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ABSTRACT

Unsteady Surface Element (USE) methods are
applied to a model of a thermocouple wire attached to
a thin disk. Green's functions are used to develop
the integral equations for the wire and the disk. The
model can be used to evaluate transient and steady
state responses for many types of heat flux
measurement devices including thin skin calorimeters
and circular foil (Gardon) heat flux gages. The model
can accommodate either surface or volumetric heating
of the disk. The boundary condition at the outer
radius of the disk can be either insulated or constant
temperature. Effect on the errors of geometrical and
thermal factors can be assessed. Examples are given.

NOMENCLATURE

a = wire radius
A = thermal diffusivity ratio
= az/al
b = disk radius
b+ = disk radius to wire radius ratio
= b/a
B = contact Biot modulus
= ha/k]
Bi = lateral surface Biot modulus
= 2hea/ky
cy = m(m-1/2)
GR = radial Greens function
Gy = x-direction Greens function
h = contact heat transfer coefficient
he = lateral heat transfer coefficient
J = Bessel function
k = thermal conductivity
K = thermal conductivity ratio
- ky/k1
£ = wire length
4% = ratio of wire length to wire radius
- 2/a
L =~ disk thickness
L* = ratio of disk thickness to wire radius
= L/a
q0 = heat flux at the disk/wire interface

qt = dimensionless heat flux, Eq 6c
qtt = dimensionless heat flux, Eq 6e
qr, = heat flux at surface x=L
r = radial coordinate
r' = dummy radial coordinate
s = Laplace transform coordinate
tt = non-dimensional time, Eq. 6a
T+ = non-dimensional temperature, Eq. 6b
T++ = non-dimensional temperature, Eq. 6d
x = axial coordinate
x’' = dummy axial coordinate

Greek Symbols

a = thermal diffusivity
Bm = roots of Jo(Bp)=0
Ym = roots of Ji(yp)=0

7 = dummy time variable

Subscripts

1 = related to the disk
2 = related to the wire
j,i = initial value of a parameter for body j
nl = no heat loss from the wire
nw = value of a parameter if wire is not present
ss = steady state value of a parameter

INTRODUCTION

The operation of a variety of heat flux sensors
and calorimeters involves contact temperature
measurements on thin plates. . Thermocouples are often
used for this purpose. Estimating and/or correcting
the errors involved in making these measurements is an
important problem in experimental heat transfer.
Numerous papers have been written on this subject.

For thin skin calorimeters, Burnett (1961) and
Larson and Nelson (1969) developed approximate models
for estimating the magnitude of the errors. Henning
and Parker (1967) and Keltner (1973,1974) developed
analytical models for the transient response of
intrinsic thermocouples. Keltner and Bickle (1976)
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and Wally (1977) used these response models to correct
measurement errors. Cassagne et. al., (1980), Keltner
and Beck (1983), and Litkouhi and Beck (1985)
developed more accurate transient response models.
Wedekind and Beck (1982) addressed the problem of
nonuniform heat fluxes. McMurtry and Dolce (1982)
developed a numerical model for a fast response
calorimeter. Kidd (1985,1986) developed numerical
models and used them for sensitivity analyses.

For the circular foil heat flux gages, which are
generally called Gardon gages after the developer,
Gardon (1953) described the response in terms of a
first order or exponential responmse. Analyses by Ash
(1969) and4Kirchoff (1972) indicated that the
exponential response model was not sufficient for
rapid transients. Malone (1967) found that accounting
for heat transfer to the center thermocouple wire
could significantly affect the shape of the transient
response., Keltner and Wildin (1974,1975) developed a
response model for the gages and used it to estimate
measurement errors. Borell and Diller (1987) analyzed
the response to convective heating and developed
convective calibration methods.

The errors involved in making temperature
measurements with thermocouples attached to thin
plates may be transient, steady state, or both. The
errors may result from the thermocouple installation
altering the local surface temperature distribution or
the effects of heat transfer in the thermocouple/plate
combination. This paper will deal with the latter
problem. There are many sources of this type of
error, but the most significant are:

1. thermal constriction effects within the plate
to which the thermocouple is attached,

2. thermal inertia of the thermocouple,

3. imperfect contact between the thermocouple and
the surface,

4, heat loss from the thermocouple to the
ambient,
5. the effective junction location being

displaced from the surface.

