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Theoretical and Experimental Investigation of the Compressible
Free Mixing of Two Dissimilar Gases

CorLEMAN DUP. DonaLpson™ anp K. Evan Grayt
Aeronautical Research Associales of Princeton Inc., Princeton, N. J.

An extension and improvement of Warren’s momentum integral method for predicting the
turbulent mixing and decay of axially symmetric, compressible, free jets to the case of the
mixing of dissimilar gases is discussed. Two ideal gases having different molecular weights
and specific heats are treated with the assumption that the local turbulent mixing rate at each
axial location depends upon a suitably chosen local reference Mach number. This method
of analysis is then compared with the results of a series of jet-mixing experiments carried
out on helium, methane, nitrogen, carbon dioxide, and freon jets mixing in air. Mach num-
bers ranging from 0.75 to 3.30 were investigated. The character and mixing rates of both prop-
erly and improperly expanded supersonic jets were studied. It is concluded from a compari-
son of these data with the theoretical method presented that a general relationship exists, at
each axial position in the jet, between a local mixing rate parameter and the local Mach num-~
ber. This general relationship is independent, within the accuracy of these experiments, of
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the physical properties or the thermodynamic state of the mixing gases.

1. Introduction

HERE has been much interest recently in the turbulent

mixing rates of high-temperature free jets and wakes.
A great deal of this interest has been generated by the prob-
lem of predicting the thermodynamic and electrical proper-
ties of decaying rocket exhaust plumes and wakes of re-entry
vehicles. There are, in addition to these two primarily mili-
tary problems, a great number of instances throughout our
present technology where the turbulent mixing characteristics
of free jets and wakes are of considerable importance.

There are essentially three methods in use today by which
the decay of free jets and wakes are studied. These consist
of two methods that have been in use for some time, and a
method that has become available within the last few years
as a result of the rapid development and use of high-speed
computers. The three methods are: 1) the simple momen-
tum integral method, 2) solution of the equations of motion
when certain assumptions are made which render these
equations tractable to existing analytical techniques, and
3) step-by-step numerical solution of the equations on high-
speed digital computers.

All of these methods depend ultimately on experimental
turbulent mixing data since an essential part of all these
techniques is the specification of the local eddy viscosity
of the particular turbulent flow in question at, at least, one
general location in the mixing region; and this is a task quite
beyond the power of existing theory.

An excellent bibliography of both experimental and theo-
retical work on turbulent mixing prior to 1950 is given in a
paper by Forstall and Shapiro.! Excellent reviews of more
recent work on turbulent mixing may be found in papers by
Libby,? Ferri, Libby, and Zakkay,® and Ferrit Without
attempting to review the literature further at this time, two
papers from among this more recent work should be men-
tioned specifically. The first, by Warren,® presents the re-
sults of & number of experiments on the mixing of properly
expanded, heated jets into quiescent air. In these experi-
ments, the initial Mach number of the air in the jets studied
was varied between approximately 0.7 and 2.6. These ex-
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perimental results were analyzed by means of the momentum
integral technique and the general character or mixing rate
of the jets studied presented in terms of a mixing-rate param-
eter that was a function of Mach number. It is typical of
the analysis or description of mixing phenomena by means
of the momentum integral technique that only general trends
of characteristics of the motions involved can be described.

The second paper that should be mentioned is one by
Libby.? In thispaper, an attempt is made to go beyond the
momentum integral technique and look for more complete
information concerning the nature of jet mixing by means of
analytical solutions of approximate equations of motion.
The method presented by Libby was developed in connection
with the mixing of two coaxial streams of dissimilar gases, the
outer being of infinite extent. This paper is important be-
cause the analysis developed forms the basis for much subse-
quent research on turbulent mixing (see, for example, Refs.
3,4,6,and 7).

In conjunction with some recent work at Aeronautical
Research Associates of Princeton (ARAP), a number of
simple mixing experiments were carried out. In these tests,
the decay and spread of both properly and improperly ex-
panded free jets of several gases in an ambient atmosphere
of air were measured. These measurements were analyzed
by developing an extension of Warren’s method® for pre-
dicting free-jet deeay and comparing the experimental re-
sults with theoretical calculations. Since the results of these
experiments are thought to be of interest, these experiments
and their analysis are presented here in the form of & mixing-
rate parameter that is apparently, to first order, only a func-
tion of a suitably chosen local Mach number.

