmann integro-differential equaticn has been replaced,
then, bty the much simpler first order differential equation, Eqg. 1, the solu-
ticon to which can be written:

X X
> nk nk n 1 |
ft(vx 0, vy,vz,x) =‘]W - Foexp {fLJﬁ - dx }-dx (4)
o x X
+ w!
where . u)2

- n N

(2nk/mT)3/2
n= [ f{v¥,x}dv (5)

1 — \
vo= T [ v, £(7,x) dv (6)
R TSRO CRON (7)

ok V-1 u v,x) dv

It is evident, that an initial approximation to the spatial de-
pendence of the three moments n, u, T through the shock wave is sufficient to
start an iterative solution procedure for the set of equations 4, 5, 6 and 7.
These initial estimates can be used in the R.H.3. of Eg. 4 to determine fy
(1st approx.) at a set of discrete points in the phase space. This discréte
representation of £ is then used in equations 5, 6 and 7 to derive new number
density, velocity and temperature profiles. The procedure is repeated to con-
vergence, giving final profiles for the BGK shock wave =zolution. The problem
as stalted appears Lo be straight-forward; however it entalls truncated numeri-
cal iategrations over the infinite velocity space as well as the single physical
space coordinate. Such procedures reguire very great care to ensure acceptable
accuracy for ressonable computation times. Chahine and Narasimha (Ref. 14)
have performed these computations, integrating as many as 15 times when re-
guired. Their results for inverse shock thickness based on the maximum slope
of the density profile are ploited in Fig. 2 along with results for the other
golutions described in this section. The most interesting feature of the BGK
results 1s the predicted shape of the distribution function within high Mach
number shock waves. Starting with the W.3. approximation as the zeroth iterate,
the dstribution function develops & proncunced double-maximum form similar to
the Mott-Smith distributiom. This can be seen in Fig. 3. The BGK distribubion
fimction at an intermediste point in a Mach 10 shock is plotted as a function of
the flow direction random velocity component for a series of perpendicular
velocities. The double-maximum shape is very pronounced for suwall values of the
perpendicular velocity component. This is a strong indication that the Mott-
Smith sclution gives a reasonable microscopic picture as well as accurate pean
filow profiles.



All theories described in the previous sections are based on
mathematical approximations, the impliecations of which can only be accurately
determined empirically. Such comparison is possible in the single component
case because there exists a sufficient volume of independent experimental
determinations of shock density profiles. The range of experimentally observed
shock density thicknesses is indicated in Fig. 1.

All of the curves of Fig. 1 have the same basic shape starting
from inverse thickness equal zero at Mach 1. (This corresponds to an infinitely
thick shock. The ordinate of this plot is hl/A where Ay 1s the upstream mean
free path and & 1s the maximum slope density thickness of the shock.) The various
methods predict a maximum in the nelighbourhood of M = 3 and a very gradual de-
crease towards an asymbtotlic value at higher Mach numbers. It is important to
note the dependence of absolute shock thickness on Prandil number referring to
the Navier-5tckes curves. A good deal of caution is regquired when comparing
experimental resuvlts with the caleulations for a specific molecular model. When
the thecretical analysis is of the Navier-Stokes type, the Prandil anumber and
the viscosity-temperature dependence can be matched with the experimental
value. For other kinetic theory methods a correspondence between the theoreti-
cal model of the gas and the actual gas collision properties is not so easily
attained.

ITI. THE ANOMALOUS TPRE-ACCELERATICON OF THE CHAPMAN-ENSKOG 3SOLUTION

Sherman (Ref. 4} has shown that the Chapman-Enskog second approxi-
mation shock solution for s helium-argon mixture with an eguilibrium mclecular
fraction of 2% argon at a shock Mach nurmber of 2, predicts a pre-expansion of
the heavy gas before ifts eventual shock compression to the downstream Rankine-
Hugoniot value (see Fig. 4 and 5 of Ref. 4). Predictably, since this result
defies 1intuitive explanation, Dr. Sherman's paper has been followed by a
number of others, each presenting a point of view about the origin of this
usual behaviour. Tertainly much of the interest in this sclution is academic;
nevertheless, 1t is important to determine whether it is a real physical pheno-
menon or & mathematical anomaly.

Liu (Ref. 15) in a short note, has made some important observa-
tlons regarding the pre-acceleration. He has shown, first of all, that the
initial expansion of the heavy gas 1z not caused by the nonlinear effects of
strong shock waves but occurs, in the C.-E. sclution, even for limiting weak
shocks. He has alsoc shown why the Burnett stresses, 1.e. the correction terms
agsociated with the third approximation, are teoo small to account for the
anomaly .

Oberai, (Ref. 5) as noted earlier, has recalculated the trouble-
some cases using an extension of the single component shock gtructure sclution
propoged by Mott-Smith. TFor binary mixtures the distribution functicn for each

of the two species in Oberai's solution has the same bimodal form,
i i i
7 = ny{x) £+ ng(x) fg (1)
where

. .oN3/2 .
i @y, { mi _ A 5
fo = <2wkTa> e O % }
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4z 1p the single component solution, uy, T7 are common to bobth species and are
the upstreanm equilibrium values of mean velocity and temperature., The values
of us,Tp vary with position but at any position are common to both species.
They are chosen to satisfy the overall conservation of momentum and energy
within the shock. It is obvicus that for the cases of interest here where one
species dominates the fiow, up,Tp will not vary much from the down:tream

equilibrium mean velocity and temperature since in the limit as ;ﬂﬁé;% -0
Th
Lo

they take on these constant values exactly. The distribution
function for the argon is, then, even more sharply double-peasked than the
helium distribution. Cberal has selected the Vxe-moment eguabions for each
species to solve the problem for a Maxwellian molecular collision approxi-
mation. The density profiles caleculated from this solutiorn are monotonic.

Oberai's solution is a very interesting addition to the theory
of binary shock structure. However, it is something less than a completely
satislfactory contradiction of the C.-E. result. The moment solution is not
an exact solution to the problem and it is difficult to assess the conse-
quences of the assumptions on which it is based. For example, the argon dis-
tribution function is forced to be similar to the helium distribution at all
points (but with sharper peaks because of the smaller random speed of the heavy
argon molecules.) It will be shown rather conclusively in the next section
that the argon disfiribution function evolves in & vory different way from this.
5till it is  the contention of thisg report that Oberai's solution is qualitat-
ively correct, although the rigidity imposed on the distribvution function
causes it to err in detail.

The Chapman-Enskog solution for the binary mixture gas flow
problem is described in detail in Chapter VIII of Chapman and Cowling's book
(Ref. 6). The distribution function for each species, £, satisTies a
Loltzmann equation for that species including a collision term for cross-
collisions with the second type molecules. [EKach of these distribution
funetions is expanded in a sequence of correction terms with the first approxi-
mation term being a Maxwelllan with mean velocity and temperature equal Lo
the local flow mean values i.e.

fl:fltfl+fz+ . (2)
where
i nj =
£~ —— EXP{-—-—,(V-U)}

U,T-  are the overall flow mean velocity and temperature,

This point iz lmportant and it can be emphasized in terms of the specific
problem under consideration. If the argon is present only in trace guantities,

the helium dominates the flow and T and T of the overall flow will be very nearly
eqgual to the helium mean velocity and temperature, If is a different story for the
trace of argon. The cross-collisions betwsen helium and argon atoms do nob
communicate energy or momentum difference efficiently becauss of the large
difference in maes between the two types of particles. The argon mean

velocity may be substantially different from the overall mean flow within the
shock, It would seem more reasonable to expand the distribution functicn of

each species about the local mean velocity and mean random energy of that

species, however such a modification dees not fit inte the C.-E. formal sclution.
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In the C-E. method, a sequence of specific approximaiions are
made baszed egssentially on the assuunptiocon that diffusion velocities are small
and thermal contsact between wi2 gpecies is good. In the context of this formal
golution it is difficult teo identify any particular one approximation as the
causze of the ancomalous pre-expaision. However, Fick's law of diffusion
{which is equivalent to the C.E. diffusion equation disregarding thermal
diffusion) can be derived from a different kinetic theory point of view - one
which clarifies the implications of the C.E. approximstions.

For the sake of the illustration, ceonsider the limiting case as
np/Bge — ©.  The helium chock is then deseribed by & single component shock
structure theory. The diffusicon equation to determine the behaviour of the argon

car be derived from the argon momentum eguation. For the one-dimensional shock
problem this equation is: (See Chapman and Cowling, Sec. 3.13.)

a du d x PA o

—_ — 4+ = _ -
( L e re e T R (PAH o P]_J
T o ax 1 1y nge {uge - wy) (3)
where Wa = Uy - u

the starred quantities signify that these random velocity moments for the argon
are defined about the overall gas mean velocity u.

i.e.

o
p; = ?A J c"" c¥ f dey (L)
ct = (v -u)

i
The pragqure tensor terums iAl dﬂd P*lfor argon and total flow are similarly defined.
Neglecting the terms 1in square brackets, this is the CJE. second approximation
diffusion equation without thermal diffusion (see Chapman and Cowling pg. 408).
Tt is immediately cbvious from this eguation that the first term in the square
bracket 1s not necessarily small - in fact in the strong diffusion shock
problem 1t will be relatively important at the upstream end of the shock where
dwp/dx  may be of the same order as du/dx since it is anticipated that the
helium will compress first in the exact solution. {On the basis of the C.-E,
theory predictions,

duA

ax

O'.WA

dx

du
dx

al the upstream end of the ghock since the overall gas begins to decelerate
while the argon initially accelerates. If this were in fact the case, the

neglected term would be even more important). Roughly speaking, the C.E
diffusion egquation approximates the acceleration term in the heavy particle
momentum equation by the overall gas acceleration. The following caleculation
makes 1t clear that this approximate treatment of the heavy particleaccelera-
ticn term is the cause of a pre-expansion anomaly: conslder as a demonstration
the shock wave structureina mixture of predominantly helium with a very small
concentration of argon. For this limiting case the single component Mott-Smith
shock solution (see Sec. 2 .2) is a reasonable approximation for the behaviour
of the helium. The argon compression is described by a simple version of its
momentum sguation -

16



duA d pA

p, u _ ~
ACA 95 T X = Ny Ny (upe - up) (

where the random velocity has been taken with respect to Uy

C, = v, -
K £ IIAK

and the moments are also taken with respect to Ug
ma
pA:?J\CKCKfE

This momentum equation assvmes a local Maxwellian distribution function about
the species mean properties and a linear friction term for collisional
momentum exchange. The integrated zrgon density profile calculated from this
equation will be compared with the results obtained when the acceleration
term in the above equation is replaced by the overall gas {(i.e. the helium
gas) acceleration in other words by equation 3 dropping the square bracketted
terms.

P
dx o]

[os

_§ =9 nA nHe (UHe B uA>

(63

du
A du 1 dp
<§A 5. 1S replaced by udx =3 ax

In both Eqs. 5 and A, the substitution

pA = nA kT
is made, where T is the overall gas mean temperature. This is not a good
approximation and it will be eliminated in Section V where individual species
temperatures are allowed. It is, nevertheless, consistent with the C.-E.
second approximation which does not include differences in the szpecies tewmperature.
With no further approximations, equations 5 and 6 can be written in non-
dimensional form:

dlipy ¢ a8
(6-3) o " Valge m (v -ow) - NG (7)
and Al y dg . Ma a6, 1 dNHé>
—= = N.N - - N =+ LN (= 8
S = Malpe ™ () - N Ao ANdx W ax (8)
T2 - He ’
The quantities NA’ M, w, , u,, & are in units of their upstream equilibrium
values DAys O uHel’ Upy s Tl regpectively
and N
k Tl
X = x/hl where A, is the upstream equilibrium
value o% the He-He mean free path
M - g N A2 (2 kT) is He-A interaction radius
3 12 L Ao -

for hard sphere model.
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Smith helium shock. The firat order ordinary differential eguation in the de-

pendent variable N, is integrated in each case numerically. The results for

the density are showr in Fig. 4. For each species the number density in units

of the upstream eguilibrium value for that =species iz plotted as a function of

distarnce from the centre of the helium shock 1n units ¢of the upstream helium

mean fres path. The density undershoot occurs in the solution of Eg. 8 but

not for ths solution of Eq. 7 in which the argon inertia term appears explicitly.

are calculated from the dominant Mott-

)
P
[
s

In each case., value;

The purpose of this section has been fto reduce the diffusion
shock problem to as zimple a formulation as possible 1n order to expose the
exact nature of the cause of the C.E. pre-acceleration. In doing this, the
argument has heen based on some approximations in the derivation of the argon
momentum eguation whﬁih have not been fully justified. These approximations
will be eliminated in Section V. However, two conclusions can be drawn here:

o~

(1) Replacing the gpecies acceleration by the cverall flow accelerza-
ticn in the =imple momentum equation for the argon results directly in the
appearance of a pre-expansion in the argon density profile.

