

Distributed by OTS in the Interest of Industry

This report is a reprint of an original document resulting from Government-sponsored research. It is made available by OTS through the cooperation of the originating agency. Quotations should credit the authors and the originating agency. No responsibility is assumed for completeness or accuracy of this report. Where patent questions appear to be involved, the usual preliminary search is suggested. If Copyrighted material appears, permission for use should be requested of the copyright owners. Any security restrictions that may have applied to this report have been removed.

UNITED STATES DEPARTMENT OF COMMERCE OFFICE OF TECHNICAL SERVICES

THE EFFECT OF FUEL INGESTION ON TURBOJET ENGINE OPERATION*

PART I

J35 AND J47 ENGINES

FOREWORD

The investigation covered by this report was conducted at the Civil Aeronautics Administration's Technical Development Center, Indianapolis, Indiana, under WADC Contract No. AF33(616)54-15, Amendment No. A2(56-1935), and RDO No. R-523-369SR1Z.

SUMMARY

Tests were conducted to investigate the degree of hazard resulting from fuel entering aircraft turbojet engines with the engine primary-air supply. The J35-A-13D and J47-GE-25 series engines were used for the tests. During engine operation, measured quantities of JP-4 fuel were released and carried by engine primary air into the engine compressor. Each engine failed when the quantity of ingested fuel approached approximately 1 per cent by weight of the normal quantity of engine primary air with actual failures occurring between 0.8 and 1.1 per cent. However, each engine failed in a different manner; the J35 engine failed as a result of components becoming overheated and the J47 engine failed as the result of a compressor stall.

INTRODUCTION

Investigations of aircraft turbojet engine explosions have indicated that a possible cause might be the leakage of flammable fluids into the engine primary air. The probability of fuel, lubricants, and hydraulic fluid entering the engine with the primary-air supply has been increased by recent trends in design. In order to accomplish ground cooling of the engine compartments of some aircraft, the cooling or secondary air after passing through the compartment is drawn into the engine with the primary air. A recent trend is to eliminate the firewall between the compressor and the burner compartments of the engine and allow the secondary air to enter aft of the engine, pass over the entire length of the engine surfaces, including the fuel and lubrication systems, and then be drawn into the engine compressor with primary air. In addition to these recent design trends, leakage and spillage during in-flight refueling of turbojet aircraft also has added to the possibility of flammable fluids entering into the primary-air inlet of engines; for instance, when aircraft are refueled in midair, a small amount of excessive line fluid escapes after the refueling hose is decoupled.

In view of the explosion record and these recent trends in design, it was decided that the degree of hazard associated with turbine-engine fuel ingestion should be investigated. In line with these needs, tests were conducted by the Civil Aeronautics Administration's Technical Development Center, Indianapolis, Indiana, under contractual agreements with the Department of the Air Force.

TEST FACILITIES AND EQUIPMENT

A test cell constructed to provide explosion protection together with an adjacent control building and an attached auxiliary powerplant room were used for conducting the engine tests. These buildings are shown in Fig. 1. A J35-A-13D engine is shown mounted in the test cell in Fig. 2, and a view of the control room and the instrumentation is shown in Fig. 3.

*Reprinted for general distribution from a limited distribution report dated August 1957.

Fig. 1 Jet Engine Test Facility, Civil Aeronautics Administration, Technical Development Center, Indianapolis, Indiana

Engine speed was measured by a tachometer with a specially contructed Strobotac. Fuel rates were measured by Fisher and Porter rotameter-type flow meters. A vibration meter, a five-inch oscilloscope, and a seven-inch recording oscillograph were used to monitor engine vibration. Two vibration pickups were mounted on each engine installation. Chromel-Alumel thermocouples, used with Minneapolis-Honeywell Brown temperature recorders, continuously recorded engine and exhaust gas temperatures throughout the tests. Compressorstage pressures were measured with pressure-transducer-type pickups and direct-pressure gages. An American Society of Mechanical Engineers' (ASME) bellmouth section, shown in Fig. 4, was utilized to measure the quantity of air consumed by the engine under the various conditions of test. This section was calibrated in accordance with ASME test codes. 11-1946 prior to its use.

A nozzle assembly shown in Figs. 5 and 5A was constructed and used to spray fuel into the engine inlet during the tests. Figure 6 shows the nozzle discharging fuel into the bellmouth inlet at the rate of 540 lb.fuel/hr.

Fig. 2 Test Cell Installation of J35-A-13D

Fig. 3 Jet Engine Test Facility Control Room Showing Instrumentation

. •

Fig. 4 American Society of Mechanical Engineers' Bellmouth Section and Airflow Traverse Section Used During Fuel Ingestion Tests

4

Fig. 5 Fuel Ingestion Nozzle and Orifice Restrictor

DESCRIPTION OF TEST ARTICLES

The first series of tests was conducted using a J35-A-13D turbojet engine, Serial No. A-501338, manufactured by Allison Division, General Motors Corporation. The engine was rated at 3,750 pounds of thrust at 7,700 revolutions per minute (rpm). It was rebuilt after a failure occurred during the 85 per cent rpm fuel ingestion tests and was used again for the 100 per cent rpm tests. This engine did not have an automatic fuel control to compensate for rpm variations. The locations of the thermocouple, vibration, and pressure pickups used in the J35 engine tests are shown in Fig. 7 and are described in Table I.

A second series of fuel ingestion tests was conducted using a J47-GE-25 turbojet engine manufactured by the General Electric Company. The engine, Serial No. 076333, was rated at 5,970 pounds of thrust at 7,950 rpm (without water augmentation). This engine was equipped with an automatic fuel control which compensated for rpm variations. The locations of the thermocouple, vibration, and pressure pickups used in the J47 engine tests are shown in Fig. 8 and are described in Table II.

Fig. 5A Fuel Ingestion Nozzle Assembly and Orifice Restrictor, * Exploded View

Fig. 6 Release of JP-4 at Rate of 540 Lb./Hr. into J35 Air Inlet

CAA TECHNICAL DEVELOPMENT CENTER INDIANAPOLIS INDIANA

Fig. 8 Schematic Diagram of Temperature, Pressure, and Vibration Pickup Locations for Fuel Ingestion Tests on the J47-GE-25 Engine

TABLE I

LOCATIONS OF VIBRATION, TEMPERATURE, AND PRESSURE PICKUPS FOR FUEL INGESTION TESTS (Engine J35-A-13D)

Pickup	Location*	Measurement
v ₁	12 o'clock position on engine midframe	Vertical vibration
v ₂	3 o'clock mounting position on compressor housing	Horizontal vibration
Pl	4 stage bleed air pressure	Static pressure
P ₂	6 stage bleed air pressure	Static pressure
T ₁	Compressor inlet, 6 o'clock position	Air temperature
т _г	Aft stage of compression, 4 o'clock position	Air temperature
Тз	Aft stage of compression, 8 o'clock position	Air temperature
т ₄	Aft stage of compression, 10 o'clock position	Air temperature
т ₅	4 pickups in parallel at 2, 4, 8, and 10 o'clock positions, 12 inches forward of aft end of exhaust test ring	Average gas temperature
т _б	Bottom center of No. 5 burner can outer skin	Skin temperature
^т 7	Bottom center of No. 1 burner can outer skin	Skin temperature
^т 8	4 pickups in parallel at 3, 6, 9, and 12 o'clock positions in tail cone.	Average gas ex- haust temperature
т9	Spark ignitor hole, 4 o'clock position in burner can No. 3 between inner and outer skin	Air temperature
^т 10	Spark ignitor hole, 10 o'clock position in burner can No. 6 between inner and outer skin	Air temperature
т ₁₁	Spark ignitor hole, 10 o'clock position in burner can No. 8 between inner and outer skin	Air temperature

*See Fig. 7 for physical locations of pickups on J35 engine.