2. Analysis

Tn the discussion that follows, we will assume a free mixing
to take place between an initially irrotational and axially
symmetric stream of an ideal gas distinguished by the sub-
script 1 and another ambient gas (subseript 2) that also is
ideal. These two gases are, for the purpose of predicting
the basic mixing process, assumed to be inert chemically.
Under these circumstances, the density of the gas in any
region of interest is given by the expression

p=p+ = ple+ c2) (2.1)

where ¢, and ¢, are the mass fractions of gases 1 and 2, respec-
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tively. The local enthalpy per unit mass is given by
h = ey + by = (Clcm + CZC:oz)T = EPT (22)

where ¢,, and ¢, are the constant specific heats at constant
pressure of gases 1 and 2. In addition, we will assume that
the Prandtl and Schmidt numbers of the two gases and any
mixtures thereof are one, and that the Mach number of the
turbulence itself in the mixing processes under consideration
issmall, i.e.,

M2 = ul“/d? <1

Under these circumstances, we can make the customary
assumption that the usual Croceo integral

h+ (4%/2) = Aa + B (2.3)

and the associated concentration integrals

Cu + ol = b (2.4)

hold throughout the mixing region. In the preceding equa-
tions we have followed the usual practice of denoting mean
quantities by a superscript bar and all fluctuations from these
mean values by means of a prime.

The equations we shall need under the foregoing assump-
tions to describe the mixing region are then

(0/0x) (par) + (0/0r)(pvr + p'v'r) = 0 (2.5)
purQu/oz) + (57 + p'v")ri/or) = — (/o) (pu'’) (2.6)

op/or = — /o) (™) + (pw” — F'r)  (2.7)
w=10 (2.8)

together with the condition that mean quantities are inde-
pendent of ¢. In these equations, p is the pressure, and a
cylindrical coordinate system (r, ¢, x) with velocity com-
ponents (v, w, u) is used. In addition to the assumptions
given previously, which permitted the neglect of terms of the
form p'u’, we have also neglected a term in Eq. (2.6) of the
form o(pu”* — pv'")/ox. If we eliminate p5 + g’ from
Eq. (2.6) by means of Eq. (2.5), we obtain

~- Ol o O o)
rpil % " o j:) Y (rpi)dr = — 5 (rpu'v’) = 5 (r7)
(2.9)

With the results just presented in hand, we are able to
discuss the extension of Warren’s method for predicting the
decay of axially symmetric free jets to the case of the mixing
of two separate and chemically inert gases. Since Warren’s
method is 2 momentum integral method, we integrate Hgq.
(2.9) with respect to r from the axis of symmetry to some
particular radiusr = r,. The result is

d o d
P 0* pitrdr = iy o j; " pardr + 1ere (2.10)
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This equation states that the net rate of change with respect
to axial distance of the momentum in the jet out to an arbi-
trary radius ry is equal to the change in momentum resulting
from mass addition with velocity 4. at radius 74 plus the
change in momentum resulting from the shear taking place
at radius r«. Since 74 is arbitrary, we are free to choose any
radius we wish and thus pick the customary one, namely the
radius at which the local velocity has fallen to exactly one-
half the value of the velocity on the centerline for the same
axial location, which we designate r;. If, on the other hand,
we pick a very large radius, the two terms on the right-hand
side of Eq. (2.10) vanish, since iy — 0 and 74 — 0 as 7% — .
Therefore, the net change of the total momentum flux passing
through each plane normal to the axis of the jet is zero.
Thus, we bave produced two equations out of expression
(2.10). One is expression (2.11) with »; and 75 substituted
for r« and 74, and the other is an expression for the fact that
the total axial momentum flux is mvariant. Thus,

i " pirdr = s 4 [ pardr — 7srs  (2.11)
dx Jo dz Jo

P’

: (2.12)

fo pulrdr = const =

Yelocity Profiles

A relationship between % and r can be obtained by assum-
ing some velocity profile across the jet. Here we can lean
upon experimental evidence that shows that the general
character of free jets can be approximated guite well by the
idealized jet structure illustrated in Fig. 1. It is seen that
the jet can be considered as being made up of two distinct
regions. Close to the jet exit there is a region in which a
“core” of fluid, moving at the exit velocity of the jet, is em-
bedded. This core diminishes in width in a downstream di-
rection to a point at which it ceases to exist. The distance
from the exit plane to this point is known as the core length
and defines the extent of this first or core region. Outside
the core, turbulent mixing is taking place and, as can be seen
from Fig. 1, this mixing grows laterally as the width of the
core diminishes.

Downstream of the core region, the velocity profiles be-
come similar in shape, changing only in scale. Here, with
increasing distance downstream, the velocity on the center-
line decreases whereas the width of the jet continues to in-
crease. It has been shown by several workers®:? that for
the incompressible, single-gas, turbulent free jet, the center-
line velocity in this second or “developed” region is propor-
tional to 1/x whereas the spreading of the jet is proportional
to z.