Keltner and Beck (1983) developed the Unsteady
Surface Element (USE) methods that are applied to a
model of a thin disk attached to a wire. In this
paper, Green's functions are used to develop the
integral equations describing the temperature of the
wire and the disk. The model can accommodate either
surface or volumetric heating of the disk. The
boundary condition at the outer radius of the disk can
be either insulated or constant temperature. The
model can be used to evaluate transient and steady
state responses for many types of heat flux
measurement devices including thin skin calorimeters
and circular foil heat flux gages. The effect on the
errors of geometrical factors, such as the disk to
wire radius ratio or the ratio of disk thickness to
wire radius, and thermal factors, such as contact
resistance between the wire and the disk or heat loss
from the wire, can be assessed.

A sketch of the model is shown in Figure 1. The
disk portion of the model is treated in a two-
dimensional fashion. The thermocouple wire is modeled
as one-dimensional; heat conduction occurs only in the
axial direction wire. A fin correction can be used to
allow for heat loss from the thermocouple. Imperfect
thermal contact at the interface of the disk and the
wire is modeled by a contact heat transfer
conductance, h.
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The response models are developed for a step
change in either the initial temperature or the
surface heat flux. For surface heating, the initial
temperature of the disk is the same as that of the
wire. For volumetric heating, the initial temperature
of the disk is different from that of the wire and the
surface heat flux is =zero. The response to a time
varying condition of either type can be obtained from
the step response via convolution.

MATHEMATICAL FORMATION

The heat transfer at the interface of the wire
and the disk can be expressed:

1 1 = h(T,(E) - T (8)) 1)
where h is the contact heat transfer conductance.
perfect contact, h is infinite, resulting in
To(t) = T1(t).

For

By energy conservation, the area averaged heat
flux entering body 1 at the interface is equal to that
leaving body 2, or:

qoy]_ - 'qoyz (2)

The temperature at x=0 for the disk is given by
(Beck, et. al. 1988):

t (b
Tl(r,O,t) = 2walfr=0fr'=0 (qL/kl) *

’ r !
Gpog (T tlr 17)Cy00€0,t|L, r)x"dr dr
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In equation 3, the first term on the right hand
side represents the effect of surface heating, the
second term the effect of heat loss to the
thermocouple wire, and the third term the effect of
the initial temperature in the disk. Gx represents
the =x-direction Green's function; whereas Gr



represents the radial direction Green's function. The
numbering system utilized for the Green’s function is
that developed by Beck and Litkouhi (1988). The
numeral subscripts indicate the boundary conditions:
J=0 1is an infinite boundary, J=1 indicates a
prescribed temperature boundary condition, and J=2
indicates a prescribed heat flux boundary condition.

In this paper, two cases are considered. If
there is volumetric heating of the disk, then qp = 0;
this case is modeled by a step change in the initial
temperature of the disk. If there is surface heating
of the disk, then Ty i = 0. Without loss of
generality, T i can be set equal to zero. For the
insulated boyndary case, the third term is equal to
the initial temperature of body 1 (Ty, 1).

The average temperature over the disk/wire

interface is the concern of this paper. The average
temperature over the area 0<r<a can be expressed as:

a
T1(t) = 1—5 I T, (t)2nr dr (4)
na r=0

The average non-dimensionalized temperature for
the case of impulsive, volumetric heating is given by:

THe+) me - -
7D T,/ - Ty )

4r t; a a
+ “—f I I rhe, (r, e’ ) *
a r;=0 =09z =0 0" a’ "ROJ a a
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Whereas that for surface heating can be expressed as:

4 tt a
TH(tt) = _EI a J
1 a a 11_0

b
+ +y %
r_ofr'-oGROJ(r’talr’Ta) (5b)
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where c; - alt/a2 (6a)
Tj - (Tj - Tj,i)/(Tl’i - T2,i) (6b)

9§ = dp,18/ kg (Ty § - Ty 1)) (62)

T}* - Tj/(qLa/kl) (6d)
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qft -

5= a9 1/9, (6e)

The wire is considered to have conduction in the
axial direction only. The nondimensional temperature

of* the wire at x=0 can be expressed (Beck, et. al.
1988):
A ta
+eet) = -g 2| & gt(st + +ydrt
TH(EH) ay JT+-0qo(fa)GX21(0,ta|0,ra)dra (7a)
a
or
A (%2
e et) = og D | B gttt + +yqr+
THH(eh) - ca Ir+-oq° (r¥)6y,q €0, F[0, 7y art (7b)
a
where: K-kz/k1 and Anaz/a1 (8)

The fin approximation is used to allow for heat
loss from the wire (Beck, et. al., 1988).

i - +
T2(ta) T exp( BiAta)

2,nl
Bi = 2ha/k,

(9

where: (10)

Many of the Greens functions are in the form of
infinite series; as time approaches zero, a very large
number of terms are necessary for accurate evaluation.
The time partitioning method outlined in Keltner and
Beck (1987) allows the use of simpler expressions.
Expressions for the different Green’s functions in the
necessary time partitions are given in the Appendix.
The Greens functions are from Beck, et. al., 1988.