TABLE II

LOCATIONS OF VIBRATION, TEMPERATURE, AND PRESSURE PICKUPS FOR FUEL INGESTION TESTS (Engine J47-GE-25)

Pickup	Location*	Measurement
v ₁	12 o'clock position on forward engine mounting pad	Vertical vibration
v ₂	3 o'clock position on forward engine mounting pad	Horizontal vibration
Pl	Air extraction fitting on 8th stage of compressor	Total pressure
P ₂	Air extraction fitting on 12th stage of com- pressor	Total pressure
T ₁	6 o'clock position at bottom of air inlet duct 3 inches inward toward centerline of duct	Duct temperature
T ₂	4 pickups in parallel 35 inches aft of turbine in tail pipe at 2, 4, 8, and 10 o'clock position	Exhaust gas temperature
Т	Midframe 4 o'clock position in air extraction port cover	Compressor dis- charge temperature
T ₄	Midframe 2 o'clock position in air extraction port cover	Compressor dis- charge temperature
^т 5	Midframe 10 o'clock position in air extraction port cover	Compressor dis- charge temperature
Т	10 o'clock position in bottom of No. 7 burner can between inner and outer liner	Air temperature
^T 7	8 o'clock position in bottom of No. 6 burner can between inner and outer liner	Air temperature
т ₈	l o'clock position in bottom of No. l burner can between inner and outer liner	Air temperature
т,	3 o'clock position in bottom of No. 2 burner can between inner and outer liner	Air temperature

*See Fig. 8 for physical locations of pickups on J47 engine.

8

F1,F3, FISCHER AND PORTER STABL-VIS FLOWMETER (200-1000) LB/HR RANGE F2,F4, FISCHER AND PORTER STABL-VIS FLOWMETER (1000-6000) LB/HR RANGE V1,V2, HAND OPERATED SHUT-OFF VALVES V3 FUEL INGESTION CONTROL VALVE V4,V5, EMERGENCY SOLENOID SHUT-OFF VALVES V6,V7, MOTOR DRIVEN FUEL CONTROL VALVES

Both engines were supported for testing by a test-cell fixture which provided a three-point mounting. The engines were supported on each side near the midpoint by a horizontal trunnion mount and at the bottom by a mount located on the engines' forward frame. The side mounts transmitted all loads to the rigid test-cell mount. The bottom support permitted vertical alignment of the engines.

GENERAL TEST PROCEDURE

Tests were conducted to determine engine air consumption at idle, cruise, and takeoff rpm throttle settings. The ASME bellmouth section was utilized to obtain these measurements. Air consumption was measured at the beginning of each fuel ingestion test by a single velocity pickup. Measurements obtained with this pickup were correlated with the velocity-traverse measurements obtained during the normal operation tests. Fuel quantity in terms of weight was calculated in multiples of 0.0005 Q, where Q equals the weight of air consumed by the engine for the throttle setting (rpm) used. The fuel ingestion tests were conducted by: (1) setting the throttle for the rpm required for the test; that is, 2,822 rpm was considered idle for the J35-A-13D, (2) spraying the increasing quantities of fuel into the engine air inlet during each consecutive test, and (3) recording temperature, pressure, and vibration data throughout the ingestion period. The fuel ingestion period was the amount of time required for the speed to stabilize while fuel was b' ing sprayed into the engine air inlet. This procedure was repeated until the quantity of fuel entering the engine air inlet caused the engine to fail. Samples of the fuel used during the ingestion tests were analyzed by the Fuels Laboratory, Wright-Patterson Air Force Base, Ohio, and found to be within specification limits for MIL-F-5624C Grade JP-4. A schematic diagram of the fuel control used is shown in Fig. 9. The flow rate of the fuel entering the air inlet was controlled by opening valve V6 and setting valve V3 to the required rate for the test. The fuel then flowed through the calibrated orifice to simulate the ingestion nozzle flow. When the required rate was stabilized, V6 was closed and V7 was opened simultaneously. This procedure was repeated for each test until engine failure occurred. When failure occurred, the fuel pumps were shut off and all valves were closed immediately.

Fig. 10 Graph Showing Airflow Versus Speed (rpm) During Normal Operation of J35-A-13D Engine

RESULTS OF THE TESTS ON THE ALLISON J35-A-13D ENGINE

Normal Operation Tests.

Normal operational data on the J35 engine for idle, cruise, and takeoff rpm throttle settings were recorded prior to the fuel ingestion tests. Tests were conducted with the engine drawing ambient primary air to determine air consumption and performance at various rpm throttle settings. The data obtained from these tests are presented in Table III. The results of these tests are presented in Figs. 10 through 15. The results indicated that the engine operated normally in all speed ranges.

Fuel Ingestion Tests at Idle (2,819) RPM.

Fuel in quantities up to 564 lb.fuel/hr. (0.0068 lb. fuel/lb.air) entered the primary inlet of the J35 engine at which time the speed increased from 2,819 to 3,940 rpm, the exhaust gas temperature (EGT) increased from 925° F. to 1,191° F., and the engine fuel flow remained constant at 790 lb./hr.

Fig. 11 Graph Showing Temperatures Versus Speed During Normal Operation of J35-A-13D Engine

TABLE III

NORMAL OPERATION DATA J35-A-13D TURBOJET ENGINE HAZARD STUDIES

l Vibration Amplitude	$v_1 v_2$	(mils)						.40 .66				• •	• •			
l _{Total}] Pressure	$_{1}$ P_{2}	in. hg.)						.5 15.2					• •	• •	• •	• •
<u></u> д	r ₁₁ P	~	77 2.5													
	T 10]							172								
(•F)	, т _,		100	112	127	145	155	175	195	218	238	260	283	305	325	342
ouples	T ₆ T ₇ T ₈		920	887	867	812	782	732	690	665	655	667	700	752	802	847
tmocc	T7		280	280	277	277	275	260	255	258	300	322	338	352	362	352
at The	T,		117	132	142	147	160	175	195	220	240	255	282	302	345	345
	ъ Н		982	960	925	890	855	812	788	763	758	767	802	852	006	910
Temperatures	'F- 4		132	145	152	172	185	202	232	253	283	295	322	345	352	352
1_{Ten}	°°		105	122	132	150	158	182	205	230	250	272	295	315	325	322
	\mathbf{T}_2		102	117	130	145	152	175	198	223	245	270	285	300	305	305
	тı		55	55	55	55	55	55	55	55	55	55	55	55	55	52
Engine Fuel	Flow	(10/UI)	785	885	970	1085	1163	1274	1378	1505	1660	1852	2095	2130	2445	2860
Inlet Air	Speed Flow	(10/sec)	16.26	19.18	22.01	25.02	29.64	33.93	38.71	43.33	47.97	53.08	58.54	62.58	66.35	68.57
peed Actual	Speed	(rpm)	2822	3241	3613	4012	4386	4759	5147	5614	5937	6344	6652	7014	7465	7782
Engine Speed Per Cent of Actual	Rated RPM	(per cent)	35	40	45	50	55	60	65	70	75	80	85	06	95	100

 1 Locations of thermocouple, pressure, and engine vibration probes are shown in Table I and Fig. 7.

Fig. 12 Graph Showing Temperatures Versus Speed During Normal Operation of a J35-A-13D Engine

Fig. 13 Graph Showing Compressor Pressures Versus Speed During Normal Operation of J35-A-13D Engine

Fig. 14 Graph Showing Vibration Versus Speed During Normal Operation of a J35-A-13D Engine

Fig. 15 Graph Showing Engine Fuel Versus Speed During Normal Operation of a J35-A-13D Engine

An inspection of the engine after the fuel ingestion tests at idle rpm revealed no apparent damage to the engine. The data obtained during the idle rpm fuel ingestion tests are presented in Tables IV and IV-A. Graphical presentations of the effect of fuel ingestion on engine rpm and exhaust gas temperature at idle and cruise throttle settings are shown in Figs. 16 and 17.

Fuel Ingestion Tests at Cruise (6,768) RPM.

Fuel ingestion data for cruise rpm conditions are presented in Tables V and V-A. A graphical presentation of the effects of fuel ingestion at cruise rpm on temperature is shown in Fig. 18. The results indicated that the speed and exhaust gas temperature exceeded the 100 per cent rpm conditions.

Engine failure occurred on Test No. 20 at a speed of 8,341 rpm or an overspeed of 1,573 rpm from the initial speed at cruise rpm throttle setting. The exhaust gas temperature prior to failure had reached 1,448° F., an overtemperature of 703° F. from the initial temperature prior to fuel ingestion. The engine primary fuel-air ingestion mixture was 0.0008 lb.fuel/lb.air when the failure occurred. This was at the rate of 1,938 lb.fuel/hr. into the air inlet.