(2
which are
inertia.

e

> |

rt to this mis-representation of the diffusing species

o

.o, diffusion eguation containeg, implicitly, approximations

Iv. A MONTE CARLO BOLUTION 70 A MODELLED DIFFUSION OCK PROBLEM

There 1g an obvious need for an "exact” solubion to the strong

as 8 basis for evaluating the various kinetic theory
utiong and == & final check on the upstream behaviour of the diffusing heavy
gas. For both of these purposges the ultimate solution would be one detailing
the disbribution funchtion for the heavy particles throughout the compression
region. This irformation would not only give profiles for the moments of the
distribution function te any order but would give some idea about the severity
of the kinetic theory asgsumptions. Generslly, the kinetic theory of the shock
problem proceeds by restricting the shape of the distribution function in some
marner le.g, distorted Maxwellian or bimodal Maxwellian). Knowledge of the
exact distribution function shape could be used to select a reasonable kinetic
theory wodel.,

There is an experimental method available for producing the
complete distribution function at a point in a rarefied flow, however it has
not yet heen applled to this problem. It iz the Doppler shift technigue used
by Muntz (Ref. 1€},

In order fo 171 this gap, temporarily at least, a numerical
experiment has been devised to solve a modelled diffusion shock problem. The
model 1s this: the light gas zhock 1s gcsumed to have a Mott-Smith profile



and to dominate the total momentum and energy fluxes. Hence 1t is considered
to be undisturbed by the small concentration of heavy gas. The "exact" heavy
particle flow pattern induced by this light gas shock can be built up using a
test-particle Monte Carlo approach. Heavy particles are introduced into the
flow far upstream of the light gas compression and thelr frajectories are
followed collision by collision as they pass through the shock, At a nuaber

of stations 1in the shock region the contribution of each particle to the dis-
tribution function and its moments is accumulated to produce an acceptable
average when a sufficient number of trajectories has been generated., Within
the limits of statistical precision of the finite sample and the restricted
nature of the modelled problem itzelf, this information is an exact deszcription
of the actual heavy gas behaviour, The restrictions placed on the light gas
shock are not troublesome in the evaluation of various kinefic theory approaches
using the Monte Carlo results as a ztandard since the kinetic theory can use
the same model for the light gas shock. The comparison thus gives a valid
indication of the seriousness of the various approximations made in the kinetic
thecry of diffusion shock structure.

Follow Tezt Particle

. - ) A d
Cellision by Collision bandon

Inject Test
J Test Particle
Particles (A)

— D

He
Mott-Smith
Density Profile
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Maxwellian
Downstream
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There are two types ol molecular numerical experiments, the
distinction between the two resting in the amount of exact knowledge available
about the system to be analyzed. Gas-surface interaction studies are bveing
carried out on large digital computers by idealiziug the surface to a single
perfect crystal lattice face and assuming sn analytical iateraction law between
the impinging gas moclecule and the lattice. This type of problem is completely
deterministic in nature. Analytical expressions can be written for the trajec-
tory of a particle with known velcocity far above the surface. The computer's
task in such an  experiment is to account for a iarge number of impinging mole-
cules spread over all possible initial aiming points. The second type of pro-
blem is characterized by a probshilistic description of part of the system and
is popularly called a Monte Carlo method.

It is in general 1lmpossible to keep track of the exact position
and velocity of each particle in a molecular gas flow problem. In place of
such complete knowledge it is usual for the distribution function at any point
in the flow to be known either anslylically or in approxiwmate numerical form.
If & test particle is being followed along its trajectory through a gas des-
cribed by & known distribution function this information does not give a deter-
minigtic answer to the location or type of its next colliszion with a gas mole-
cule. The Monte Carlc technique requires that it be possible to express these
essentially non-deterministic quantities, namely distance to next collision,
velocity components of the cclliding particle and collision parameters (direction
of centres at "contact" for hard spheres or point of closest approach) by
probability distributions. As the test particle passes from collisicn to
collision the values for these guantities are chosen by selecting a number from
a random group, distributed according to the inherent probability distribution
associated with that quantity. (Haviland has given 2 thorough exposition on
Monte Carlo applications to molecular flows - see Ref. 17).

L.,1 Free Path Calculation for the Test Particle

In the modelled diffusion shock problem, the bvackground gas
distribution function is aszsumed at a2ll points to be the Mott-Smith bimcdal
Maxwellian {Section 2 .2).

m AL R -
.. A - g (71 v
= e
(2nk/m Ta)37§ {2nk/m TS)BXQ (1)
' (1+te BX) & (l+e_Bx}

X = (distance from shock centre)/%l

}l = is the upstream mean free path
B = is the Mott-8mith coefficient, a functicn of Mach number
nl = 1z the upstream infinity number dengity of the backgrouna

gas {helium)



T,,gj are upstream « temperature and mean veloclty

o
TB uB are downsftream o tempera£ure and wmean velocity
Vo = U/l

To get a probabllity distribution for the distance to the next collision, consider
fiv:t a large number of repiicaticns of the test particle trajectory 1.e. a bgam of
particles with the test particle velccitfy moving through & gas with Maxwelliian
distribution functlon. Elementary kinetic theory texts derive the expression

for the collision frequency at a point between particles and the Maxwellian gas,
(5ee section 5.4 of reference €}, In a Maxwellian with number density Mg

~

C

[e_v%f + {C + E% ) erf C J (2}

C is the most probable speed of the background gas

C 1s the beam particle velocity with respect to the
vackground mean velocity divided by c,

SC is the hard sphere collision cross-section for a
beam-gas particle collision

For a beam passing through the Mott-Smith distribution, simlilar expression can
pe written for the beam collision freguency with each of the Maxwellian parts
of the total background distribution

- 1
2] ”c{ (l+eBX)] Cny T (3)
— o __uQB I
vﬁ = nl 5, [(ZZ;:EX) cmB EB (M)

where the subscriphbed symbol E represents the ferms in square brackets in
equation (2) for the & and B-type Maxwellian backgrounds. The total collision
Frequency is just the sum of these

v o= v o+ v
o &

These expressions are used to derive a distribution for "the
probability of survival to X without collision" where X is the flow direction
coordinate in units of the upstream mean free path (hl) for mutual colli:ions
hetween light particles.

—
1
et
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L F*Hzixhcollisions oceuring
I

in dX deflect
r—dX—* particles from
) i V group

Passing from X to X + &X along the test particle path as shown in the above
sketch the number of beam particles lost due to collisions with background gas
moliecules 1s

n, wvix
dn_ = - bv()ci};b:—nbv(x)dt (6)

where is the number density of beam particles

Ilb

YV 1s beam speed

¢ the beam angle with the flow direction
X)

the collision freguency of beam particles with the background at
position X

dt 1is the time required for a beam particle to change its X-coordinate
an amount d¥

After integration we obtain:

X

., - . V cos ¢

substituting the value of v(X) from equation (5} yields

BX

n S A
b c 1 1 (1+e :
4n K) = - nl V cos Qb [(X—XO) - B Zn (1+e BXO)]CmBEB (7)
Sc?\—lwi (X_X ) " }- En (l+e_BX) . E
Tl veosd o0 B (l+e_BXo) s 7B
Al _AQ
EE_ _ e-Al(X—XO) l+eBX B e-AQ(X'XO) {lﬁﬁ:ﬁf_ B (5
"o L+ebHo ' 1+e"Blo
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A
where nlsc lcquX

AT TToosg
. nlSCAlujscmﬁEB
A? - V cos ¢

The probability of survival from X, to X is

nb(X)

(%)

This is the probability distribution asscciated with the single test particle
trajectory as it leaves a collision at X,.

Random numbers {'pseudo-random' numbers) are available on the
I.B.M. 7094 in a rectangular distribution on the interval - Is R Sl i.e,
P(R) = .5 for - 1< R <1
O out side this range

where P(R)dR is the probability that the selected number will be in dR about R.

These numbers must be redistributed so that the probability of choosing B in 4R
ig equal to the probability of collision in dX.

i.e. _d(M
FRR g (o) o (©)

Probability of survival to ¥ is

-1 O
1-R _ . 1y
2 nbo
or i AQ
- ] e
o ~21(X-Xo) [1+6BX Ao (X-Xo) [&ig_ﬁf_ g - LR (10)
]_+eBXO l+e'"BXO e

For a particular choice of R from the available random number generating routine,
the above 1s an implicit equation for the random axial coordinate of the next
test particle collision, X. The eguation is sclved after each collision using

a Newton-Ralfson convergence technique. Since the expression contains a number
of exponentials and exponentiations, both relatively tiwme-consiming operations

for the computer, this can be a major contribution to the total computation

"pseudo-random’ numbers are sequences of numbers which may be reproduced in
order by starting the computer generating function at the sawme numper for
the repetition., The numbers also must satisfy randomness criteria.
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time required to pass a test particle through the light gas maze. However,
since the expreszsion
BZ , A
e for Z 1in the range of X between the computational
inlet and outlet for the heavy species

occurs repeatedly, a table of the exponentials can be stored for suitably small
intervals &Z, to satisfy the accuracy requirements of the free path calcu-
lation. This replaces an exponential calculation by the calculation of the

1ndex assocclated with the exponential argument plus the selection from the table.
S8ince the number of collision calculations is very large this is an extremely
lucrative ftrade.

To save computation time use was made of the fact that for large
values of both ¥ and X, (i.e. relatively far downstresm in the shock front)
the calculation can be simplified. In this limit the test particle is moving
shrough a single Maxwellian gas with number density nyvog s temperature TB mean
velocity ug.

A
BX
e‘Al(X—Xo) [lle J - e—Al(X_XO)eAl(XFXO) =1 (11)
o

and from Eg. 10

(12}

4,2 Belection of Collision Partner Velocity

When the position of the next collision has been calculated using
the exact free path expressions derived in Sec. 4.1, the next task is to select
the velocity components of the light gas particle encountered by the test mole-
cule at this position. G&ince, 1n this modelled problem, the background distri-
bution function at a point is the sum of two Maxwellian contributions each with
known properties, it 1s possible o decide, as an initial step, from which of
the groups the target particle will be selected -

(i} select R, a random number from the rectangular randem nuuber

+
generator . Then Rel iz a random number between C and 1.

2
{i1) vy is the total collision frequency of test particle with -partof taret
maze. V., iz the total collision frequency of test particle with

B

p-part of target maze.

+ v
(iii) If % > % the target is of the B-type, otherwise it is of the
Q 'p
G-type.

ol



The problem is now reduced to choosing al random a <collision
partner for the Lest particle from 3 Maxwellian wiih known properties. In the
following derivation all speeds are non-dimensionalized hy Lhe mos! probzble
speed of the tar Maxwellian gas (og). The provlem can be formilated as
followes:

Eafore collicion the test arnd target pariiczle velocities are sket-hed bhelow

ey
g

The relative probabilivy of coilision with particle at a velosify ¢ in range

ving de de dC

1.
T4 =t Y
LU'F‘ L '.'1 er{ WV

where

GV

Arpier ¢ i are shows 1r the atove skeich.

the targef particle must be oo lecied according
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Therefore integrating both sides from their corresponding initial valuesic =0

Ry = 1
Riﬂ - - %_ fcf ' GE s vE v oo o2 Cac au
. J -1
p=-1
- = 2%% [ c2 ez 4 v2 4 2ov) /2 L ac

Ir ¢ <V

Rg;l Jwé(vj{_<F ¥ ) erf C‘%§-- (% cy o+ % (lp% Cz)jk-ca} (5)
e C > v

-1 - gy e B o

For every randomly selected value of Rp there is a corresponding target particle
speed, .