Using equation 6, it can be shown that non-
dimensional forms of equation 1 are:

af = B(T} - TH (11a)
ot = B(THF - T (11b)

The Laplace transforms of equations (5), (7), and
(11) are taken; Equations (5) and (7) are substituted
into Equation (11). The resulting equation can be
solved for heat flux at the interface. From this
solution and Equation (7), Tot(tat) or Tot(tp*) can
be determined. The Gaver-Stehfest method of numerical
inversion is used to evaluate the equations.
(Stehfest, 1970)

A Fortran model was developed using this
formulation. Variables effecting the behavior of the
response of the thermocouple are geometric parameters
(b*, L*, and £*), thermophysical property ratios
(K and A) and heat transfer characteristics (Bi, and
1/B). The effect of varying these parameters can be
examined with the model.

Case 1 -
gage

Volumetrically heated, insulated boundary

X-Ray dosimeters undergo impulsive, volumetric
heating. Assuming an insulated boundary at r=b and a
very long wire provides a good model for this type of
calorimeter.



The response of these devices can be modeled by
assuming that the disk and the wire start at different
temperatures, i.e., T] j = T2, i. The error in this
case is defined as the difference between To(t) and
T1,i because an ideal sensor would instantaneously
indicate the initial disk temperature.

By using very large values of bt and L%, this
model can also be used for a wire attached to a semi-
infinite body which undergoes a step change in
temperature. The semi-infinite response for the
present model is compared with the response for the
same conditions (K=A=1l, 1/B=Bi=0) from Keltner and
Beck (1983) in Figure 2. The maximum difference
between the responses from the two models is 3% which
occurs at tgt=0.5. The difference is due to the use
of more accurate expressions for the Green's functionms
in the present analysis.
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Figure 2. Case I - Comparison of the current model

with an earlier model for the response of
an intrinsic thermocouple on a thick wall,
(K=A=1 and 1/B=Bi=0)

Figure 3 shows the effect of the ratio of the
disk thickness to the wire radius on the response of
the thermocouple. These responses are for similar
metals (K=A=1l) with no heat loss from the wire and
perfect contact at the interface. The response for L+
values ranging from 0.2 to 5 are compared to the
response for an ideal intrinsic thermocouple attached
to a semi-infinite body. The boundary at x=L begins to
affect the response of the wire at ty+=0.1L+2;
however, the response does mot vary significantly from
the semi-infinite response until approximately an
order of magnitude longer. Except for the early
times, thin disks respond more slowly than the thicker
ones. For large disk-to-wire radius ratios and L*
values greater than 10, the response approaches the
case of an ideal intrinsic thermocouple attached to a
semi-infinite body; the maximum difference between the
response for L*=10 and the semi-infinite response is
0.15%.

Eventually, energy conducted from the disk into
the wire will affect the response. This effect is
dependent upon the combination of L+ and bt. One
method of examining this effect is to hold Lt constant
and vary b*. For L*¥=2 and b+ values ranging from 20
to 1000, the heat loss from the disk begins to have an
effect at approximately tpt=(b*-1)2. Figure 4 shows
the response for disks with these geometric
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parameters, with K=A=l, no contact resistance or heat
loss from the wire. The temperature of the disk would
become equal to that of the wire at very late times.
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Figure 3 Case I - The effect of disk thickness on
the response of an intrinsic thermocouple
(b+=1000, K=A=1l, and 1/B=Bi=0).
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Figure 4. Case I - The effect of the disk radius/wire

radius ratio on the response of an
intrinsic thermocouple (L*=2, K=A=1, and
1/B=Bi=0).

Material property effects are shown in Figure 5
for an ideal intrinsic thermocouple (1/B=0) with no
heat loss from the wire (Bi=0) attached to a disk with
the following geometric properties: L¥=2, b+=1000, £+
approaching infinity. The response is much slower for
larger values of K/[A . The very long time response
is unity for all values of K/J—A— , however

Heat lost from the thermocouple will also drive
the response to zero. The effect of varying rates of
heat loss (values of Bi) from the wire for a gage with
L+=2, b*+=100, no contact resistance (1/B=0), and made
from similar materials (K=A=l) is shown in Figure 6.
At early times, the heat loss has little effect. As
the wire heats, this loss becomes more important and
the response falls below the zero loss case.
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Figure 5. Case I - The effect of thermal properties
on the response of an intrinsic
thermocouple (L*=2, b+=1000, and 1/B=Bi=0).
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Figure 6. Case I - The effect of heat loss from the
wire on the response of 'an intrinsic
thermocouple (L*=2, B+=100, K=A=1, and
1/B=0).