From the preceding observations, it is clear that two ve-
locity profiles are needed, one for the core region and one
for the developed region. The profiles used by Warren?
appear to be the most useful. These profiles are

Core region

0 = fie Mt/ =it r>or
(2.13)
= @ r<mn
Developed region
i = G MO/ (2.14)

Here, r; refers to the radius to the outer edge of the core and
5 to the radius at which the local velocity @ is one-half of the
centerline value @.. Note that r; is a convenient measure of
the spread of the jet, representing as it does the “half ve-
locity” point for a particular station. It ecan easily be shown
that with the foregoing definition of 75, A = In2.
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Turbulent Shear Stress

We turn now to an evaluation of the turbulent shear stress.
We will assume, following Warren, that the local value of this
stress is given by

= —pu'y' = KpbU,(0a/or) (2.15)

where K is the mixing-rate factor, b is a typical local scale
length, p is the local density, and Uj is a typical local velocity
difference. For the core region of the jet (again following
Warren), we choose b equal to 75 — r; and U, equal to @,/2,
and in the developed region we take b equal to 75 and U, equal
to @./2. Thus, we have for the core region,

7 = Kp(rs — r:)(4:/2)(Qu/or) (2.16)
and for the developed region,
7T = Kpry(a./2)(06,/0r) (2.17)

Local Enthalpy

The equation for the local enthalpy [Eq. (2.3)] can, by
utilizing the boundary conditions & = h., when 4 = 0 and
h = hywhen & = %, be written

h = ho+ (B — ho)(@/@) — (@:2/2)(5/5,)? (2.18)
where

R = k4 w@%/2

Local Mass Fractions

In the case of the mixing of a rocket exhaust with the air
surrounding it, there exist two é,; &, the local mass fraction
of the exhaust gas and &,, the local mass fraction of the sur-
rounding gas. From Eq. (2.4), utilizing the boundary condi-
tions & = O when @ = 0 and & = 1 when @ = 4, one obtains

¢ = @/ (2.19)

Since the boundary conditions on &, are & = 1 when % = 0
and ¢, = 0 when @ = @,, we find that

o =1 — (a/a) (2.20)

Other Local Properties

In order to solve Egs. (2.11) and (2.12) for the spread and
decay of a given jet, we shall have to have an expression for
the local mean density in terms of the loeal pressure p, the
local enthalpy h, and the concentrations & and &. This
can be accomplished by means of the perfect gas law

p = p(@/m)T @.21)

where ® is the universal gas constant and m is the local
molecular weight of the gas mixture. In what follows, since
we will be using expressions for %, ¢, and ¢ that are known
to be only approximately true, we will neglect certain cor-
relations that appear in the exact expression for 5 from Eq.
(2.21) and write simply

5 = (mp/RT) = (Mmi,p/Rh) (2.22)

Consistent with the approximation inherent in using Eq.
(2.22), we may simplify matters exceedingly if, instead of
using the exact expression for 7 given by Eq. (2.7), we as-
sume the 7 is everywhere equal to the ambient pressure
Po. The local density can then be written
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previously. Thus,

Cr = (o o) (@/W1) + Cooo (2.24)

m o= [(1/m ~ 1/mo)(@/) + (1/ma)]™ (2.25)
v = [l — (®/m¢e,)]™! (2.26)

M = {[@*/(y — Dhl(a/a)*}? (2.27)

Spreading and Decay

Reviewing the progress to this point, we find that we have
two basic equations that deseribe the flow, Eqgs. (2.11) and
(2.12). In addition, we have developed expressions forl 1)
p in terms of u [Eq. (2.23)]; 2) w in terms of 7, r5, and r; for
the core [Eq. (2.13)], and u in terms of r, 5, and u, for the
developed region [Eq. (2.14)]; 3) 7 in terms of K, r5, and
r; for the core [Eq. (2.16)], and 7 in terms of K, 5, and u, for
the developed region [Eq. (2.17)]. When these expressions
are substituted into the two flow equations, we will find that
there remain the three unknowns: K, rs, and r; when the
two equations are written for the core region; and K, r;, and
u. when the same equations are written for the developed
region.

Therefore, if K can be determined empirically from ex-
perimental test data, then there remain just two unknowns
(rs and 7, in the core, and r; and u. in the developed region)
and two equations applicable to each region. These re-
maining quantities can be found, thereby providing the solu-
tion to the decay and spreading behavior of the jet. The
local velocity anywhere in the flow can then be obtained by
use of r5(z), r:(x), and u.(x) and the velocity profile equations
(2.13) and (2.14).