Father than solve these impliecit equstions 5 and & by a numerical
iterative technique, values of the quantity Rz = R' were tabulated in matrix

form for a gseriles of velocity pairs C =C' and ¥ = ¥V'. When the choice of C
is to ce made during calculation, a random number Ry i1s chosen from the genera-
ftor.. The ¢column corresponding to V' ~ ¥V is gcanned te find the wvalue of 7

for which R' =~ Ro. This value of C' is then the value used for C in the
collision calculation. This tabulation procedure ig governed by some practical
considerations. The first of these is that 99.7% of all the particles in the
Maxwellian have values of © < 3 so that the probability of collision with a
target particle whose speed C < L, say, can be neglected. The tabulated range
for ¥’ must be determined for each specific Mach number. Since V' is the
difference between the test particle speed and the target group mean, practical

limits for it will depend on the shock Mach number.

Ehowing the speed of the target particle, one more random se-
lection 1s required to specify the angle ¢ i.e.¢ = cos']u

For known C

[

. 02 3
fBP{;}dR ) | LVCFr vEr aovm c2e™ aclap

.JI {l.— _ = - .-CE _ (?)
-1 J L4y +2uVHC e”v de] do

-1
Upon integratlon this hecomes

R3+l - [(C2+V2"‘»‘2 C\}H)B/z - |C N V‘B}
: ( ()3 - fev[3 )

Il

Solving for p, the arcosine of the colliisicon angle,
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Ry+1 - :
o e GB3) )3 Jre - ee =} (8)

The angle ¢ 1s then determined by the choice of Rpil.e.,
-1
® = cos (-u) (9)

This completes the specification of the target particle velocity.

4.3 Directiorn of Flight after Collision

To this point, no assumptions have been made about the inter-
molecular Torce law to be used for the collisicon. The two models most fregquently
chosgen in kinetic theory calculations are based on hard elaszstic spheres and
molecules obeying ar 1 verse fifth power repulsive force law (Maxwellian molecules).
Both of these have becn used in the Monte Carlo calculation. However, only the
aard sphere derivations will be shown here. The corresponding considerations
for the Maxwellian molecule model are derived in Appendix B. It can be noted
here that the familiar problem associated with inverse power law Tields of
infinite extent, namely the fact that all particles are continuocusly in a state
of mutual colliszsicn, would render this model useless for Monte Carlo calculations
if it were not possible to consider a finite cut-off point for the interparticle
force. This is alsoc considered in Appendix 3B.

Consider a collision between two elastic spheres, masses m], Mo,
velocities ¥V, T2 before collision and represenft their velocities after collision

T WL, Defi
by ¥3 v, Define . .
m. = mp + mo My = 2 Mo = =2

Mo, = ) =
o] = mO 2 mo

The centre of masz of the two molecules will move with constant velocity o de-
fined by the equation:

moa = oV, mg?z = mV

1

l+m2-\}'

1
2
<

Let g and g'represent the relative velocity of molecule "2" with respect to
molecule "1" before and after coliision respectively so

S-S ]

g =V -9
Then

?lz'd-fvzég

v2=6+Mlg

Vl = G - M2 g

Vi o= DM E
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Since the centre of mass of the two colliding molecules 18 unaccelerated, the
collision can be viewed in an dnertial frame fixed to the centre of mass. In
this reference frame the collision takes place in a single plane contalning the
line of centres., At impact the collision looks 1like this:

A
where 8, t are unit vectors in the c¢ollision plane parallel %nd perpendicular

to the line of centres. For smooth spheres the tangential (%) components of the
two molecular velocities are conserved.

Conservation of normal {B) momentum leads to:

T

mlvln + m2 ven = mlvin + m2 v2n

Conservaticn of energy implies

(% 1) malB e )= (P ) v (o)

n

since tangential velocity components are conserved.

Hence
= = _ = P e
m vy + m2 v2n = mlvl m2v2
n
or
m {V2 T ) = n ( st VrZ)
1L 7L 2ve, T 2y
Loe m vy o+ v ) vy -y = (vy, v v, - vl )
1 n n ll'] I 2 211 21’1 n 21’1
but
mo (v, -v! } = m (v - v. )
11, 0 2° 24 2q
therefore
(vp #vI) = (v, *vy)
L1, 2, 2n
The result can be written
(my- mo)
‘\.r:‘L = ‘\.Fl L 2 - VE 222._
n n 0, n M
m mym
= - -S (m,-m,)}g cos 8 + 2 _EEE g cos B
s e Mg
% .
= - g cos = -V
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‘ . )
Lz articipated, the collisiorn 1s zymmetrica’l shovt tk= line of centres at ilmpact.
?

lB?‘
T

<l

[+

dh
-8
X
= +
jl = I‘l . I‘2
= radius of
influence for
collision
Fe rotatlon elative velocity vector is 28
Raw

zin B

The probability of the collislon impact parameter being in db about b is:

- o7b db
P(p) ab = L2

The relative velos g into solid angle element 4l with probability
dY/lriie. all 111y probable., The direction of the relative
velocity vector after collisicon ther has a random set of direction cosines. A

rogue for num ~ting a set of random direction cosines, requiring
tign of two random numbers is given in Haviland's report (Ref. 15) and is
repeated 1v Appendix C.




This completes the single test particle step procedure. The
position of the test particle for the succeeding step has been found and tLhe
relative velocity vector before and after collision is determined by the random
procedure described &bove. It 1s & trivial algebraic step to derive from the
relative velocity vectors the absclute test particle velocity after the collision.

L4 accumulation of the Distribution Funetions and Moments

The heavy test particles are introduced at some distance upstreso
of the light gas compression where both gases have lheir cold Maxwellian proper-
ties. The random velacity components of the heavy particle can then be directly
selected [rom a distribution of random nirhers. However, care must be taken to
weight the contributions of each particlie according fo the relative fluxes of
these particles across the inlet plane. A particle having the mean [low speed,
U, 1 treated 25 a single particle, weight 1, whereas a particle with flow di-
rection ve.ocity u, is counted to be u/U particles i.e., the probability of =
particular velocity faor the injected particle is the ratio of the {lux of that
velocity group to the total flux.

The selected particle is then followed, collision by collision
as it 1s gwept through the compressicn region. The downstream boundary condi-
tion is treated in a very simple-minded manner. At o distance’some number of
mean free paths' downegtream of the regicn of primary interest (this will normally
te the regicon up to the polnt where the Rankine-Hugoniot compression of the
kesvy species 1s, say, 9% complete) the particle is abandoned. At this point,
a portion of the heavy particles have absclute velocities in the upstream
direction but their rarge in that directicn is very smull because of the high
density background gas tending to sweep them downstream. This method 1: easy
to apply but must be tested carefully al high Mach numbers. (The test procedure
conslsts of increasing the distance of the downstream polnt at which the test
particles are abandoned until no further effect upon the accumulated distribution
in the compression region can be detected.)

As fhe test particle pasges through the compression region if must
e possible to dinterpret its local velocity at a :iumber of stations in terms of
the contribution it makes to the distribution furction and its lower moments
st these stations. For the sake of this interpretation, a time element and an
element of area AA perpendicular to the flow direction are introduced. These
two guantities have no relevance to the actual flow problem i.e. they do not
correspond to any real time or area in the problem but are used to relate the
results of N individual random tests to those of a continucus flux of particles.

The real corstant rumber flux of ueavy particles is nu., Consider
the total sample of N particles to be injected in unit time through a cross-

cectional area AL

therefore R% - nyy (L)

where subscript "1" refers to upstream infinity value..

Fhase space iz divided into cells of volume -



v AV Ay AL Ax o= AWV Ax
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where Vp is the speed perpendicular to the flow direction

1 1s the flow direction speed

i ne(u,V

p’x) is the number of the N particles which are in AV when they pass
¥ then

evaqﬁ-?g D OA Ax

13 the number per unit time per wunif volume phase space passing into and out of
this phase cell.

Multipliving this quantity by the cell residence time gives the expected nuaber
in the phase cell 1.e,

Na JAV'S

T(u;vp,x) 2TV oV pOuAAAK © ol

N Iy uy

2T AV o NTu |

The moments are accumulated using this formula for f(u,vp,x). The resulfs are thus:

Number density ab x

=
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where M 1s the upstream value of the helium Mach number.
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4,5 Results of the Monte Carlo Calculations

Shock profiles for the density and temperature moments have been
computed for a range of Mach numbers using a hard sphere collision model and
a mass ratio of the two constituents of 10. A limited number of computer
runs were performed for Maxwellian molecule type collisions. However, these
calculations took much more computer time. Since the main purpose of +this
exercige is to evaluate analytical approximations in kinetic theory, the Max-
wellian molecules are used only as an occasional check that the conclusions
drawn from the hard sphere calculations do not exclusively pertain to the hard
sphere molecular model. The shock profiles are shown in Figures S to 8. In
all of these figures the moments in units of their upstresm equilibrium values
are plotted as a function of distance from the centre of the Mott-Smith light
gas shock. This distance is giver in units of the upstream helium mean free
path. Figures 9(a) and (b) show the detailed evolution of the distribution
function of heavy particles as they pass through the compression. N(VX), the
distribution function integrated over all values of the perpendicular velocity
components, is plotted as a function of Vi in units of the upstream most
probable random speed for the heavy gas. The important observations are these:

(1) The heavy particle density profiles are monotonics.

(ii) The 'temperature' of the heavy species associated with the flow
direction random velocity, T", rises much wmore rapidly than the
perpendicular temperature. Both overshoot the downstream value.

(i1i) The heavy particle distribution functions for M = 2 and 3 do not
show the strong double wmaximum shape of a Mott-Smith distribution.
In fact they should be reasonably well approximated by a single
mode Maxwellian throughout most of the compression.

The implications of these results will be discussed in Section V, where a
comparison is made with some analytical calculations.

Both Rothe (Ref. 18) and Center (Ref. 19) have investigated
shock strucbure in He~A mixtures using the electron beam flucrescence tech-
nigue. Rothe's results were difficult to interpret in terms of & one-
dimensional shock wave model since the shock waves he investigated were formed
in front of a shock holder placed in a free jet expansion. Three dimensional
effectes were important in these experiments and the results for the case of
interest here, namely the case with every small argon concentration, were
inconclusive., Center, on the other hand, was specifically concerned with this
rroblem and he reports no indication of a pre-expansion of the argon st the
upstream end of the shock.

Before proceeding, the three major assumptions of this solution
will be restated. This Monte Carlo solution assumes a binary mixture of neutral
gases with widely disparate masses (namely mp/mpge = 10 in calculation) and a
heavy species equilibrium concentration so small that its influence on the
background light gas shock is negligible., This background shock is gssumed to
have a Mott-Bmith profile. A block diagram showing the computation seguence
of the Monte Carlec programs is shown on the following page.
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MONTE CARLO FROGRAM SEQUENCE

X > Xp Select Test Particle

From Upztream Maxwellian

Y

Calculate Test Particle

LS Xy — Free Path in Light Gas

Backeground

¥

Store Contribution of This

Test Particle to the Distribution
Function at all Check Stations
Passed Along the Free Path.

¥

Select Target Particle Velocity
From Light Gas Backeround
Mott-Emith Distribution

Calculate Velocity of Test

Particle After Collision With

Target Particle

#*¥

X Is the position coordinate of the test particle measured from
the centre of the light gas shock.