Fig. 16 Graph Showing Effect on RPM of Ingesting Sprayed Fuel into the Engine Air Inlet of the J35-A-13D Engine

TABLE IV

FUEL INGESTION DATA FOR IDLE (2819) RPM THROTTLE SETTING (Engine J35-A-13D) (Fuel JP-4)

ActualCorrectedActualCorrected(rpm)(rpm)(rpm)(°F.)(°F.) (rpm) (rpm)(°F.)(°F.)(°F.)28802876930935945292029169409459462020201694094599030283016975990990311031069859909903135310699510009863135311310259943180327890098632903291910996318032789009863290371910251044329037191005106533353437955104633803796100510863380379510251107378038241100511233725382710451123372538271045112337253827106511073780382611005112337803827104511233780382710651107383538271065110738353827106511073835382710651123383538271065112338353827106511263835382710651126383538271065<	Test	Encine	s Speed	Exhaust Gas Temperature		Fuel F	1 ow	Inlet	Inlet
2880 2876 930 935 2920 2916 940 945 2960 2957 960 945 2960 2957 960 945 3020 3016 975 980 3020 3016 975 990 3110 3106 985 990 3110 3106 995 1000 3135 3088 1010 980 3160 3113 1025 994 3180 3278 900 986 3180 3278 900 986 3230 3437 905 995 3230 3437 975 1044 3335 3484 1005 1045 3655 37719 1005 1065 3655 37719 1005 1065 3655 37719 1005 1046 3655 3776 1046 1123 37755 3834 10065 11065 3780 3844 1006	No.	Actual (rpm)	Corrected ¹ (rpm)	Actual (*F.)	rected ¹ (°F.)	Air Inlet E (1b/hr) (1	Engine (1b/hr)	Air Flow (lb/sec)	Mixture (lb.fuel/lb.air)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2880	2876	930		48	190	16.72	.0008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2920	2916	940	945	60	290	16.73	.0010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	2960	2957	950	955	06	290	16.93	.0015
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	3020	3016	975	980	114	290	17.25	.0018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3058	3054	985	066	144	290	17.47	.0023
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	3110	3106	995	1000	162	190	17.76	.0025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3135	3088	1010	980	192	290	17.17	.0031
3180 3278 90 3200 3291 91 3290 3291 91 3290 3291 91 3235 3437 91 3236 3437 91 3335 3437 91 3336 3437 91 3437 3437 91 3400 3504 91 3655 3755 3755 3655 3755 3755 3695 3755 100 3725 3834 110 3835 3940 110 2822 2819 92	8	3160	3113	1025	994	228	790	17.16	.0036
3200 3298 90 3290 3391 91 3235 3437 91 3335 3437 91 3335 3437 91 3336 3437 91 3336 3437 91 3400 3504 91 3655 3755 100 3655 3755 100 3725 3884 110 3835 3940 110 2822 2819 92	6	3180	3278	006	986	270	790	19.56	.0037
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	3200	3298	905	166	252	190	19.66	.0038
3335 3437 9 3380 3484 9 3400 3504 9 3400 3504 9 3400 3719 100 3655 3719 100 3655 3755 102 3655 3755 102 3725 3827 102 3735 3844 110 3835 3940 110 2822 2819 92	11	3290	3391	910	966	300	290	20.21	.0041
3380 3484 96 3400 3504 97 3400 3504 97 3655 3755 100 3695 3796 102 3725 3827 104 3735 3844 110 3735 3940 110 3835 3940 110 2822 2819 92	12	3335	3437	955	1044	348	790	20.43	.0047
3400 3504 97 3620 3719 100 3655 3755 102 3695 3796 102 3725 3827 104 3735 3834 110 3835 3940 110 2822 2819 92	13	3380	3484	096	1049	366	290	20.71	.0049
3620 3719 100 3655 3755 102 3695 3796 102 3725 3827 104 3780 3884 110 3835 3940 110 2822 2819 92	14	3400	3504	975	1065	402	290	20.83	.0054
3655 3755 102 3695 3796 104 3725 3827 104 3780 3884 110 3835 3940 110 2822 2819 92	15	3620	3719	1005	1086	444	790	22.03	.0056
3695 3796 104 3725 3827 104 3780 3884 110 3835 3940 110 2822 2819 92	16	3655	3755	1025	1107	468	790	22.19	.0059
3725 3827 104 3780 3884 110 3835 3940 110 2822 2819 92	17	3695	3796	1040	1123	498	290	22.40	.0062
3780 3884 110 3835 3940 110 2822 2819 92	18	3725	3827	1045	1128	540	790	22.55	.0066
3835 39 4 0 110 2822 2819 92	19	3780	3884	1100	1186	552	790	22.87	.0067
2819 92	20	3835	3940	1105	191	564	062	23.22	.0068
2819 920				NORMA	VL OPERATION	DATA			
•		2822		920	925	0	290	16.26	
	1			•	•	;	 		

¹All corrections for rpm and exhaust gas temperature have been made according to U.S. Air Force T.O. 2J-JJ-10 for dry sea-level conditions.

.

~

TABLE IV-A

FUEL INGESTION DATA FOR IDLE (2819) RPM THROTTLE SETTING (Engine J35-A-13D) (Fuel JP-4)

Ingestion Time (sec)	88 88 10 10 10 10 10 10 10 10 10 10 10 10 10
Vibration Amplitude V1V2 (mils)	0.13 0.13 0.13 0.14 0.17 0.17 0.13 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.2
Vibr Ampl V (mi	0.10 0.10 0.10 0.10 0.10 0.10 0.12 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.11 0.12 0.11 0.12
Total Pressure P ₁ P ₂ (in.hg.)	6.0 6.0 6.0 6.0 6.0 7.0 8.0 8.0 10.0 10.0 10.0 10.0 10.0 10.0
To Pres Pl (in.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
T 11	100 100 1105 1105 1100 80 80 80 80 80 80 80 80 80 80 80 80 8
T ₁₀	100 100 1000 1000 105 105 80 80 80 80 80 80 80 80 80 80 80 80 80
T ₉	100 100 100 1100 1100 120 120 120 1100 1100 1100 1100 1100 1100 1100 1100
es (°F.) T8	120 930 100 100 110 940 100 100 110 955 100 100 120 975 100 100 120 975 110 100 120 975 110 105 130 1010 120 100 130 1010 120 120 130 1010 120 120 90 900 75 75 95 905 75 75 95 910 80 80 95 960 80 80 95 910 80 80 95 905 75 75 96 975 80 80 975 975 80 80 975 975 80 90 975 975 90 90 975 105 100 100 105 105 100 100 105 105 100 100 105 105 100 100 105 105 100 100 105 105 100 100
Thermocouples (°F. T ₆ T ₇ T ₈	120 110 120 120 120 130 95 95 95 95 105 105 105 105 105 105 105 105 105 10
	22222222222222222222222222222222222222
ature at T5	840 1025 1025 1025 1025 1025 1025 1025 1005 100
Temperature T ₄ T5	105 105 110 110 110 110 1100 100 100 100
Н Ц	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T ₂	75 80 80 80 80 80 80 80 80 80 80 80 80 80
T I	550 550 551 552 552 552 555 550 550 550 550 550 550
Test No.	2111111109876743721 21187674372109876743271 21187767

14

0.13

0.10

6.0

3.0

77

<u>;</u> 95

100

920

120

75

982

120

100

90

50

TABLE V

FUEL INGESTION DATA FOR CRUISE (6768) RPM THROTTLE SETTING (Engine J35-A-13D) (Fuel JP-4)

Inlet Mixture (lb.fuel/lb.air)	.0005 .0010 .0019 .0019 .0024 .0029 .0033 .0036 .0050 .0050 .0050 .0050 .0066	
Inlet Air Flow (lb/sec)	62.15 62.53 63.19 63.19 64.07 70.05 70.05 71.39 72.56 71.39 72.56 757 757 757 757 757 757 757 757 757 7	61.70
Flow Engine (lb/hr)	2093 2093 2093 2093 2093 2093 2093 2093	2093
Fuel Flow Air Inlet Eng (lb/hr) (lb/	108 234 234 234 234 234 234 234 108 876 876 984 11272 11272 1128 11272 1128 11260 1260	
Exhaust Gas Temperature ual Corrected ¹ F.) (°F.)	745 71 750 23 771 750 23 776 43 787 65 802 667 83 911 887 65 849 849 84 911 931 102 933 102 933 102 933 112 933 112 933 112 933 112 947 116 1162 138 1161 156 1162 138 1161 162 1162 138 1161 162 1162 162 1164 16	745
Exhau Tempe Actual (°F.)	700 725 730 740 740 740 740 740 820 820 820 820 940 1155 11160 1155 11160 1155 11160	200
Engine Speed ual Corrected ¹ m) (rpm)	6817 6868 6940 6940 7047 7142 7142 7524 7528 7528 77583 7775 7775 7775 7965 7775 7983 7983 7983 7983 7983	6768
Engin Actual (rpm)	6700 6750 6820 6830 6830 6830 6925 7020 7120 7120 7120 7220 7220 7220 7275 7275 7275 7275 72	6652
Test No.	202 202 202 202	

¹All corrections for rpm and exhaust gas temperature were made in accordance with U.S.Air Force T.O. 2J-J1-10 for standard dry sea-level conditions.