The effects of using beaded thermocouples or
having contact resistance at the disk/thermocouple
interface were discussed in Keltner and Beck (1983).
In both cases, the zero time response is zero and the
temperature rise is slower. The effects of contact
resistance are incorporated in the model through the
parameter B. The effect of a beaded thermocouple in
displacing the junction from the interface can be
obtained from T(t) via convolution.

Case 2: Surface Heated, Insulated Boundary Gage

Thin skin calorimeters and certain types of laser
power meters are examples of instruments that are
represented by a model with a surface heat flux on the
front surface of the disk (x=L) and an insulated
radial boundary (at r=b). Such calorimeters are
frequently used in wind tunnel testing. They have the
advantage of being easy and inexpensive to construct.
The ideal response of such is a gage is a linear
increase of temperature following a short transient.

A design that was previously analyzed by Keltner
and Bickle (1976) involved a thin skin calorimeter
with a 36 gage (.127 mm) type K thermocouple
(chromel/alumel) intrinsically attached to a 1 mm
thigk 304 stainless steel plate. The wire is very
long compared to its dlameter. The resulting value of
Lt is 15.7 with bt and £t very large. For the chromel
wire, K~1.13 and A=1.27; whereas for the alumel wire
K=1.75 and A=1.88. The gage is considered to have no
interfacial resistance to heat flux (1/B=0) or heat
loss from the wire (Bi=0). )

The resulting responses are shown in Figure 7.
Also given is the ideal temperature or the average
non-dimensional temperature for the substrate over the
contact area, 0sr<a, if no wire was present. At
"late" times, the ideal response is a ramp of the form
Ckt, A value of tat of 1000 represents a real time of
approximately 1 second for this gage design.
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Figure 7. Case 2 - Ideal and predicted responses of
the chromel and alumel junctions of an
intrinsic thermocouple on a stainless steel
thin skin calorimeter. (Lt=15.75,
bt=f=10000, and 1/B=Bi=0)
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Figure 8. Case 2 - Ratio of the actual respones to

the ideal response of a thin skin
calorimeter (Lt=15.75, b+=£+=10000, and
1/B~Bi=0).



The ratio of the actual response to the ideal
response is considered to be the difference between
the error and unity. In general, the item of interest
is the slope of the ramp because this is directly
related to the heat flux. It can be shown that the
time dependent error in the slope of the ramp is equal
to C(l - step response), where the step response was
defined In case 1. This value is given in Figure 8.
At tat=1000, the error is 3% for the chromel wire and
4% for the alumel wire.

Case 3:
Gage

Surface Heated Constant Temperature Boundary

*

A circular foil (Gardon) heat flux gage can be
represented by a gage which experiences surface
heating and has a constant temperature at the radial
boundary (r=b). Such gages often consist of a copper
wire attached to a constantan disk (K=16.1, A=17.0).
For the gage analyzed by Keltner and Wildin (1974,
1975), the geometric parameters are Lt=1.875, bt=45,
and £+=90.6 for a wire radius of 0.0016 in. The
response for such a gage is compared to the ideal
response, that is the temperature if no wire was
attached, in Figure 9. The gage achieves a steady
state response at tz+=3000 which corresponds to an
real time of 0.75 seconds. For a 30 W/em2 flux, the
steady state value of 215 represents a 120 °C
temperature difference between the center of the disk
and its edge. The ratio of the response to the ideal
response is shown in Figure 10. The ratio of the
steady state response to the ideal steady state
response is 0.794.
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Figure 9. Case 3 - The response of a Cardon Gage to a

constant flux (L*+=1.875,
K=16.1, A=12, 1/B=Bi=0)

b*t=45, 1+=90.6,

Keltner and Wildin (1974) analyzed a gage with
the same parameters. The normalized responses (the
response divided by the steady state response) are
compared in Figure 11. Although the normalized
responses are similar, the present model predicts a
ratio of the steady state response to the ideal steady
state response of 0.794 compared to a value of 0.830
for Keltner and Wildin (1974). The difference in
steady state values of 4.3% may be due to the fact
that Keltner and Wildin (1974) used the centerline
temperature (r=0) instead of the average over the
interfacial area (0O<r<a).
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Figure 11. Comparison of the response of a Gardon
Gage predicted from the current work and
an earlier work.
SUMMARY

Using the unsteady surface element method and
Green'’s function integral equations, a model of a
thermocouple attached to a thin disk has been
developed. The model can be adapted to a variety of
heat flux gages by varying flux, initial, and boundary
conditions. Varying a few geometric, thermophysical,
or heat transfer properties allows the model to be
applied to many different situations.
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