®p Is a predetermined position beyond which the test particle 1is
abandoned (well downstream of the compression region of interest).

(WS
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V. KINETIC THEORY CONSIDERATIONS FOR SHOCK WAVES IN MIXTURES WITH SMALL CONCEN-
TRATION CF HEAVY GA3

The Monte Carle method of solving molecular flow problems is
capable of giving exact answers with finite accuracy because the behaviour of
a very large number of molecules is inferred from the average behaviour of a
relatively small sample. However, this type of inaccuracy yields to analysis
and confidence levels can be established for solutions based on statistical
calculations. The basic inexact nature of approximete kinetic ftheory solutions
based on the Boltzmann equation is much less agreeable. As pointed out in
Section II, these solutions are in general based on truncated series zolutions
or some initisl constraints on the fundamental variable ~ the distribution
function of random velocilties. There is a good deal of educated guessing in-
volved in seftting up such a solutien scheme and in some cases the solution
quantities of interest are fortunately insensitive to these approximations on
the microscopic level., Still, error estimates for these solutions are generally
difficult to obtain. In the present situation the Monte Carlo calculations of
the previous section can be used to evaluate the merit of the kKinetic theory
answers. The remainder of this section will oulline some simple moment scolutions
to the modelled shock wave problem of Section IV and compare these answers with
the Monte Carlo results. (Refer to Section IT for description of moment solutions.)

5.1.1 Euler Eguations (1-Temperature Maxwellian)

An extremely simple set of moment equations 1s derived by assuming
the heavy particle distrivution function is locally Maxwellian.

L.e s (51,)°
e e - B4 . KTy A (19
A 372
(2 R/mA Ty)
where ng, ug, 1L, are functions of the independent varlable x, the position
cocrdinate of the one-dimensional problem, and are determined by solving the
moment equations for caonservation of wmass momentum and energy. These are:
d
— = i = =
- (ngu,) = 0 lee. ppuy =y ou (2)
dp
d A
—_— + —_— =
Pa¥aAax YA T ax A(v) (3)
dup g “Ta
2 E ] z Y
e CakA ax MR my dx = Ale®) (5)

where the A's are in each case the collisional contributions to change. (The
method of derivation of collision terms,A, is given in Appendix A},

Non-dimensiconalizing the flow variables by dividing by ftheir upstream equilibrium
values, the equations can be written in matrix form:
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The /' wvalues sre the nondimensionalized collision teras.

As in Sectlion 1V, the light gas (helium) shock is assumed to have
3 Mott-Smith compression profile.  This fact 1s used in calculating the
collisicnal interaction terms, ﬁ(vx),ﬂ(vg), Eguation % is then integrated to
give chock profiles for the argon number density and temperature (Figo 10 and L},
ege results will be compared more closely with the M.C. solution later in
Qualitatively at leaszit, it appears that this simple wmowment

a reasonable picture of the shock. However, one of the striking
this problem which carnot be simulated by the local Maxwellian dis-
“unction ls the preferential partitioning of random energy between

- parzllel and perpendicular to the flow., The M.C. temperature

&) shows that the spread of the distribution of random velocities
within th arpgon tepmpression becomes much larger in the flow direction than in
the perpendicular direction. A lezs restrictive form for the distribution
function is required to 1nelude this effect., Nevertheless the simple Buler
soluticn when compared with the more general solutions, will show how insensi-
L ive | 1ow;} order moments (e.g, density) are to constraints on the distri-
bution funchion shape which involve it: dependence on higher order moments

Y H

5.1.2 The Two-Temperature Maxwellian Solution

The extra freedom allowlng the heavy constituent to have differ-
ent, temperabtures in the directions parallel and perpendicular to the flow can
be Zntroduced in one of Lwo ways: by keeping the quadratic terms in a Hermite
pclynomial expansion for £ (Ref., 8) or by considering instead the ellipsoidal
expareion proposed by Holway (Ref. 11}. In the latter case only the leading
term in the expansion is required since the two femperature nature of the dis-
Lribution is present in the ellipsoidal exponential weight functien for this
reries, These two choices for the 2-temperature distribution function have the

r 1 m = I—L =
et (3 (T i) cu” (IT7<m) wlE (1)

- ~ g
Lorms

- T. 2% /ul T 2K/l ’
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for the Hermit=z expansion
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for the first ellipsoidal term.
Only the detailed forms of the collisional conftributions to the moment equaticns

are affected by the choice between the two alternate distributions. The left
hand sides of these eqiations have identical forms in terms of the derendent

variables nA,uA,Tﬁ, Ip . These equations are
d
o= 1 = (ngug) =0 (3
CD = VX . du k AT T k dnA ( (h)
_ & + o a1 >
A T ot o T Ta wp max - felv)
€
(D = \"2 "
= dU.A K_ dTA ~ k_ dTA _ =
pu I’IAUA I G Nala N aIx + =z TIAUA mA “"—X = /\g(v) (5)
¢ = v.=
duy ko 9Ty
= 2VA kA _ >
2 nAuA 3x * 3 nA UA mA dx Z3"2(\"><) (&)

where Ao(Vvy), ﬂg(vg), ag(vxg) are the 2-temperature single mode collision
calculations {Appendix A).

Solution of these eguations for a light gas shock Mach number 3,
mass ratio 10 {Me-A) is shown for comparison with the local Maxwellian result
in Figures 11 and 12. This Z-temperature sclution 1z also plotted with the
Monte Carlo curves in Fig. 5 to 8. Cbviously restrictions placed on the
higher moment,s by oversimplifying the distribution function have only small
effects on the number density profile through the shock. The 1-temperature
density profile deviates only slightly from the 2-temperature result, even
though the l-temperature distribution erronecusly restricts the thermal
energy to be equally partitioned in 211 directicng. 0On the olher hand, Figures
5 and 7 confirm that the Z2-temperature density profiles compare quite favour-
ably with the Monte Carleo results for M = 2 and 3, The temperature profiles
compare well with the one standard deviation error bars of the Monte Carlo
solution.

The process of increasing the number of moment variables is,
of course, a never-ending one. Before considering the possibility of increas-
ing the order of these single mode expansions, one very scrious difficulty
with these scolutions must be dealt with. The problem concerns the behaviour
aof the solution al 1sclafed points where the matrix of coefficients of the set
of differential equatlons becomes singular.

b
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5.1.3 Eingular Points of the Coefficient Matrix

The inversion of the systems of eqguations of Sections 5.1.1
and 5.1.2 have singular points where the determinant of the coefficient matrix
goes to zero.

For the Euler eguations:

P}

(6 -~) N
i =0 (1)
i.e A = 3$
vy
% ke / 0T

The sing . iar point for this set of equations corresponds to a local Mach number
of unity for the heavy species. In a similar way it can be shown that the 2-
temperature equations are gsingular when

=

L - 1 {
3 &/ mT

k8
p—

i.e. the "ecritical” speed for this solution is
u = N3 k/mT (3)

Because the heavy species thermal speed is small compared to
that of the light gas, the small trace of heavy gas remains "supercritical”
throughout the entire compression for low Mach number light gas shocks
{ w>~N3 k/uT >+~5/3 k/al  thronghout for helium shock Mach number 3).

However with increasing shock Mach nunber the temperature ratio across the shock
hecomes very large and these critical peoints move upstiream into the shock wave,
For example, for a helium shock Mach number of 10 the temperature ratio across
the shock is:

ME+ M2~
bo1 T : %%(;d Rk )
the velocity ratioc is
M+ 3
the downstream helium Mach nuwmber is 5y, 258 I

and the downstream argon Mach number is ~10 My, = .78

In such cases, the finite difference solution must pass through conditilons
where the coefficient matrix becomes singular. (This condition sets in at
much lLower shock Mach numbers because the temperature overshoots T,y at an
intermediate value.)



It is well known that the Euler eguations for a one-component
gas are incapable, in the general case, of describiag a smooth steady transonic
flow., In the Buler approximation, the resulting shock wave takes the form of
& digcontinuity separating a region of subsonic from a region of supersonic
flow. The i-temperature equations described in Section 5.1.1 are just the
Euler equatione for the argon gas with inhomogeneous terms resulting from the
collisional interaction with the background helium gas., Mathematically this
problem is similar to the classical problem of l-dimensional pipe flow with
frictionsl force and heat transfer from the walls. The solution requires
physical gradients to become infinite as a decelerating supersonic flow
approaches the criticsl copdition, M = 1. A density and temperature discon-
tinuity satisfying conservation of energy and momentum at the "shock" station
ig required to patch the supersconic and subsonic flows. The local Maxwellian
distributicn function of the Euler equationz is too restrictive and these
equations are incapable of describing & continuous transonic flow. All single
mode Maxwellian expansions exhibit this "choking" behaviour and because of this
are unable %o describe the heavy particle flow for the full range of Mach numberg¥**

This is an interesting situation. The gas being described is
dominated by collisions with the light background gas - collisions between
pairs of heavy particles are consgidered vanishingly improbsble. This gas is,
then, completely reactive and incapable of supporting collective effects such
as wave propagation. However, the mathemafical equations chosen to describe
the gas {single mode moment equations) do support disturbance propagation.
This wave nature is independent of the inhomogeneocus ccllision terms, that is
it does not depend upon a self collision terwm in the moment equations, but is
a result of the assumed functional relationship among the flow variables as
they appear in the distribution function,

At this peint the single Maxwellian mode expansion has reached
a similar ilmpasse fto the one it faced when used to descrive single component
shocks (see Section 2.2). 1In that case the bvimodal expansion (Mott-Smith)
rezcued the mnmoment method and produced reasonable solutions for ithe eniire
Mach number range. Two types of bimodal distribution function expansions are
described below.

5.2 Eimodal Soltuions

In Section ITI, Oberai's bpimodal solution for binary mixture
shock structure was described and it was pointed out there that the form of the
heavy particle distribulicn used in that solution would not be anticipated for
the case of very small heavy specles concentration. The Monte Carlo soclutions
of Section IV confirm this fact. The distribution function shape at various
stations within the argon compression for Cberai's solution is shown in Fig. 13.
These sharply double-peaked distributions can be compared with the Monte Carlo
distribution functions for the same conditions shown in Fig. 14. (The curves
labelled "Bimodal" in this figure are discussed later in this section.) The

x*  These systems of equations are hyperbelic, that is, in time-dependent form
they support the propagstion of disturbances at a set of finite speeds., It can
be shown thet +the critical points in the steady equaticons correspond to local
speed ratios egual to these characteristic propagation speeds of the mathe-
mafical System,
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density profiles calculated from Uberal-type solutions also do not compare

well guantitatively with the Monte Carlo results, This comparison is made in

Mig. 15. In the modelled shock problem considered here, the light gas shock

is being approximated by the simple Mott-Smith single component shock solution,
therefore it is possible to allow the bimodal representation of the heavy particle
distribution function to have much more freedom without increasing the analytical
difficulty of the complete solution unreasonably. Two modifications of the
bimodal approach are considered below.

.2.1 Bimodal Distribution - Upstreanm Anchored

This =zoluticon is based on a distribution function form which
looks like the one used by Oberai:

M = =2 L el Y-
n - () Hp BKT, (VU2

(omfn 1) T2 Cemga ) (1)

f:

where up,l) are constant and equal to the upstream equilibrium mean velocity and
temperature. The quantities uo,To are functions of x but unlike Oberai's
solution where the variation in these guantities is governed by their forced
identity with similar guantities in the iight gas distribuvtion, us,T; in this
solution are free to vary in a manner specified by heavy particle moment egua-
tions. The Mott-Smith light gas solution assures overall conservation of mo-
mentum and energy since this gas dominates the flow. The eguations used to
solve for the four dependent variables nj,np,us,lo are the equations for the

1, vy, ve ,VKE moments:

o =1 q N
dny N us
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To start the integration of these equations, upstream infinity values for u
To are needed. These are found from a set of compatiblility relations for l%
above set of equatlons as n, — 0. At upstream equilibrium:

dng up  dng
d - T . (6)
x uz  dx
Substituting intec Eg. 3, 4 and 5 and dividing by le/dx** }
V)
X

u dn = 18 (v, ] .
2y g2y -t (42 2 1. dm ¥ .
(ul *a1) Us (g ag% any d dvlﬁ_ ”ﬂ%(vx) (7)

T — v \TX

d
d ———%é v2)L
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— _E; e e

d 2
i v
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The compatibility equations are

u&%(vx) . E?(Vg) = Qfﬁizfl (10}
A Ao A3

which can be solved for initial values of us,To in terms of vy, Ty (up ugo,
Ty = To%) .