²Engine failure occurred on this test.

TABLE V-A

FUEL INGESTION DATA FOR CRUISE (6768) RPM THROTTLE SETTING (Engine J35-A-13D) (Fuel JP-4)

Ingestion Time (sec)	й й й 4 й й 7 й 6 й 6 й 6 й 6 й 6 й 6 й 6 й 6 й	
Vibration Amplitude V1V2 (mils)	1.40 1.30 1.30 1.40 1.25 1.25 1.25 1.20 1.20 1.10 1.10 1.10 1.10 1.10 1.10	
Vib Amp V (m		
Total Pressure P ₁ P ₂ (in.hg.)	34.0 34.5 34.5 35.5 35.5 35.5 35.5 35.5 35.5	
Pre I I I		
T 11	280 290 290 290 290 280 280 280 280 280 280 280 280 280 28	
T 10	247 280 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	DATA
Т9	275 275 280 280 280 280 280 280 280 295 290 290 290 290 290 290 290 290 290 290	
Thermocouples (°F.) T ₆ T ₇ T ₈	700 705 725 730 755 790 790 790 820 820 840 855 940 955 11000 1160 1160	NORMAL OPERATING
nocoupi T ₇	300 305 310 325 3320 3345 3320 3345 3320 3345 3320 3345 3320 3345 3320 3345 3320 3345 3320 3345 3320 3320 3320 3320 3320 3320 3320 332	DRMAI
	250 250 250 250 250 250 250 245 245 245 245 245 250 250 250 250 250 250 250 250 250 25	ž
rature at T5	829 852 862 862 862 867 867 930 930 930 930 930 930 930 930 930 930	
Tempeı T	275 290 295 295 295 295 295 295 295 295 295 295	
° H	260 275 275 275 275 275 275 275 275 275 275	
\mathbf{T}_{2}	250 255 255 260 260 275 260 275 260 275 260 275 275 260 275 275 275 275 275 275 275 275 275 275	
T 1	, , , , , , , , , , , , , , , , , , ,	
Test No.	1 2 8 4 6 9 8 4 6 9 8 4 6 9 8 4 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

16

-

1.00

•30

10.0 32.0

252

283

283

700

250 300

802

240 250 250

35

^lEngine failure occurred on this test.

,

.

Fig. 17 Graph Showing Effect on Exhaust Gas Temperature of Ingesting Sprayed Fuel into the Engine Air Inlet of the J35-A-13D Engine

The interconnector between the No. 1 and No. 2 burner cans failed and caused a loud hissing noise which was immediately detected by the operator in the engine control room. The connector was cut in two, and Nos. 1, 2, and 8 burner cans showed signs of discoloration and warpage caused by an overheat condition. After failure occurred, the rpm and EGT started to decrease. The failure occurred without advance warning by a sudden change in temperature, pressure, or vibration. There were no indications of rapid temperature or pressure rise, or excessive vibration prior to failure.

Damage to engine components resulting from the fuel ingestion tests conducted at cruise rpm condition is shown in Figs. 19 to 24, inclusive. The following is noted in connection with the failure:

1. No apparent damage was suffered by the compressor.

2. The No. 1 transition liner was overheated and had several small segments missing from the trailing edge. A photograph of this damage is shown in Fig. 22.

3. The crossover tube between burner cans No. 1 and No. 2 had a large segment burned out from overheating. A photograph of this damage is shown in Fig. 21.

4. Damage to the No. 1 can and its crossover connector is shown in Figs. 23 and 24.

5. The turbine nozzle diaphragm showed general signs of being overheated and was burned through aft of the No. 1 transition liner.

6. The turbine wheel showed evidence of overheat and signs of foreign residue which had formed on the blades. A photograph of this damage is shown in Figs. 19 and 20, inclusive.

The engine was disassembled, inspected, and overhauled at the Powerplant Laboratory, Wright-Patterson Air Force Base, Ohio, in preparation for additional fuel ingestion tests at takeoff (7,759) rpm throttle setting.

Fuel Ingestion Tests at 100 Per Cent (7,759) RPM.

Data recorded during fuel ingestion tests at 100 per cent rpm throttle setting are presented in Tables VI and VI-A. A graphical presentation of the test data is shown in Figs. 25 to 28, inclusive. Fuel was sprayed into the engine air inlet in quantities up to a rate of 3,300 lb.fuel/hr. (0.0130 lb. fuel/lb.air) when failure was initially detected. Failure occurred gradually with the speed increasing to 7,836 rpm and then decreasing to 6,740 rpm, at which time the engine was shut down. The exhaust gas temperature had risen rapidly to 1,418° F. at the time of shutdown.

Fig. 18 Graph Showing Effect of Ingesting Sprayed Fuel into the Air Inlet on the Operating Temperature of a J35-A-13D Engine

. •

Fig. 19 Damage to Nozzle Diaphragm at No. 1 Transition Liner From Fuel Ingestion - Engine: J35-A-13D, Throttle Setting of Cruise (6,768 rpm)

Fig. 20 Damage to Turbine Nozzle Diaphragm Aft of No. 1 Transition Liner From Fuel Ingestion - Engine: J35-A-13D, Throttle Setting of Cruise (6,768 rpm)

Fig. 21 Damage to Crossover Tube Between No. 1 and No. 2 Burner Cans From Fuel Ingestion - Engine: J35-A-13D, Throttle Setting of Cruise (6,768 rpm)

Fig. 22 Damage to No. 1 Transition Liner From Fuel Ingestion - Engine: J35-A-13D, Throttle Setting of Cruise (6,768 rpm)

Fig. 23 Damage to No. 1 Burner Can Inner Liner From Fuel Ingestion Engine: J35-A-13D, Throttle Setting of Cruise (6,768 rpm)

Fig. 24 Damage to Crossover Tube Between No. 1 and No. 2 Burner Cans From Fuel Ingestion - Engine: J35-A-13D, Throttle Setting of Cruise (6,768 rpm)

. •

Fig. 25 Graph Showing Effect on Operating Temperatures of Ingesting Sprayed Fuel into the Air Inlet of a J35-A-13D Engine, Throttle Setting of Takeoff (7,759 rpm)

Fig. 27 Graph Showing Effect on Engine Vibration of Ingesting Sprayed Fuel into the Air Inlet of a J35-A-13D Engine While Operating at Various Throttle Settings

TABLE VI

FUEL INGESTION DATA FOR TAKEOFF (7759) RPM¹ THROTTLE SETTING (Engine J35-A-13D) (Fuel JP-4)

Inlet Mixture (lb.fuel/lb.air)	.0005	.000	.0014	.0020	.0026	.0031	.0033	.0040	.0043	.0046	.0058	.0060	.0065	.0070	.0074	.0077	.0079	.0087	.0095	6600.	.0099	.0103	.0109	.0117	.0117	.0127	.0130		0	
Inlet Air Flow (lb/sec)	73.59	73.59	69.85	69.85	69.85	70.17	72.14	70.86	74.53	72.69	68.67	67.90	70.30	70.30	68.35	69.30	70.21	70.21	70.21	70.57	71.22	71.35	71.57	71.57	72.15	70.60	70.60		73.59	
Flow Engine (lb/hr)	3260	3220	3030	2950	2920	2860	2880	2800	2780	2640	2560	2500	2400	2360	2320	2240	2140	2110	2160	2240	2080	2020	2180	1910	1840	1820	1810		3280	
Fuel Flow Air Inlet E1 (1b/hr) (11	142	246	354	486	648	780	.952	1020	1152	1206	1440	1476	1632	1758	1816	1920	2004	2196	2400	2508	2538	2652	2820	3024	3036	3216	3300	NG DATA	0	
Exhaust Gas Temperature ual Corrected .) (°F.)	996	126	1013	1008	1024	1039	1028	1023	1012	1027	1005	995	984	1026	984	1011	1031	989	989	989	989	989	1059	1079	1074	1074	1418	NORMAL OPERATING DATA	961	
Exha Tem Actual (°F.)	945	950	975	970	985	1000	975	970	960	975	1020	1010	1000	1040	1000	1025	1045	1000	1000	1000	1000	1000	1025	1045	1040	1100	1450	ION	940	
Engine Speed ual Corrected m) (rpm)	7821	7825	7890	7890	7890	1167	7973	1662	8012	8032	7956	7972	7972	7972	7961	1961	7975	7975	7985	8102	8108	8108	8108	8008	8008	7836	7836		7759	
Engin Actual (rpm)	7782	7786	7802	7802	7802	7822	7842	7860	7880	1900	8020	8035	8035	8035	8025	8025	8030	8030	8040	8030	8035	8035	8035	7935	7935	7935	7935		7720	
Test No.	I	5	ŝ	4	`ب ک	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26,	27 ⁴			

¹All corrections for rpm and exhaust gas temperature were made in accordance with U. S. Air Force T. O. 2J-J1-10 for standard dry sea-level conditions.