Theze two eguations for up Tz in terms of the known initial values uy,Ty pre-
scribe the starting conditions for the calculation. The equations are inte-
grated along the stable path, from upstream to downstream, using a Gill's
approximation Runge-Kutta step-by-step procedure. The coliision terms give

the influence of the dominant He-A encounters in hard sphere approximation.
(Similar Maxwellian molecule calculations are outlined in Appendix B.} The
resulting density profile is labelled "Biwodal Moment Solution" in Fig. 106.

The extra freedom afforded the distribution function by this bimodal solution
improves the moment description of the number density variation through the

shaock from the resulfs obtalned for the same cases using Oberai's approximation,
tut 1% still requires a portion of the heavy gas to remain in the upstrean
Maxwellian group of the distribution function as the gas approaches the down-
stream end of the shock. The Monte Carle distribution, szlthough statistically
rough, dees not show such & tendency and intuitively this is not expected to
happen in the resl flow,

**¥ N, here represents the portion of the helivm in the upstream part of iis
Mott-Emith distribution. See Eq. 7 cof section _.2. Upper case in this instance
specifies the dominant species.
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9,2.2 Bimodal Diztribution - Downstream Anchored

A similar set of esquations results if the downstream portion
of the distribution function is anchored. Again
_ in = _ = = _ m - = o
. - 2 v - ) L . ZETp (¥-05)
3/2
(2k/mEq) (2wk/mT2)

(1)

#here, this time, u,Ty are functions of x to be determined from the moment
equations but up,Tp are "anchored” at the downstream equilibrium velocity and
temperature. The upstream starting values for all dependent variables are
known in this case -

ap{x) = ;% , nplx) = 0, u(x) = u®, 19(x) = 1,°

1r

where superscript "o here indicates the upstream eguilibrium value of the
variable.The system of equations to be solved is

D =1
dl‘l2 dn]_ . C].U_l
uga—‘i'ul&-—rfllK 0 (2)
& = v,
an dl’ll du}_ ‘
(uf +af) o=+ (wP+ af) 3= + 2 muy o~ (3)
k 4T )
T T ax < a(vx)
D o= vF
f dn2 dnl
us (u"+ 5857) = Y (u12+ Sa1%) e
© (e 508) T E2L_ ae?) (1)
nl3uy pEe) = 5 njuy S o - bl 4
D vae d
(0% 368) T2 + oy 3a)%) >
uy (U 2/ Ix 1" 1/ Gx (5)
duy x 4Ty
] = 2 _ ]
+ 0y (3uf £ 3a1%) — + 3muy - =— = AvP)

This set of equations has also been solved for a range of high
Mach numbers and the resulting density profile for M = 5 alsoc conforms to the
curve labeled "Bimodal" in Fig., 16. Again the density comparison is acceptable.
However, this sclution mimics the behaviour of the distribution Tunction of the
M,C. solution somewhat more sccurately (Fig. 14)}. In the initisl stages the
"upstream” portion adjusts much as a single mode solution, The distribution
becomes eleongated in the mid compression region and approaches the downstream
shape without a residual bump at the upstream velocity.
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This solutlon coula be improved again by allowing the upstream
floating Maxwellian portion to have a Z-tempersfure behaviour similar to the
single mode solutien. The distribution function, less the downstream anchored
portion must be expanded in terms of Hermite polynomials or ellipsoidal poly-
norials. It requires one higher order moment equation for which the hard
sphere collision term calculation becomes relatlvely laboricus. The one-
temperature solution above serves the preseunl purpose i.e. 1t shows that, if
allowed sufficient flexibility, the bimodal moment solution gives a good esti-
mate of the diffusion shock structure.

The following conclusions can be drawn from these calculations
for shock wave structure in binary wixtures of constituents with widely differ-
ing masses:

(1) For a hard sphere or Maxwellian molecule collision model and vanish-
ing concentration of the heavy species the velocity overshoot {or pre-
expansion) predicted by the Chapman-Enskog solution does not occur.
The coampression is monotonic,

(i1) For the same molecvlar models and gas conditions as stated in (i), the
distribution function of the heavy species doegs not develop a strong
bimgdal shape. Moment solutions which facilitate this moderately
distorted distribution shape agree in detail with the Monte Carlo
heavy specles moment profiles.

(iii) The compression of the heavy species, when it is present in very
small quantiticws, iz atcompanied by a femperature overshoot as
collisions randomize the energy assoclated with the diffusion
velocity between the two species.
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PART IT

VvI. DIFFUSIVE SEPARATION OF TONS AND ATOMS IN ELEVATED ELECTRON TEMPERATURE
PLASMAS

The structure of shock waves in fully ionized plasmas has been
studied exhaustively using Navier S{okes equations. The restricted nature
of soclutions presented in some early publications in the field was overcome by
Jaffrin and Probstein (Ref. 20) who presented a solution including viscous
and hest conduction effects for both species, charge separation effects within
the shock and separate ion and electron temperatures for the full range of
Mach number and mean free path to Debye length ratios. More recently Jaffrin
has reworked the N.S. solution for partially ionized shock waves (Ref. 21),
The treatment is very complete for the problem Jaffrin considers i.e. a plasms
in total equilibrium at upstream infinity in the shock coordinate, with no
external energy sources or sinks, and constant degree of ionization. The
eguatiocns used do not correspond to the second Chapman-Enskog approximation
for mixtures but sre a szet of N.3. equations for each species with the effects
of cross collisions between species appearing as contributions te the viscosity
and heat conduction coefficients as well as in the inhomogeneous collision terms.,
The main features of these solutions are a region of preheating of the electron
gaz, very small diffusion velocity between charged and uncharged species, a
small separation of the ion and atom temperatures and an induced electric field
whnich increases with degree of ionization and free-stream Mach number.

A very different partially ionized shock wave was encountered
by Sonin (Ref. 22) during the course of some Langmuir probe studies in a
strongly non-equilibrium plasme flow. The experiments were conducted in a
steady Mach 2.2 flow of highly non-eguilibrium argon plasma generated by R.F,
induction in the stagnation chamber {See Fig. 17) with a stagnation temperature
of the heavy species about 450°K, =tagnation pressure of the order 1 torr, but
degree of ionizaticn in the neighbourhood of 1077. For the various experi-
mental runs the free stream electron temperature ranged from 2L00 to BBOOOK,
and in all cases the Debye length was very small compared to the thickness of
the bow shock in front of the blunt body placed in the flow.

The measurements are described in detsil in Ref. 22. The results
indicated that (a) the electron temperature remained rconstant throughout the
bow shock and the entire shock layer, and (b) the ion shock thicknesses obtain-
ed from the icon number density profiles were substantially larger than the
accepted normal shock thickness in meutral argon at the same free stream con-
diticns. Although it was expected that the structure of the vow shock might
deviate somewhat from the one-dimensional shock idealization because of the
relatively low model Reynolds numbers*, the substantially thicker ion shock
was abtributed primerily to the diffusive separstion of the ions and stoms in
the shock wave. It i3 shown below that such separation is substantial whenever
the Schmidt number based on the awmibpolar diffusion coefficient is small com-
pared to unity, as is the case when the electron temperature 1s large compared
M1

_— where .
P1Day

to the ion temperature. (The ampipolar Eohmidt number is Sq) =
is the viscosity coefficient,p the flow density, D, the ambipolar diffusion
coefficient and where subscript 1 indicates the upstream infinity value of these
guantities.)

* Based on free stream mass flux, viscosity at stagnation temperature and
model diameter, the Reynolds number was in the range 80-100
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Under these strong diffusion conditions, the simple form for
the viscosity and thermal conduction ceoefficients used by Jaffrin must be
questioned as well as the form of the collision terms used ig his equations.
These cecllision terms are, in most cases, calculated for transfer between ftwo
locally Maxwellian gases. Before atfempting to perform a more elaborate
solution for this problem, a simple first approximation sclution is presented.
The simple eguations used are justified somewhat by the fact that the opposing
effects of ion-abtom collisions and ion electron coupling are expected to
dominate the problewm.

6.1 A Simple Approximate Solution

To specify the problem theoretically, a chemically frozen,
glightly ionized, monatomic gas is considered with a degree of ionization so
low that the charged particles make no significant contributiocn to the over-
all transfer of momentum and energy. In this limit the neutral atom shock is
unaffected by the presence of the charged species and a single-component shock
structure theory can ve used to determine the neutral shock profile., If it is
assumed for this simple theoretical treatment that the local ion and atonm
temperatures are equal throughout the flow and that the thermal diffusion effect
may be neglected, then only the momentum eguations for the diffusing species
are needed to solve the problem. These are (in approximation for small diffusion
velocity):

Ion Momentum Equation:
ia
-(ap;/dx) + ny e B + {p;/p}(ap/dx)= 14 nng{uy - uy) (1)

Electron Momentum Equation:
ea -
-(dpg/ax) - ng e E + {pg/p){dp/dx) = 07 ngng(us - vgr (2)

where gubsceripts k = 1, e, a refer to ions, electrons and atoms, respectively;
Pgs Pks Dy, 4 are specles pressure, density, mumber density, and mean veloclity;
P,P, n, u are the over-all flow pressure, density, number density, and mean
velocity; nkﬂ is the coefficient of friction between species k and £; e is

the magnitude of the electronic charge and & the electric field induced by
charge separstion.

¥or the nonequilibrium flow problem considered here it is also
appropriate %o assume that:

(a) The electron tempersture To is constent throughout the entire flow region
{as observed above),

(b) The diffusion is ambipolar, i.e.
when In - n | << ny, as is the case for Debye length << mean
free path for ions

the Lo~
hen U Ug
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{¢} Momentum transfer to the neutral gas by electron impacts is negligible, i.e.

aa, is
N <)

{d) The relationship between the ion-atom friction coefficient and the ion
diffusion coefficient Dy is

ia _ KT

M nby

where T is the cowmmon icn-atom temperature and k is Boltzmann's constant.

Equations (1} and {2) may be combined with the sbove assumptions to give a single
equation for the ambipolar diffusion of icns and electrons:

0illg (w: - w) =D 1+ EE‘\d(ni/n) ) 5Te  a4n o ()
n2 : as i _ T/ dx nT dx _' -
When distance is nondimensiocnalized by the upstream value of the argon mean
free path based on viscosity:
\ /f 16 H1 _ X
SIS Ty TR
o1 (2mk/n T1)2 1
and the concentration is nondimensicnalized by the undisturbed value
£ = Eij; Eil
n 0y
the diffusion equation has the form;
ar (2-1) M Sclpl Dal
dx’
Zem/n?] v,
- "e/T £ s (4)
(+T/T) dx’

where M 1s the Mach nuaber of the upstream infinity flow,» 1s the ratio of
specific heats for srgon.

This equation has been solved numerically using the single
component Navier-Stokes shock solution to determine the neutral gas properties
and their gradients (Ref. 16). Sutherland's model for the viscosity-tewmperature
variation was used in the Navier-Stokes equations and the icon diffusion coef-
ficient was determined from the mobility expression given by Chanin and
Biondi (Ref. 23) for argon ions diffusing in their parent gas. This wobility
expression incliudes the effect of ion-atom charge exchange. The number density
profileg for Mach number 2.2 and stagnation temperature h5OOK are shown in Fig.13.

The maximum-slope ion shock thicknesses of the experimental and
thecretical ion r:rber density profiles are compared in Fig. 19 for a range
of ambipolar 3Bchmidt numbers. The maximum slope density thickness of the ion
shock waves,” , divided by the upstresm neutral-neutral mean free path, hls is
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plotted as a function of the ambipolar Schmidt number., The significant [featur
of this diagram is the illtstration that the experimental shock thickness vari
with ambipclar Echmidt number in a manner similar fLo that predicted by the theory.
It indicates that in high electron temperature plasmas the shock structure is
appreciably modified by diffusive separation induced by electrical coupling of

the icns with the much lighter electron gas.

[+

o

The magnitude of the discrepancy between the experimental
wolnts and the predicticne of this simple theory is by no means surprising,
It is well known that the Navier-Stokes solution underestimates the shock thick-

s al higher Mach numbers. TFor argen at M = 2.2, available values for the

sured atom shock thickness are from 2094 to 507 greater than those pre-
dicted by Navier-Stokes theory (Ref. 2b4), Another source of theoretical error
iz the small diffusion velocity assumption inherent in Eqgs. (1) ard (2).
Ferthermore, the experimental points may be overestimated by up to 10% as 2
result of an approximation in the interpretation of the measured probe current
traces (Ref, 22). In addition to these factars, the experimental simulation of
one-dimensional shock conditions was chbviocusly poor, for the bow shock and the
boundary layer were on bthe point of merging and the shock structure was in all
likelihood influenced by three-dimensional effects and by downstream gradients.
The neutral density was also not known precisely since the stagnation tempera-
ture used in its determination was an averasge value.

£.2 Kiretic Theory Solutions

It 1s poszible, within the moment method framework, to formu-
late a solution to this icnized gas shock problem. Some of the objectionable
features of the previous simple solution can then be avoided. As in the neutral
binary mixture solutions, the MobLt-Smith single component sclution will be
used to describe the dominant gas shock - here, the neutral a rgon shock
wave. It is reasonably well documented that this is a superior cholice Lo the
Navier-Stokes solution for M > 2. In addition, the small diffusicon velocity
approximations inherent in the eguations of Sec. €.1 will be eliminated. The
following assumptions will te made:

{i) +the diffusion is ambipolar

(i1} the electron collisional interaction is entirely long range and
appears in the electromagnetic force terms of the transfer equationts,

(iii)the electron-to-ion temperature ratio is large.

There is no standard with which to compare solutions for this
problem in the way the results of the He-A moment solullons were compared with
the M.C. results, As an initial approximation, the ion distribution funclion
is assumed to be locally Maxwelllan. The electrons, which are constrained by
the e¢lectric coupling with ions to have number density equal to the ion densit;
throughout the compreszsion alsc are assumed to be Locally Maxwellian with
mean velccity ecual to the dlon velocily and constant temperature (Te > Tij,
=cause of The extremely high electron thermal speed, the distortion of the
= g

ctron distribution function caused by the relatively small shock velocity
iump will be negligible so this latter assumption is not restrictive in pr

i

e

The exact form of the ion-atom collisional interaction is calculated roa
sphere collision model. This is a gocd approximation for the charge-exch
§ . f + G . :

dom’ ed A-A" collision (see Ref. 23) over a small temperature range .

availazble enuations are then:
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Ton Momentum Eguation:

dus, aTy dng
-eb + mynguy = + 1, k = + T k = Almyvy)
Electron Momentum Equation:
d d
-eE + m_ngu e + n ;\ S 4T k Ze _ Alm v ) =0
et'ere qx e N € dx e x
Ambipolar Momentum Equation
dl U Almiv,)
(T£+T:?_$)_d_x‘1“Ni d%:v’gl‘x o 2
X nllﬂal Tl "J'TA
Here T' = T/Ty
dT .
—£ =0 from observatiocns of Sec. 6.1
dx
Ui2
where =
5 k;mi Tl
x' = =
NG nalﬁh;
A is the constant radius hard sphere approximation to the argon-

argon c¢ollisicn radius

Similarly the Ambipelar Energy Eguation is:

o Ay dri Almyvd
2S5

f R T 3
Ve nj ng; k Tl<k m—) e

Equations 4 and 5 are to be solved for the charged particle interaction with
tie M.8. peutral shock. This is not the straightforward matter 1t was for the
He-4A shock case. In fact it is found that these equations are not stable for
integration in either direction vetween the upstream and downstream equili-
brium points. Consider the matrix of coefficients and the zero of its deter-
minant.

(7] + T4 - 5‘) Ny
-2 5Ny
The eingular point is at the condition

5=

[ (N

k o
m_i (Te + 'Li)

As T, varies 1n this expression from zero to Te >»> T3, T, this singular point
moves from a position somewhere in the middle of the ion compression out to
the upstream end of the shock when ujij (upstream infinity ion velocity)
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{/% e (Ti+ Te) - When this condition is fuifilled, as it will be im the high
3y My -

zlectron temperature cases considered here, the entire charged particle gas A

i . . . 5 k s
"subsonic" with respect to the ion acoustic speed 75 = J% oy (T. + yj;] angd
< = 4
neither of the equilibrium points is nodal as is reguired for a simple stable

numerical integration of the simultaneous differential equations. The nature
of these eguilibriuvm points will be discussed in Appendix D. However, here it
will be pointed out that an iterative procedure has been successfully used Lo
overcome thiz computational problem. To start this iterative solution, the
ion temperature is assumed teo be equal to the background stom temperature at
21l points in the shock. Equation b with T; = Ty integrates stably from down-

stream ¥ = @ to x = - e to give an initial approximation to the density varia-
tion. Tth information, the point by point density and density gradient, 1s
stored in the Runge- Kutta procedure and is used to approximste N, and fﬂi/dv
in eguation 5. This equation has then the single dependent variable, T nd

can be integrated from x = ~ o to x = 0 , this tiw2 storing T; and AT;/dx
for use in the next iterate of equation 4. The iteration quwuhly CONvVerges.
figures 20 and 21 show the convergence of the two varisbles Ni and T35 fox

M = 3, Tp 20,0009,

To make a valid comparison between this moment scolufion and
G hie sﬁmple solution of the previous section, eguations 6.1.,1 and 6.1.2 are
integrated agsin using Mctt-Smith values for the neutral argon shock and the
hard sphere approximations for the 4-4" collision cross section., The M - 2.2
results are compared in ¥Fig. 22. (The simple solution of section 6.1 is
labelled "Chapman-Enskog”. It was indicated in section 3 that the forn
of the diffusing species momentum equation used in equations 6.1.1 and 6.1.7
iz compatible with the Chapuran-Enskog second approximation solution for gas

mixtures.)

The same genersl conclusionsg as those stated in section 6.1
can be repeated. Very large diffusive geparations between i1ons and zitoms ocoulr
in high electron temperature, weakly ionized plasmas in regions of strong flow
gradients. This solution does pot agree quantitatively any better with Sonin's
experimental regults than did the simple solution of the previous szection.
Senin 1s continuing research on this problem using a shock tube facility and
it is thoped that sowme mesningful guantitative comparisons can be made with
results from experiments.

The substantial overshoot of the downstream equilibrium value
by the leon temperature is similar to the effect observed in the He-A mixtures.
Just as in that problem, a E-temperature solution using the distribution
function described in Sec, 5.1.2 can be performed here, employing the itgrative

) . ar" r,ﬁ
procedure described above. For this solution the egquations for I’ Ix are

both integrated upstream-to-down in each iteration., The eguations are

an;
(r3" + 1 - ) Ny 0 — Almyvy)
( ATy T
-2% 3N, 2N |7 | AloyvE)
;L
ar’ |
2§ w0 /A A 7,2



4s in the neutral gas problem, the parallel and perpendicular temperatures
separate very strongly within the shock but this effect does not alter the
density profile significantly.

£.3 Conclusions

The following general conclusions can be drawn from the con-
sideration of this speclal plaswma shock structure problem:

(i) In high electron temperature plasmas the shock wave
structure is substantially modified by diffusive
separation induced by the electrical ceoupling of
the iong with the much lighter electrons. The shock
region is diffused by the ion compression which
precedes and ccalesces with the neutral atom shock.

(ii) The convergence problem of moment method solutions
can be avoided, in the special case where the species
described iz entirely ""subsonic”, by an iteration
scheme. The ion-electron gas can be treated in
this manner in cases of extrewmely high electron
temperature.
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AFPENDTX A

Boltzmann Collision Integral

If ¢ 1s a function of molecular velocity'§l, then the total
colligional contribution to change in ¢ iz found by multiplying the collision
term in the Boltzmann equation by @(51) and integrating over the entire
vi-space. In the usual notation

— Ir 1t =
(A@)Coll _f Cb(vi [ £28) - f2¢l} gb db dedvq dv, (1)
where
collision impact parameter(range O <o < o)
& collisicn plane orientation {range © < € < 27)
Vo collision partner velocity (range - mjg v;. =< )
£1= T(F,) .

1
prime (1) means after collision,

or equivalently:
(0%) = f[@(vi) - @(?l)J £ e b db de dv, dvg (2)

coll

[y

The inside integrations for ¢ = v , vli , V1 can be represented in terms of
standard "cross-zections” S(f defined below:

P =v, o 2w
.LK
t
¥/ (le - le) ghdbde
0

9]
=M, g 541 (3)
= vy 2. e &
Ps o
f [ (vi2- v, %)g bdbde
5 Yy % X%
(1) (1) .(2) Loy Bar a2 21a08)
- 2M, v, g8, S + 2M22ggx[s -5 e+ 5 M, gle -8, 13
(4)
¢ = v ® © 2T
I [ [ (vle - v_“)g bdbde
o o
i 1(1) N 4] < _"l_ J_
me
where M_ = — and M, is the collizion partner mass.
e my oo,

Al



[ [ (1-cos x ) bdbde

¥ 1s the collison sngle shown in Sketch B-1 of Appendix B,
which represents the collision geometry

g ZI?I—TQI

€x T V1x T Vg

Maxwellian Molecules

m- + Oo =)
Sel) -2 (}l————t . K1;> x .hee (&)
28 [Tll m2 <,
1
@ o L (I Wy s (7)
- 2 mlmg ’ 12/ x o '
Ky

K12 is the force constant in the inverse fifth power law repulsion force
This conatant is evaluated from diffusion dsts and the first spproximation’
Chapmen-Enskog diffusion coefficient expression for Maxwellian molecules (see
Chapman and Cowling, Chapter 12). The complete moment callision terms for
Maxwellian molecules are straight forward. The integrals required are of the

type = - 2 2
- —_ €11 o= coT c-
2 L - -
nyng /W0 }-5’" Ty'Tp CEn T BT Bkjugth | Bjmgry SSifce
(gnk)d\T L ’Tln'f'- T_” Tn gx e & Yt
1 2~ L e
= nyns{us-uy) = I{gy) (8)

Slmllarly kTé LTy

(g 2) = SO R = L

(g,7) = mu {(opu)? + S2 4 2L (9)

oy koL ok L
:[(lgL ) = 2nlngL ™ T, + o T, }» (10)
_ k T]
I(Vllgx) = nlng'{ul(ug—ul) - o (11)
L
I(v,g,} = 2n,n - EE; {12)
L=1 e | omgp
an an KT KT
= = 2 2 1 .
(g®) = nyn,  (up-uy)® + = ! -mﬂ + 2 }1 (13)
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The total moment colliglon terms can be expressed 1n terme of these elementary
integrals.

Hard Elastic Sphere Molecules

(5
S-U') . F/{‘,? (lh)
~ 4
20 % h* (15)

where A 1s the radius of interaction for the colliding hard spheres.

The ¢omplete moment collision term integrations for hard
spheres are not as simply derived as those for Maxwellian molecules. 0dd
p

powers of g J_\v«l—vlq)' + (vpp-vyn)® +'vp3-v13 1% appear in these inte-
grations where even powers OLLullGd in the Maxwellian molecules case because
the cross-sections, “‘1,,8 2) etc. for the Tifth power molecules were propor-
tional to l/go A change in variables is of some assishance in the hard sphere
calculations, however 1t is stCill a lsborious task.