²Engine failure occurred on this test.

·

.

TABLE VI-A

.

FUEL INGESTION DATA FOR TAKEOFF (7759) RPM¹ THROTTLE SETTING (Engine J35-A-13D) (Fuel JP-4)

						(Eng	ine J35	(Engine J35-A-13D) (Fuel	(Fuel	JP-4)		E	1.44			Incoction
Test				Temper	berature a	at Thern	Thermocouples	es (°F.)				Pre	T otal Pressure	Amp	v ibration Amplitude	Ingesuon Time
	\mathbf{T}_{1}	\mathbf{T}_{2}	$^{\mathrm{T}}_{3}$	1 4			17 1		$^{T}_{9}$	$^{\mathrm{T}}_{\mathrm{10}}$	$^{\mathrm{T}}_{11}$	Р 1 (in.	ol P2 (in.hg.)	v 1 (m	(mils)	(sec)
I	52	275	300	300	945	295	400	*	340	325	340	8.0	38.0	0.50	0.55	29
2	52	275	325	310	950	300	400	¥	340	325	340	8.0	38.0	0.65	0.55	26
ę	46	280	325	310	975	300	400	*	350	340	350	8.0	38.0	0.50	0.50	38
4	46	285	325	320	970	300	400	*	340	340	350	8.0	38.0	0.65	0.45	38
ŝ	46	275	315	310	985	280	405	*	340	340	350	8.0	38.0	0.55	0.65	27
9	46	300	340	340	1000	280	415	*	350	350	355	8.0	38.0	0.70	0.60	22
7	41	270	250	300	975	280	400	655	345	325	340	8.0	38.0	0.50	0.55	30
80	41	275	260	300	970	290	400	645	335	325	340	8.0	38.0	0.60	0.50	27
6	41	275	250	300	960	290	400	650	340	340	345	8.0	38.0	0.45	0.65	27
10	41	285	270	305	975	295	400	660	340	325	345	8.0	38.0	0.65	0.60	25
11	64	290	275	315	1020	325	420	680	350	345	350	8.0	38.0	0.50	0.70	26
12	64	300	295	335	1010	325	425	680	350	345	350	8.0	38.0	0.60	0.70	26
13	64	300	295	335	1000	325	435	680	350	345	350	8.0	38.0	0.65	0.75	26
14	64	300	290	325	1040	325	435	710	350	350	350	8.0	38.0	0.60	0.70	23
15	64	300	295	330	1000	310	475	705	350	350	350	8.0	38.0	0.60	0.75	22
16	64	300	300	330	1025	310	545	710	300	350	350	8.0	38.0	0,65	0.70	20
17	63	300	295	335	1045	365	575	725	300	355	360	8.0	38.0	0.65	0.85	30
18	63	300	295	335	1000	395	510	745	345	355	350	8.0	38.0	0.75	06.0	25
19	63	305	295	335	1000	455	525	725	350	350	350	8.0	38.0	0.80	06.0	32
20	48	295	275	310	1000	425	595	745	340	335	345	8.0	38.0	06.0	06.0	33
21	48	300	275	320	1000	440	510	780	390	340	340	8.0	38.0	0.70	0.95	32
22	48	300	275	320	1000	570	525	775	640	325	340	8.0	38.0	0.78	1.00	25
23	48	305	295	325	1025	645	595	805	650	345	350	8.0	38.0	0.70	1.00	24
24	48	305	290	325	1045	675	555	845	350	345	350	8.0	38.0	0.70	1.10	28
25	48	300	280	325	1040	720	545	845	345	340	350	8.0	38.0	0.65	1.10	25
26	68	300	295	325	1100	720	640	890	400	440	350	8.0	38.0	0.65	0.95	34
27	68	325	305	350	1450	790	675	1040	505	500	600	8.0	38.0	0.90	06.0	34
							NON	NORMAL OPERATING DATA	PERAT	UNG D	ATA					
	52	275	300	300	945	295	400	980	340	325	340	8.0	38.0	0.50	0.55	
*Instr	ument i	*Instrument inoperative.	tive.													
-													t 	, , ,		

¹All corrections for rpm and exhaust gas temperature were made in accordance with U. S. Air Force T. O. 2J-J1-10 for standard dry sea-level conditions.

,

.

1 4

24

.

The J35 engine failure from fuel ingestion at 100 per cent rpm throttle setting is shown in Figs. 29 to 33, inclusive. It was noted that:

1. The transition liner aft of the No. 6 burner can had a leading edge burned as a result of the burner-can inner liner failure; however, all transition liners were intact with no cracked or blown-out segments.

2. The burner-can outer liners were discolored from being overheated, and all the burner-can inner liners were cracked and discolored from being overheated. All burner-can crossover connectors were cracked or burned out completely. Figure 32 shows the burned-out crossover tube between the No. 2 and No. 3 burner cans.

3. The turbine shrouding was discolored from overheating.

4. The turbine nozzle diaphragm was burned through aft of burner cans Nos. 3, 6, 7, and 8. A photograph of this damage is shown in Figs. 30 and 31.

5. Several of the turbine wheel blades had been peened by loose metal particles. The leading edges of these blades were covered with metal deposits which had separated from the burner cans, crossover connectors, and the turbine nozzle diaphragm. Figure 33 shows a section of the turbine wheel with foreign metal deposits on the blades.

GENERAL OBSERVATIONS

The effect of ingesting fuel into the inlet of the J35 engine on vibration is presented in Fig. 27. The vibration did not reach an abnormal (peak-to-peak) displacement on any of the series of tests conducted.

The effect of ingesting sprayed fuel into the inlet of the J35 engine on compressorstage pressures is presented in Fig. 28. The fuel ingestion mixture had little effect on compressor-stage pressure during the fuel ingestion tests.

Fig. 29 Damage to Burner Can From Ingesting Sprayed Fuel into the Air Inlet of a J35-A-13D Engine While Operating at a Throttle Setting of 100 Per Cent (7,759 rpm)

Fig. 30 Damage to Turbine Nozzle Diaphragm From Ingesting Fuel into the Air Inlet of a J35-A-13D Engine While Operating at a Throttle Setting of 100 Per Cent (7,759 rpm)

Fig. 31 Damage to Turbine Nozzle Diaphragm From Ingesting Fuel into the Air Inlet of a J35-A-13D Engine While Operating at a Throttle Setting of Takeoff (7,759 rpm)

. •

Fig. 32 Damage to No. 6 Burner Can Inner Edge From Ingesting Fuel into the Air Inlet of a J35-A-13D Engine While Operating at a Throttle Setting for 100 Per Cent (7,759 rpm)

Fig. 33 Damage to Turbine Wheel Blades From Ingesting Fuel into the Air Inlet of a J35-A-13D Engine While Operating at a Throttle Setting for 100 Per Cent (7,759 rpm)

The effect of ingesting fuel into the J35 inlet on engine fuel flow is presented in Fig. 34. The engine fuel flow remained constant for idle and cruise rpm throttle settings and decreased proportionally at the 100 per cent rpm throttle setting.

The results of the J35 fuel ingestion tests shown in Figs. 16, 17, and 26 indicated that, as the engine air-inlet fuel-ingestion mixture (lb.fuel/lb.air) became richer, the speed and the exhaust gas temperature increased until failure was detected.

A warning of impending failure was observed by a gradual increase in rpm and a rise in exhaust gas temperature during the tests conducted at idle and cruise rpm throttle settings. The aforementioned condition did not exist after the engine speed approached 100 per cent rpm because at this speed the auto-fuel control cut in and regulated the amount of fuel to the engine.

Fig. 34 Effect of Ingesting Sprayed Fuel into the Air Inlet of a J35-A-13D Engine on Fuel Consumption

The tests conducted at 100 per cent rpm throttle setting indicated that the speed started to decrease gradually as the fuel ingestion mixture approached 1 per cent. This condition might have been the result of impending failure which was not immediately detected by instrumentation.