Congider colliding particles designated by superscripts @,pB
molecule masses o,m”, having come from species with mean velocities u %, ug
temperatures TQ,TB. Define

o ki B _ kP
- L -

The new varlables Gy,gK are delined:

1
L ’JJ’ 5
—fér— /;ﬂiii—-**—' G, T Bg - € } (16)
RO N0 K k- K
a < l;a' 1 l/a

where
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The Jacobian of this transformaticn in velocity space is:

where

With the change to variables g, G, the collision integrals are of the form

1 1 [‘ - 02/2 4 i&éﬁlﬁ - .
— ———— = _ri . i
Lor (gﬁ)B/Q N 1

The [ -space integrals are stralghtforward

1 - G%/2
(a) (QH)B/QV[\ e 4G

= 1

1 -G=/2 -
(b) . gb[\ e GiGj ac = B, .

I
o

(Kroneker delta)

(c)

|
_
[
m
1
(o]
3
IQ
[
Il
[NES]

(2m) /2

(a) 1 G, G, G, e ~G7/2 ag =<0 6}-iﬁk
(9n)372 J Uik = 7

e/
(e) ——, [\ 0%0.G, &

= q-
fom) /o 17 et ’bii
1 ™ _r‘2/2
£ / Gte g = 1
iR 5
Lefine
(1) 1 -g2/2 + g€
- [ eE 2+ g€ g

Al

(19}



Then

To evaluate

where

6eil...6ein

I.J:___

1) 1 2io -xe/2
( I e / (\e f

=

[

K Bk T fx

fE - E! dx

(27)

Choosing a polar coordinate system with £ along the Z-axis (pointing in flow

direction)

where

I

(1)

!

b=t L2 ’ -
- oS /2 f\ e /2 % dx {E + = }

1
L

=3 = = 1
L et /2[\ e /2 %= dx [\ (xZ-2xeu
|

T
e
]
e
[0
—t—
7
p
}
v [4
r‘“
ae)
na
4
-]
Mo
+
n
1]

0 SR

o

2
O
€ 2
= [\ xbe /2 g B, =
L(J
—_wE S0
[‘xe x / dax Q. =
€
[ =
A Q) °
e

A5

1
re€ )2y

for x < €

=] 2 1
2 ~x%/2 g i
T et / JF e * / (x%+2xecosp+e®, " xZsingdydedx
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Jifferentiating we find the expressions

(1) 2 b
I =2 1
Tae . /{ (1+€2)Pl © 3 (1- %} E, +% {c—:3+?_’e)Ql t o€ QE}: Al

(29)
1% I ‘ 10 1 2, 1 -
821( = €72 {3e+¢2)P. + = (g-=+ =P + = +GeEapd
s (1ve®)a, } = A2
1)
o717 eB)2 2, .4 - 1l 2. 3 6 .
T5e3 T e (3+6He=4e%)] 1 * § (e=+ = - Gj} P
1 . \
+ = (12e+9¢%e”3q, + (3e+e?) }z A3 (31
3 1 2
84{(l>_ €5/2 {15e+10e>+ 5\'13 P L /24 12 3 2 5
e - sertoetetey 3 (ot e ey

s =
+% (12'“39624-1%4#*50)@1 " (3*'662'5-E4}Q2 -2 e € /2} - Ab

(32)
Similarly, define
(3) _1 -g¥/2 + g.¢
I = H}_ =S X g gB gg-
1 _€2)2 -x= /2 ! = 3/2
= e [ xgdxf (xa-'-eﬁ—Exeu ) cid
VO —:|_
0
= =
> _ X
_—s / HF x2e ™" /de {EB + 2x%er %E }for X < e
U
f
x3+ 2xe®+ — L for x > ¢
l 5x
.2
=3 /2 = 1
= e 2 = T
e {e Pl + 2 P2 5 3
et -
PTGy reeta, v gy (33)
=B
o 3y
Perivatives of I give expressions for
(g -
1 2
I f £ (gj—l. . -gin}ggg
_ e_€2/2 anI(B) -
- ;36 ...Bei (JL-’
17 n



(3) 2
él—— = e° /2-{ (3e%+e®)p) + 2(1+e®)E, + % (1- %5) P

oe 3

. % (“€3+€5)Q1 + 2(2ete®)q, + GQB}_ = Bl (39)
62123) - 962/2-{ (6e+7e3+65)Pl + P (36+63)P2

+ % ( 23 - % + e>P3 + % {12& + 9e4+e6)Q1 (36)

+ 2(2 + 5@2+€4)Q2 + (1+E2)Q3 }- = B2

Again, define

1(5) _ FFlJ E5/2 T Be &odg

= % 2y 1
= % e® /%£~ e X /2 2ax [L (%= +e=- 2x€p)5/2 du
£

-2/ i
_ g5/l sy s L
= e LE Pl + 5S¢ P2 + BGP3 + 7e P

€6
+ = + 3etp o+ 5&9¢. + =
= Q) + 3e%Q, + 567, Qh} G (37)
Sample Collision Term Calculations
Maxwellian mclecules:
For the sake of demonstration the calculation 1s outlined for

the special case of collisional wmomentum and energy transfers between two gases,
subgeripted 1,2 having two-temperature ellipsoidal distributions.

AT



= el
M e Mi©y 1=

i%qiz
. ny % 1 TOKTY QkTil
ty 3/e . F 1 € toe
a2k /m, ) "= T
1 i 1
/ 3/2
(Fo ) Al R (mlmé\ 1 1
Vxleo1l T T2 RS S L
(T, 1%, T T
mpc]e mpc j__LE m10812 myc2 |__2
K / - Shmr o - Snmoe - s — T oo Code deq
f 2 2kT+-- z ac de
]Mj e, a 9]él) . BTV 1 . 2KT} . KTo
coﬁéfart
- WE 1= t"1 oo idg—ul}
= M= ! o :1)- | 8\
- 4 % “":L.._‘ / I(gxf (3 !
r'l*. i
.-""2 \J'z) = jMe (Fle 2 M? I!_‘gg’} + Ir\VXgXI - 1’(1\; Z ) :I (“‘1

Hard Cphere Molecules:

As & sample calculation for hard spheres, the colllisioconal
nomentam and energy transfers are derived for ccllisions between ‘wo one~
temperat are Maxwellians.

mc?
i B
fi = 3/0 e 5
:2? K/mi Tl) -
A, =A (v ) = ¢ M b(l} Al (40)
¥ieoll 1 172
\ . (1),
al(vE. =0 Mof UMy B -y -2 Ko} A) + Koe Aoy ne
!
I upTl”ﬁ:
Kl - m,T- + m> Tl
moTy
Kg T mlT? t m2T1 _

i-+7
4 3/ 2 R N
Ty fmyT o mol ,
T os ( —_ } r;"_; (}{ \1 e 271/ ) |:-‘1

PR T my o |

where |T:is the ‘azcbiar of the transformation of velocity coordinated shown
in Eq. 17

The extension of '‘hese dldeas to the calzulation of higher order
momenrt collisioral contribations and to the btimodal Lype distribution calcula-
tions 1is a straightforward task withir the atove framework.
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APFENDIX B

Mavwellian (Inverse Fifth Fower Law) Molecules

Ar important molecular model Tor theoretical considerations is

a point centre of repulsive force such that the force ¥ between two molecules
of msa My Mg separated by a distance r is
= Kp oA ~ . .
fE—— T r isaunit vector pointing along
r the line of centres from moleculs
n 1 [k
1" %o "2
(1)
If the position vector= of the two molecules from some Tixed
origin at time t are r1, rp , the posilic: vector rop of the second from the
is ¥z - ry. The equations of motion of the two molecules are
mll"1 = - T m2?2 = F
therefore
My Mo - _
- Tp1 = F (2)
oy tms -
so the motion of mp relative Lo mp is the same as the motion of a particle with
my me , K2
reduced mass —= = about a Tixed centre of force
Myt my rY
The polar coordinates r, & are taken in the plane of the orbits
as shown in Sketch B-1 and the equations of conservation for angular momentum

and energy have

Eliminating ftime

which integrates

where € ig measur
=

/'
bORIR ST o
2 il

andr =
.

the foljowing form

r%9 = gb (3)
L(y2 4 p2 2 moK12 (v-1) SUED R R ()
& e : wy oo =28
from Egs. 3 and 4 gives
N gEbE’ i‘(/_EE\g_._ ?1 _ s mO Klg <5)
o mims{v-1)r
Lo give
~ -.'r_-z\4 ] m K_\{ 5—1} L
|,‘____ =) = Q Br 2
¢ —uL Ebg ST mop(v-17g"b% dr (6)

ed from the initial asymptote of the orbit. Defining _*= b/r

?/moKy2)1/ V=1 the integral is

4 A

Rl

Bl
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1b (impact.
parametler
|
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4
R

0 is zcentre of mass

y 1s deflectlion angle

£ is & corresponding to minimum separation

SKETCH EF-1: COLLISION COORDINATES
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[N g

Elzfxq W-UE.-EH-(/E%lel des (7)

._JI | V"J \\C;E) ¢ (

o
The apse of the orbit iz given by — =0 or £§}: 0

A ag d
v-1

L8 ~ /‘ﬁ

1‘6“2'——%‘]*{\'_,,7}=O (8)

-1 \\J_/O A

root, dencted by - The
the value of 8 corresponding
e supplement of this angle,

G Ve sl
% = T - o I[!"{CSOJIL _'),2 ~ 2 <Q \ 11 - /

for v » 1, this eguation has only come real positive
angle bsoween the asymptotes of the orbit is twice
to()‘:C}oo and since ¥, the deflection angle is th

W1C

; d e {9)

2 @
() R g
g = if f (1-cos™) babde
o [
Q O :
L
sy ¥y 2/v-1 =5
- e : y(v) (10)
N g ‘
whi re: o
' £
é;iL) [ {l-cos 3 O derx
£ ‘JO
These constants have bezn evaluated numerically using the expression for
givern in tquauion 9e The case v = 5 iz of particular interest in kinetic
nheory because 3 implifies greatly the moment collision integrals. Forv= 5,

the crces
vpethetical

_J .l_,-;,

are i1nversely proportional to the relative velocity g.
molecu;es cbeying this inverse fifth power law repulsion inter-
ticn are called Mawxwellisn molecules and the simplifying features of this
oael when applied to the moment collision integrations are pointed out in
Appendix A,

s

ular interactions with infinite extent such as these in-
are not well cwi*ed to numerical experiments or Monle
Lhough the cross- tions for transfer of molecular

r the transfer ;oLl. sion terms are finite for v .= &, each

molecu]e ig, theoretically, 1n a state of constant "collision” with all other

molecules and at no time is it travelling along a stra

(.r)
f ]

lght path wnlnlluen“ed
by surrounding molecules. Simply stated, these molecules do not have "free
pathe', The Monte Carle technigue which proposes 4o follow a test particle

through the gaseous system 1s only feasible if the trajectory can be described
approximately, al least, by a series of gtraight line "free paths" terminated

by collisions which crange the test particle velocity over an infinitesimal
distance. Without this approximation the method becomess an impracticable dynamic
zimulaticr.
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This problem is overcome by specifying & collision cut-off i.e.
a rather arbitrarily chosen minimum value for the deflection angle y = x4,
A pair of particles collide if their lmpact parameter is smaller than that
corresponding to ¥pin (b < byax). The mutual influence of particles with
b > byggx 18 neglected. The randow selection of collision parameters then is
gquite simple

e = (R + )7 where R is a random number from
the rectangular distributicon on
<R

E+1

il s (11)

max

=

giving a uniform distribution of impact points over the collision surface 7h = .

The angle 60 between the initial asymtote and the apse line
is calculated from Eq. 7

1 el 1 .
o = . S S S— (12)
o {1+ 2?-’:5‘5 \2 2«/?/{,;4"/

where/ﬂlsymbolizes the complete elliptie integral of its argument.

Cne further definition: The collisicn frequency for Maxwelllan
molecules is independent of the relative speed of the colliding pairs.

v = n [])3 <§%§> :

——
[

O max

With these modifications the Maxwellian molecule Monte Carlo calculations
follow the hard sphere program. Length is scaled in unit of the upstream "mean
free path" in the light gas. Because of the long range nature of the Maxwellian
molecule interaction, m.f.p. must be defined on the basis of some hard sphere
analogue - for example the Chapman-Enskog {irst approximation to the viscosity
coefficient for hard spheres is:

%_
My = E%Z? (ﬁ%ﬁ (24)

wheress is the radius of the hard sphere molecule.
bt
The hard sphere mean free path is: {in a Maxwellian gas)

A= S S (15)

N2 onowy ®
or substituting for.% in terms of p
o= 36 _ W (16
= > BT

For Maxwellian molecules

KT 2mYy 2
By = m) \T) (1 7)
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therefore a viscosity mean free path for Maxwellian molecules can be defined:

_ 16 kT
M- 1573/ 2na5(5) <:K> (18)

N [

where A2(5) = 436

X ig caleculated from Bg. 17 using experimental viscosity data {see Chapman
and Cowling, Chapter 12).

K1, is calculated from the first approximation diffusion
coefficient for Maxwellian molecules and experimental diffusion data. {See
Chapman and Cowling, Chapter 14.)

The Maxwelllan wmolecule Monte Carlo calculations were costly
in computation time and are considered only as a check on the general nature
of the hard sphere results. Good agreement between the M.C. znd moment
solution density profiles is shown in Fig. B-2. The extremely close agreement
with the moment solution during the early stages of compression followed by
a rather erratic fluctuation about that solution during the later stage was
also characteristic of the hard sphere sclutions with small sample size.
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AFPPENDIX C

Random Direction Cosgines

It was shown in Sec, 4,3 that in a hard sphere collision be-
tween molecules my,mp with initial velocity components uy,vy,Wy and up,vp,wp
and relative speed g Lhat the relative velocity vector is rotated in a centre
of mass coordinatle system with egusl probabllity into equal solid angle ele-
ments without regard for direction. A set of random direction cosines, L,M,N
is required to specify this random orientation (see Ref. 15). The method of
specifying L,M,N with two random selections from the rectangular random number
generator 1s iliustrated in Sketeh C-1. Choose a point A on a unit circle
having polar coordinates (r,€) by choosing two random numbers y,0 in the
rectangular distribution on -1 to +1 and rejecting the pair if A lies ocutside
the unit circle. The spherical coordinates of B directly above A on the unit
sphere are 1, ¢, € . Thisg defines the line of centres at impaci. The spheri-
cal coordinates 1, y¥,e of point C are plcked so ¢ = 2¢p = w-x . This point C
defines a set of random direction cosines.

Say plr,e)dr de = probability of selecting r,e in dr de
~aresa element dr deg
T
_r dr de
T (1)
Also

p¥,5Y ay de probability of selecting ¥,¢ in dy de

= p(r,e) dr de¢
- 8in ®,COS® ap de

-
simy dif de _ dR
Lo Ly

_ solid angle element (2)

complete solid angle

The direction cosines are

L = cosy =1 - ar® {3)
M = siny cos € =2 wWl-r® ()
N = sing sin ¢ = 20 l-r

Cl
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SELECTION OF RANDOM DIRECTIOW COSTNES
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AFPPENDIX D

Equilibrium Points of the 1-Temperature Maxwellian Diffusion Egquations

The eguations for the diffusing species number density and
temperature behaviour must be integrated between the upstream and downstream
eguilibrium points. The inhomogeneous collision terms in these egquations are
governed by interaction between the diffusing species and a background Mott-
Smith shock profile for the light gas. To demonstrate the nature of these
equilibrium points the collision terms will be represented here by their
Maxwellian molecule approximate forms and the characteristic equation of the
set of 3 first order ordinary differcntial equations (including the Mott-
Smith equation for the background gas) ‘s analysed.

dn
dx

(5F - B/u) / (51-3§ (1)

B
i
I

== ((T-§) B/u+ 2§7) /) (57-Fm (2)
— = - B(1-N{)N, (3)

where n, T are the diffusing species number densify and temperature in units of
their upstream equilibrium values ny,Ty, u is the diffusing species velocity

divided by [%T T4 andts = v ., (h signifies heavy species,f signifies light species)
1

For Maxwellian molecules:

T =n le H (U':_U') +n Ngx H (Ug'u) (l;)

. I ¥ 2 31 3T

F o In “l:( o {Mﬂ [(Ul-u)d + 30 + E; ]+ u(Ul—u) - E; ?
+2n NEILJ. {Mﬂ li(U2-U_}2 + 3T2 + r—-ﬂ} + U.(Uz-u) - E)l: (5)

at upstream equilibrium
oF _ . SF
= N U N = O

o oM g (6)

S 2 OB _
5; = 2 Ni}fu u F; = - § Nl " Mg

the light gas distribution funciion 1is assumed to be the simple bimodal form:

z "

o 2kT 1) ! o ZKIp

(v-vp)%
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Ny, above, is the value of ny divided by the upstream egquilibrium light gas
number density, 905 N2 = nz}nlo; i3 the constant part of the Maxwellian

1)

molecule collision cross section, S for cross ¢ol 151on? %1V1ded by the same
gquantity for light-iight COlllS“OnS%hat is z[gSE /[U%
mg My oy m u
M T m, Fm s My = o > My = “‘%;ET" v (8)
4 h ‘2 mh mh 4 k (mbT

The equations are linearized about the equilibrium points where
all gradients go to zero.

L
an (. 9F 108 (s & 15E 16 N A .
dx | S " udn, M u a7 ) &L+ (é oy u ANy / _///\""30)
) 421 522 a23 ]
ar _ | /(r-3) OE aF (T-8) OE g OF ((T—S) SE w
—_ = . —_— 4+ = = lr _
dx | (‘ u a eSS P W o ¢ 6" AT U aly " SNy -
317 © 7320 833
Al
1. 8 /4 .
dx—an<dx AniaT< )L\TF(B12NL)) 1 (9)
The characteristic equation 1is
[(all‘)\) (8.22—?\) - 8"!1 8,1 ] (a33—7\) = 0 {]_O/\'
i.e
(ah® + bA + c) (313— A) =0 (11)
One of the roots is asq = - B{1l- =& } which has the value B at upstream equili-

3 - ;
brium and -B downstrea%. The others are the roots of the gquadratic

ah“+ bh + ¢ = 0. Since only the qualitative nature of the equilibrium points
is of inferest, it is sufficilent to determine the signs of thesze two roots.

291 = 3 M:(:Nl/(5T—38) =3 u}{%} M/5 (1- wM®)
6N M : ‘
d1p = u(f)%gé),g =6 A Mg/S Wy M (1- wn®) (12}
apy = 2 T NL(w w/{57-38) = 2 p Wy M/5 (1- )
Bpo = -6(T-5) Ny Mg _ 6. u Mp(1l - w y M3)
w(5T-38) Sy M (1- wh)
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M- (ag) Fago) Mgy aps - 812 ap1 = 0

w

-6XE WE My

C =
5(1 - wM2)2

=]

=
—
(W)

Supersonic, (1-wM®) < O. Roots are same siga as -b

(-6 Mg (1o wyM®) + 3y M=)
b= X u >0 for W M> 1 (14)
5 ay M (1— o M)

These two rools are negative. The third root is positive at
X = - o | KS = B. The equilibrium pecint then is asadile point.

AL the downstream point

oF OF
= N, U tl:kl =0
2-e T
3n oT (15)
-
oF _ oF _
S =2 nXu T g S5 = - 6Ny
a11 = 3xl—1 Ns N')"TE MDXB TE (l-UJMDg)
a5 = 6 I, w X Mp/5 o My T (1-0,2)
= oXy T, VPTp M /5 T, (1-wM ®) (16)
a0 b To NoTo My 5 My
_ GXLJ. My To (1-w7MD2)
fop T T >
5T, Ts (l—wMD )
6 X2 M g
c = -= '
5 Ll i ®)? (17)
wherewMD is the heavy gas downstream Mach number.
c< 0 for wMp® < L
¥ - 4 oac > v® 20 the roots have opposite sign and the equilibrium

point iz a saddle type downstream when the gasz passes
through M = 1. It is nodal for entirely superscnic
diffusing heavy species.
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For the ionized gas case of section 6, the charged species are subsonic through-
out. The downstream equilibrium point is then a saddle point and not a suit-
able numerical integration target point.

Singular Points in 3 - I Phase Space

Congider the set of 3 first order linear ordinary differential
equations which correspond to the linearized form of the flow eguations about
an eguilibrium point.

dx

E{ = X(x,y,z,t)

d

E% - Y(X3Y;Znt) (18)
dz :

1t = Z(XsY;zat)

The general solution of this system has the form

B hlt het AT
X = cflle + Cgage + C3 a3 e
th hzt hgt
¥y = ¢1Pqe + coPpe + 1 63 € (19)
= ehlt + ¢ kgt + hst
z =C17y 578 6373e

If A5 Ap, Ay are all of the same sign, all solutions pass through (0,0,0) at
either t — % oo, This particular condition represents a nodal point and a
stable approach peoint for numerical integration of the set.
If two roots of the same sign (say hl, ha, § 0) then there is
a set of solutions passing through the origin - those for which cy = 0
_ At
X =0 ptosg 1

= 51 Pt ﬁg q N Agt

>
i

_ (20)
z = 71 Pt 72 g

Solving the consistency relationship:

7o ¢y B o, “ \
(&2 - al ;I) ( - B_l y) - (ag - g]__ '?’2> <X - “:)71 Z (21)"

i.e. F(x,y,z) =0 & surface passing through (0,0,0) as t -3

Db



ALl solutions for which ¢y # O diverge as t — 3 w.As t -»* « the solutions

C3 = 0 diverge from the equilibrium point whereas the line sclution ¢ ¢, = 0
% 0 passes through (0,0,0). Both of these conditions represent 3- élmen51onal

saddle points and are unsatisfactory numerical integration approach points.

Cagse - Diffusing Specles Subsonic Throughout

It was stated in Sec. 6.2 that although the quilibrium points
for the high electron temperature ionized gas case are both saddle points, an
iterative scheme of solution converges. Under these conditions the diffusing
charged species are subsonic throughout with respect to the ion acoustic speed

1
%7 (T; + Te), The important features of the iteration scheme is that only
L

one of the eguatione 1s integrated at each iteration - the profile of one of
the varilables 1s approximated by ite value from the previous solution. The
solution is started by assuming the ions to have the atom temperature for
integration of the charged particle number density equation. Then, using the
notation described above

L R ACE (22)

dx dx

T . . . .
where %E is a prescribed function of x {and hence Nl) from the previous

iteration i.e.

L= (- ()0 ey

L ey (23)
EE dx/ an :
> 0 at both upstream and downstream
(ezTe+Ti;(e—§)>o )
le\

3 + up
?l I B at gowmn strean
The linearized equations in this case are
a1l ]
d'n— ] i @ T
on ( :) ' iy <dx o
(24)
Y 2
_1l_ © __iw An + _Q_ =1 Al
dx 3n dx s aNl dx
The characteristic equation is;
(all - h) (a22 ) =0 since aj, = @5y = 0 (25)

Downstream, then, the roots are of opposite sign but they are both positive
upstream. Therefore the direction of stable numerical integration for dn/dx is



from the downstream saddle point into upstream node.

Similarly for the diffusing species temperature integration when n is specified
from the previous iteration

= (B/u+y (N)) )/5n

FE)y e e

3 alNy u
Sla) = ' B st aowetreRn (28)
ER

For this integration the roots are both negative at a downstream node and of
cprosing signs at an upstream saddle point. The set inegrates stably from up-
stream to down.
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