The J35 engine failed as the result of a series of fuel ingestion tests with large quantities of JP-4 fuel being inhaled by the primary-air inlet at the time of failure. Failure occurred when the engine-inlet fuel-air ingestion mixture (lb.fuel/lb.air) approached a one per cent ratio.

CONCLUSIONS (J35-A-13D)

1. From the tests conducted at idle, cruise, and 100 per cent rpm throttle settings, the results indicated that failure will occur by overheating of engine components and the eventual loss of turbine blades rather than by an explosion or a compressor stall.

2. The change in engine vibration or pressure conditions from fuel ingestion was not sufficient to indicate abnormal operation or impending failure.

3. The J35-A-13D automatic fuel control had no effect on engine operation during fuel ingestion tests at idle and cruise rpm throttle settings. The rpm and exhaust gas temperatures continued to rise steadily as the quantity of ingested fuel increased. However, the fuel control stabilized the speed and exhaust gas temperature during the fuel ingestion tests conducted at 100 per cent rpm throttle setting.

4. Warning of impending failure from fuel ingestion on this engine depended upon whether the automatic fuel control was in effect. At cruise and idle rpm throttle settings engine failure from fuel ingestion could be detected by a rise in rpm and exhaust gas temperature. This was not true at 100 per cent rpm throttle setting, where these changes were less pronounced until just prior to engine failure.

5. It is not possible, from the tests conducted, to conclude whether the engine failed as the result of the large quantities of fuel which entered the engine air inlet on the final tests just prior to failure or as the result of the entire series of tests.

RESULTS OF TESTS ON THE GENERAL ELECTRIC J47-GE-25 ENGINE

Normal Operation Tests.

Tests were conducted to determine the effect of rpm on engine fuel consumption, inlet airflow, temperature, pressure, and vibration during normal operation. The data obtained from these tests are presented in Table VII. Graphical presentations of these data are also shown in Figs. 35 to 40, inclusive. Airflow readings were recorded at idle, normal cruise, and 100 per cent rpm throttle settings for estimating the required fuel flow for a given fuel ingestion mixture. Airflow readings also were recorded during the fuel ingestion tests at idle, cruise, and 100 per cent rpm throttle settings to determine the fuel-air mixture (lb.fuel/lb.air) into the engine inlet for each test. Tests conducted during normal operation indicated the performance of the J47 engine was satisfactory at all speeds for idle, cruise, and 100 per cent throttle settings.

Fuel Ingestion Tests at Idle (3,074) RPM.

Fuel in quantities up to 936 lb./hr. (0.0096 lb.fuel/lb.air) entered the inlet of the J47 engine at which time the speed increased gradually from 3,074 to 3,429 rpm. The exhaust gas temperature also increased from 675° F. to 875° F. as the engine fuel consumption decreased. The data obtained during the idle rpm fuel ingestion tests are presented in Tables VIII and VIII-A. Graphical presentations of the effects of ingesting sprayed fuel into the air inlet of the J47 engine on speed, exhaust gas temperature, operating temperatures, engine fuel consumption, compressor-stage pressures, and vibration are shown in Figs. 41 to 46, inclusive. These data indicated that the ingested fuel into the engine inlet was not sufficient to create abnormal operating conditions. A visual inspection of the engine after the tests revealed no apparent damage to the engine

lvibration Amplitude v1 v2 (mils)	0.08	0.37	0.45	0.47	0.52	0.54	
¹ Vibration Amplitude V ₁ V ₂ (mils)	0.05	0.74	0.85	0.88	0.94	1.02	
¹ Pressure at Probes P ₁ P ₂ (in. hg.)	7.5	88.0	89.0	97.0	101.0	106.0	
l _{Pre} at P P ₁ (in.	4.0	31.0	31.0	31.0	31.0	31.0	
1 9	75	325	350	380	400	415	
(°F.) T8	95	350	380	405	420	445	
uples T ₇	85 30 95 75	300	325	350	360	375	
T 6	85	340	360	380	400	420	
T Ther	50	295	335	360	375	385	
ure at T4	65	325	355	380	395	405	
perati T ₃	50	305	350	375	390	405	
T_1 Temperature at Thermocouples (°F.) T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8	675	700	760	815	850	910	
T	20	20	20	20	20	20	
Engine Fuel Flow (lb/hr)	980	3610	4250	4750	5110	5220	
Inlet Air Flow (lb/sec)	25.5	91.6	96.4	99.3	101.2	103.5	
Speed Actual Speed (rpm)	3000	0969	7360	7630	7800	7.950	
Engine Speed Per Cent of Actual Rated RPM Speed (per cent) (rpm)	38.0	87.6	93.0	96.0	98.0	100.0	

NORMAL OPERATION DATA (Engine J47-GE-25)

TABLE VII

 $^1See\ Fig.\ 8\ for\ location\ of\ thermocouple,\ pressure,\ and\ vibration\ pickups.$

. •

.

,

30

TABLE VIII

FUEL INGESTION DATA FOR IDLE (3074)¹ RPM THROTTLE SETTING (Engine J47-GE-25) (Fuel JP-4)

Ingestion	~	62	55	80	68	50	52	47	46	64	39	42	39	45	37	37	36	41	34	31	36			
Inlet	N (1b.fi	.000	.0013	.0019	.0023	.0027	.0029	.0034	.0042	.0048	.0050	.0063	.0063	.0066	.0073	.0082	.0087	.0088	0600.	.0095	9600.		0	
Inlet	Air Flow (lb/sec)	22.5	22.5	22.5	23.8	23.8	23.8	25.2	25.2	25.2	25.2	25.8	25.8	25.8	25.8	25.8	25.8	27.0	27.0	27.0	27.0		25.5	
Fuel Flow	Engine (1b/hr)	066	066	955	955	940	940	940	915	895	875	875	870	845	840	825	290	785	780	750	700		980	
Fuel	Air Inlet (lb/hr)	72	108	150	198	228	252	306	384	432	456	588	598	612	672	762	810	852	870	924	936	ATING DATA	. 0	
Exhaust Gas Temperature	Corrected ¹ (°F.)	786	786	786	786	802	807	913	865	877	867	821	831	831	857	872	872	867	872	892	892	NORMAL OPERATING DATA	731	
Exhar Temp	Actual (°F.)	725	725	725	725	740	745	845	800	820	810	805	815	815	840	855	855	850	855	875	875	UN C	675	
Engine Speed	Corrected ¹ (rpm)	3074	3074	3074	3095	3115	3151	3166	3182	3169	3169	3233	3264	3274	3305	3310	3310	3336	3357	3398	3429		3074	
Engin	Actual (rpm)	3000	3000	3000	3020	3040	3075	3090	3105	3105	3100	3130	3160	3170	3200	3205	3205	3230	3250	3290	3320		3000	
Test	No.	Ţ	2	ŝ	4	ŝ	9	7	æ	6	10	11	12	13	14	15	16	17	18	19	20			-

. 20 standard dry sea-level conditions.

NOTE: See Fig. 8 for locations of thermocouple, pressure, and vibration pickups.

.

¥-	
ΛIII	
SLE	
TAB	

FUEL INGESTION DATA FOR IDLE (3074)¹ RPM THROTTLE SETTING (Engine J47-GE-25) (Fuel JP-4)

Test No.	T	T ∈ T2	emperatures T ₃ T4	tures at T4	Therm T ₅	Thermocouples (°F.) $T_5 T_6 T_7$	es (°F. T ₇	.) T ₈	Ţ,	Total Pressure P1 P2 (in. hc.)	tal isure P ₂ ho.)	Vibration Amplitude V 1 V2 (mils)	tion tude V_2 s)
	35	725	60 9	75	×	100	X	105	105		7.0	.04	.04
7 6	35 25	725 725	60 60	75	××	100	××	105	105	4.0	0.7	.04 20	.05 05
14	0 C 0 C	725	00	22 25	< ×	100	< ×	105	105	4.0 4.0	0.7	0.0	.05 05
2	35	740	60	75	×	100	×	105	105	4.0	7.0	.05	.07
6	35	745	68	75	x	100	×	105	105	4.0	7.0	•05	•06
7	35	845	68	75	×	100	×	105	105	4.5	8.0	.05	.05
8	35	800	68	75	×	100	×	105	105	4.5	8.0	.05	.06
6	40	820	68	60	×	100	×	105	105	4.5	8.0	.04	.05
10	40	810	68	100	×	100	×	105	105	4 .5	8.0	.05	.05
11	55	805	95	125	×	125	×	125	125	4.0	8.0	.06	90.
12	55	815	95	130	×	125	×	125	125	4.0	8.0	.10	.06
13	55	815	95	130	×	125	×	125	125	4.0	8.0	.07	.05
14	55	840	95	130	×	125	×	125	125	4.0	8.0	.12	.06
15	55	855	95	140	×	125	×	125	125	4.0	8.0	.10	.07
16	55	855	60	145	×	115	×	125	125	4.0	8.0	.11	.05
17	55	850	06	145	×	115	×	125	125	4.5	8.5	.14	.05
18	55	855	90	145	×	115	×	125	125	4.5	8 . 5	.14	.05
19	55	875	06	145	×	115	×	125	125	4.5	8.5	.14	.07
20	55	875	60	150	×	115	x	125	125	4.5	8.5	.14	-07
					[ON	RMAL (OPERA	NORMAL OPERATING DATA	ΑΤΑ				
	35	675	50	65	×	85	30	95	75	4.0	7.5	.05	.08
X - Inoperative instrument.	ive inst	rum ent.											

2,

¹All corrections for rpm and exhaust gas temperature were made in accordance with U. S. Air Force T. O. 2J-J1-10 for standard dry sea-level conditions.

.

32

Fig. 35 Graph Showing Inlet Airflow Versus Engine Speed During Normal Operation of a J47-GE-25 Engine

Fig. 36 Graph Showing Fuel Consumption Versus Engine Speed During Normal Operation of a J47-GE-25 Engine

Fig. 37 Graph Showing Temperatures Versus Engine Speed During Normal Operation of a J47-GE-25 Engine

Fig. 38 Graph Showing Temperatures Versus Engine Speed During Normal Operation of a J47-GE-25 Engine

Fig. 39 Graph Showing Compressor Pressures Versus Engine Speed During Normal Operation of a J47-GE-25 Engine

34

Fig. 40 Graph Showing Vibration Versus Engine Speed During Normal Operation of a J47-GE-25 Engine

Fuel Ingestion Tests at Cruise (7,038) RPM. Fuel in quantities up to 3,100 lb./hr. (0.0087 lb.fuel/lb.air) was sprayed into the primary-air inlet of the J47 engine. The data obtained from the fuel ingestion tests with the throttle initially set at cruise rpm are presented in Tables IX and IX-A. Graphical presentations of the effects of ingesting sprayed fuel into the J47 engine air inlet on rpm, exhaust gas temperature, engine fuel consumption, compressor-stage pressures, vibration, and engine temperatures are shown in Figs. 41 to 49, inclusive. Engine failure occurred in Test No. 19 when the compressor stalled. The failure was accompanied by two loud explosions which were detected by operating personnel in the engine control room. When this occurred, all fuel to the engine and inlet was immediately shut off. Smoke followed the explosion and as a precautionary measure, the test cell was closed and flooded with CO2. The results shown in Figs. 41 and 42 indicated that the speed and exhaust gas temperature did not exceed the 100 per cent condition. The speed increased from 7,038 rpm to over 7,322 rpm while the exhaust gas temperature increased from 758° F. to 973° F. when failure occurred. The failure occurred without advance warning by a sudden change in temperature, pressure, or vibration.

Fig. 41 Graph Showing Effect on Speed of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine
TABLE IX

FUEL INGESTION DATA FOR CRUISE (7038)¹ RPM THROTTLE SETTING (Engine J47-GE-25) (Fuel JP-4)

ngestion	Time (sec)	48	52	42	37	40	51	35	61	30	40	42	42	34	28	36	32	31	30	21		
	Mixture (lb.fuel/lb.air)	.0005	.0010	.0014	.0020	.0022	.0029	.0036	.0041	.0049	.0053	.0053	.0056	.0062	.0069	.0070	.0080	.0084	.0087	*		0
Inlet	Air Flow (lb/sec)	88.8	89.1	89.1	89.1	89.1	90.2	90.4	90.4	89.9	89.4	91.6	91.8	92.5	93.9	93.9	91.5	91.5	91.7	*		91.6
flow	Engine (1b/hr)	3440	3320	3320	3200	3200	3130	3100	3020	2960	2860	2900	2840	2710	2600	2530	2475	2420	2320	*		3620
Fuel Flow	Air Inlet (1b/hr)	168	306	456	630	702	948	1170	1344	1578	1698	1740	1860	2064	2328	2352	2640	2772	2856	3100	ATING DATA	0
Exhaust Gas Temperature	Corrected ¹ (°F.)	807	798	798	793	798	813	823	823	823	823	834	850	866	888	893	926	963	666	973	NORMAL CPERATING DATA	758
Exha T emj	Actual (°F.)	775	765	765	760	765	750	760	760	760	760	760	775	790	810	815	855	890	925	006	N	200
Speed	Corrected [*] (rpm)	7141	7070	7100	7080	2090	7164	7215	7205	7236	7225	7256	7276	7297	7307	7307	7281	7301	7322	*		7038
Engine Speed	Actual (rpm)	7060	0669	7020	2000	2010	6990	7040	7030	7060	7050	7050	7070	7090	7100	7100	7100	7120	7140.	*		0969
Test	No.	Г	2	ŝ	4	ın -	9	7	8	6	10	11	12	13	14	15	16	17	18	19		

*Compressor failed on this test.

¹All corrections for rpm and exhaust gas temperature were made in accordance with U.S. Air Force T.O. 2J-J1-10 for standard dry sea-level conditions.

NOTE: See Fig. 8 for locations of thermocouple, pressure, and vibration pickups.

	Vibration Amnlitude	V 2	(mils)	0.34		0.33	0.33	0.34	0.37	0.35						0.45		0.45	0.40	0.40	0.40	0.40		0.54	
	∧ v			0.48	0.52	0.52	0.53	0.55	0.57	0.57	0.59	0.57	0.54	0.56	0.60	0.60	0,60	0.60	0.50	0,60	0.64	0.65		0.66	
	Total	\mathbf{P}_2	(in. hg.)	78.0	76.0	76.0	76.0	76.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	*		88.0	
	μř	, ¹	(in	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	*	IS .	31.0	
(Fuel JP-4)		T ₉		350	350	350	350	350	340	350	350	350	350	335	335	335	335	335	350	360	410	540	NORMAL OPERATING CONDITIONS	325	
E-25)	-	, T 8		365	365	365	365	365	350	350	350	360	360	350	350	350	350	350	350	350	360	370	ATING	350	
J47-G	1es (° F	T7 +		310	310	310	310	310	300	300	300	300	300	290	290	290	310	310	350	325	310	310	OPER/	300	
(Engine J47-GE-25)	Temnersture at Thermoconnles (°F)	T 6		350	350	350	350	350	350	350	350	350	350	340	340	340	340	340	340	350	355	360	RMAL	340	
Ŭ	+ Ther -	12 12		X	X	×	×	×	X	×	X	×	×	330	330	330	330	330	330	340	345	355	NO	295	
	ature a	т. Т. 4		360	360	360	360	360	350	350	350	350	350	275	275	275	275	275	275	275	275	300		325	
	emner	T ₃		345	345	345	345	345	330	330	330	330	330	315	315	315	315	315	315	325	325	325		305	ve.
	F	т г		775	765	765	760	765	750	760	760	760	760	760	775	790	810	815	855	890	925	006		700	perativ
		T I		45	45	45	45	45	40	40	40	40	40	30	30	30	30	30	30	30	30	30		20	X - Instrument inoperative.
	Tect	No.		1	6	Ś	4	ъ	9	7	30	6	10	11	12	13	14	15	16	17	18	19*			X - In:

FUEL INGESTION DATA FOR CRUISE (7038)¹ RPM THROTTLE SETTING (Engine J47-GE-25) (Fuel JP-4)

TABLE IX-A

*Compressor failed on this test.

¹All corrections for rpm and exhaust gas temperature were made in accordance with U. S. Air Force T. O. 2J-J1-10 for standard dry sea-level conditions.

37

Fig. 42 Graph Showing Effect on Exhaust Gas Temperature of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine

Fig. 43 Graph Showing Effect on Temperatures of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine

Fig. 44 Graph Showing Effect on Fuel Consumption of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine

Fig. 45 Graph Showing Effect on Compressor Pressures of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine

Fig. 46 Graph Showing Effect on Vibration of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine

Fig. 47 Graph Showing Effect of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine on Engine Temperatures - Throttle Setting for Cruise (7,038 rpm)

Fig. 48 Graph Showing Effect of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine on Engine Temperatures - Throttle Setting of Cruise (7,038 rpm)

Damage to the engine components resulting from fuel ingestion tests conducted at cruise rpm throttle setting is shown in Figs. 50 to 56, inclusive. The following is noted in connection with the failure:

1. Damage occurred in the compressor section in the first four stages of compression. A view of the damage prior to engine disassembly is shown in Fig. 50. The failure appeared to start in the first stage of compression where the stator and rotor blades interfered under load, the load being created by the fuel entering the inlet.

2. Deformation of the bullet nose accessory covering is shown in Fig. 51. This was probably caused by the compressor stall.

3. Damages to the compressor stator and rotor are shown in Figs. 52 and 53. The first-stage stator blades were deformed and the second- and third-stage stator blades were completely sheared away.

4. The first four stages of blades in the compressor-rotor assembly were deformed with several of the blades torn out at the roots. This type of damage is indicative of a compressor stall.

5. Foreign metal particles were found in the burner cans and transition liners. These particles are shown in Figs. 54, 55, and 56.

6. The burner and exhaust sections were not damaged from the fuel ingestion tests.

Fuel Ingestion Tests at 100 Per Cent (8,018) RPM.

The data recorded from ingesting sprayed fuel into the air inlet of the J47 engine with the throttle set at 100 per cent rpm are presented in Tables X and X-A. These data indicated that the rpm and exhaust gas temperatures increased slightly as the amount of fuel released into the engine inlet increased. Graphical presentations of the effects of ingesting sprayed fuel into the engine inlet on rpm, exhaust gas temperature, fuel consumption, compressor-stage pressure, vibration, and engine temperatures are shown in Figs. 41 to 46, inclusive, and 57 and 58.

An inspection of the engine after the fuel ingestion tests at 100 per cent rpm indicated no apparent damage to the engine. These tests were concluded with Test No. 15 in order to obtain a maximum amount of data on each test condition before a failure occurred. Testing was completed when failure occurred on the cruise rpm tests.

Fig. 49 Graph Showing Effect of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine on Engine Temperatures - Throttle Setting for Cruise (7,038 rpm)

CAA TECHNICAL DEVELOPMENT CENTER INDIANAPOLIS INDIANA

Fig. 50 Damage to Compressor Section From Fuel Ingestion Engine: J47-GE-25 - Throttle Setting for Cruise (7,038 rpm)

Fig. 51 Damage to Bullet Nose Accessory Cover From Fuel Ingestion Engine: J47-GE-25 - Throttle Setting for Cruise (7,038 rpm)

, **.**

Fig. 52 Damage to Compressor Stator From Fuel Ingestion Engine: J47-GE-25 - Throttle Setting for Cruise (7,038 rpm)

Fig. 53 Damage to Compressor Rotor Assembly From Fuel Ingestion Engine: J47-GE-25 - Throttle Setting for Cruise (7,038 rpm)

Fig. 54 Foreign Metal Particles in Burner Can No. 5 Caused by a Compressor Failure During Fuel Ingestion Tests Engine: J47-GE-25 - Throttle Setting for Cruise (7,038 rpm)

Fig. 55 Foreign Metal Particles in Transition Liners No. 5 and No. 6 Caused by a Compressor Failure During Fuel Ingestion Tests Engine: J47-GE-25 - Throttle Setting for Cruise (7,038 rpm)

Fig. 56 Foreign Metal Particles in Transition Liners No. 2 and No. 3 Caused by a Compressor Failure During Fuel Ingestion Tests Engine: J47-GE-25 - Throttle Setting for Cruise (7,038 rpm)

TABLE X

FUEL INGESTION DATA FOR TAKECFF (8018)¹ RPM THROTTLE SETTING (Engine J47-GE-25) (Fuel JP-4)

Ingestion Time (sec)	, L 6	-	30	34	38	31	27	30	32	28	32	32	32	35	30	34	
Inlet Mixture (lb.fuel/lb.air)	7000	0000.	.0010	.0015	.0021	.0026	.0032	.0038	.0042	.0047	.0054	.0055	.0059	,0066	°0069	.0075	
Inlet Air Flow (lb/sec)	F 00	1.44	98.8	99.7	69.7	100.8	1-00.8	100.8	101.2	100.8	101.2	101.2	101.5	101.5	101.7	101.7	
Flow Engine (lb/hr)		0016	5080	5040	4940	4800	4600	4460	4320	4240	4200	4140	4140	4000	3900	3820	
Fuel Flow Air Inlet E (1h/hr) (1		198	354	552	756	930	1170	1380	1548	1716	1950	2004	2160	2400	2520	2760	ING DATA
Exhaust Gas Temperature al Corrected	(° +)	1021	1030	1035	1025	1021	1009	1030	1030	1040	1061	1110	1110	1137	1147	1169	NORMAL OPERATING DATA
Exhau Tempe Actual		960	970	975	965	960	950	970	970	980	1000	1020	1020	1045	1055	1075	NC
Engine Speed 1 aal Corrected ()	(1114 1)	8138	8168	8209	8178	8190	8178	8178	8178	8199	8199	8261	8271	8291	8291	8328	
Engine Actual	(und r)	7970	8000	8040	8010	8030	8010	8010	8010	8030	8030	8020	8030	8050	8050	8085	
Test No.			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	۰ ۰	• ব	۰ <i>د</i> ר) ~ C	~ ~	. oc	0	10		12		4	15	

¹All corrections for rpm and exhaust gas temperature were made in accordance with U. S. Air Force T. O. 2J-J1-10 for standard dry sea-level conditions. .

0

103.5

5200

0

986

910

8018

7950

NOTE: See Fig. 8 for locations of thermocouple, pressure, and vibration pickups.

.

46

	V ibration Amplitude	v ₁ v ₂ (mils)	0,88 0.44	0.96 0.45						1.02 0.46							1.05 0.55		0.95 0.45	
	e	⁴	98.0																106.0 0	
	Total Pressure	P ₁ ¹ (in. hg.)	30.0																31.0 10	
(Engine J47-GE-25) (Fuel JP-4)		19	425	425	425	425	425	425	425	425	425	425	420	420	420	455	475	NORMAL OPERATING CONDITIONS	415	
:-25) (F	-	$^{\mathrm{T}}_{8}$	450 450 450 450	450	450	450	450	450	450				445	ATING (445				
J47-GF	Thermocouples (°F.,)	т ₇	375	375	375	375	375	375	375	375	375	375	365	365	375	380	400	OPERA	375	
Ingine	mocoul	T 6	425	425	425	425	425	425	425	425	425	425	420	420	420	420	440	SMAL (420	
I)	at Ther	Т5 Т	×	X	×	×	×	×	×	×	×	×	400	400	400	400	420	ION	385	
	itures a	T 4	430	430	440	425	425	425	425	430	430	425	325	325	325	325	325		405	
	Temperatures	T 3	400	400	400	400	400	400	400	400	400	400	375	380	385	385	400		400	e.
	Т	Ч	1021	1030	1035	1025	1021	1009	1030	1030	1040	1061	1110	1110	1137	1147	1169		910	perativ
		T 1	40	07	40	40	40	40	40	40	40	40	25	25	25	25	25		20	X - Instrument inoperative.
	Test No.		1	1 م	Υ	+	'n	o,	7	80	6	10	11	12	13	14	15			X - Ins

¹All corrections for rpm and exhaust gas temperature were made in accordance with U. S. Air Force T.O. 2J-J1-10 for standard dry sea-level conditions.

.

.

TABLE X-A

FUEL INGESTION DATA FOR TAKEUFF (8038)¹ RPM THROTTLE SETTING

47

.

CONCLUSIONS (J47-GE-25)

The results indicated that failure would result from a compressor stall or from an
explosion rather than by overheating of engine components in the burner or exhaust sections.
 Changes in engine vibration, pressure, and exhaust gas temperatures were not
sufficient to indicate abnormal operation or impending failure.

3. It is not likely that the J47 engine will fail as a result of sprayed fuel ingestion into the inlet in mixtures of less than 0.075 lb.fuel/lb.air for a short time period of less than one minute.

4. The J47-GE-25 engine fuel control limited the rpm and exhaust gas temperatures and prevented damage to the burner and exhaust sections.

5. Warning of impending failure from fuel ingestion could not be detected by the instrumentation used during the tests on the J47 engine.

Fig. 58 Graph Showing Effect of Ingesting Sprayed Fuel into the Air Inlet of a J47-GE-25 Engine on Engine Temperatures - Throttle Setting for Takeoff (8,018 rpm)

USCOMM-DC-54590