The key to the success of the present method of analysis is,
therefore, the satisfactory determination of the shear stress
parameter K. In the work of Warren, K is assumed a con-
stant throughout the flow for a particular jet. Warren cor-
related K with the initial jet Mach number only, finding
that K was dependent primarily on the initial Mach number,
but not on the initial enthalpy. Specifically, he suggested
the relation

K = 0.0434 — 0.0069 M,

In the present study we attempt to show that K is pri-
marily dependent on only a suitably chosen local Mach num-
ber and not on enthalpy ratio or molecular weight ratio, both
factors having been properly taken into account through the
density factor in the equation for 7. Omne possible choice
of local Mach number is the local Mach number on the jet
centerline. However, the maximum shear at a given axial
station does not oceur at the centerline but at some finite
radius where the product of p and du/dr is a maximum. This
particular radius is, in general, not too far removed from the
half-velocity radius 7. This latter quantity is already slated
for evaluation, and the velocity (upon which all the flow
parameters including the local Mach number depend)
associated with 75 is by definition simply w%./2. Therefore,
the local conditions at 75 appear to be a judicial choice upon
which to base a study of the parameter K, since significant
shearing does take place at r5 and the conditions there are
quite readily computed. In what follows, we shall assume
K to vary with z and shall seek to correlate K with the local
Mach number at the one-half velocity radius, written here-
after as M.

- - [en = en(5) + c] - -
a [ (- o)) + e o= 10(5) - (5)(5) ]

It may be useful to set forth the expressions for several other
local mean quantities within the approximations mentioned

1 In what follows, since there is no chance for confusion, we
will drop the superscript bar with the understanding that all
quantities are average values.
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It is interesting to note that in the core region the center-
line veloeity is everywhere u, and thus the velocity at rs is
everywhere u;/2. This in turn means that all other flow
parameters (including M;), being functions of u, are also
constant at rs. Thus K, despite our assumption of its de-
pendence on Ms, will be a constant in the core region. In
the developed region, on the other hand, the velocity at ry is
u./2 where u., of course, does vary with x, thereby requiring
the other local flow properties at rs, including M; and thus
K, also to vary with . We shall discuss further the evalua-
tion of K in Sec. 3.

To carry out the procedure described in the foregoing for
the solution of r;, r;, and u. is an involved process, particu-
larly when performing the integrations and subsequent dif-
ferentiations indicated in Eqgs. (2.11) and (2.12). To prevent
becoming entangled in algebraic details, the solution of the
jet decay and spreading to be developed below will be in out-
line form only. The expressions for the several functions
that evolve are provided in the Appendix, however, for the
convenience of those who may wish to compute numerically
a turbulent free jet by this method. Also, only the developed
region will be treated here, since the core region solution
follows along the same lines with but slightly different ex-
pressions for % and 7, as already seen. The derivation for
the core is given in the Appendix also.

The first step in our outline of the solution is to nondimen-
sionalize the flow equations (2.11) and (2.12) and the expres-
sions for u, Eq. (2.14), and 7, Eq. (2.17). Using the conven-
tion that capital letters represent the suitably nondimen-
sionalized counterparts of the small letter quantities (i.e.,
R =r/r, U= u/uy, X = x/r, etc.), these expressions be-

come
U. d p
2 - T T _— —
de ( )URdR = (pw> URAR
( >R5 (2.28)
PoUy

“(P\irpip_ L (P
fo <p—m> URAR - 5 (pc) (2.29)

(75/pth®) = (p5/p=) 3KR5U-(QU /OR)g, (2.30)

U = UeME/R) (2.31)

(p/p=) = [(@U + 1)/(mU + DA + AU — BUH] (2.32)
@ = (Cp/Crs) — 1 M = (Mo/m1) — 1

where

= '/he) =1 B = Fw?/hs)
From Eq. (2.31) it can be shown that
(QU/0R)r, = —(NU./Ry) (2.33)
and
RdR = —(Rs*dU/2\U) (2.34)

Expressions (2.30-2.34) can be substituted into the two flow
equations, (2.28) and (2.29). [For the sake of compactness,
the density ratio is carried along as p/p., remembering that
it is a known function of U as given by Eq. (2.32).] These
substitutions and the necessary change in the limits of
integration yield

d Ue f p U, d
— 2 LA _—
X [R5 f v (pm> UdU] 2 ax *
ra - _ Ps
[Rs f - <pm> dU:I — o NKRUL <pw> (2.35)

N (i) UdU = R%? (i) (2.36)

and
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Differentiating by parts as indicated, Eq. (2.35) can be re-
written as

d Ue U, Ue
27 —
Re [ (p() UdU — o Ret = f <pw) v +

Ue dR5 dRs
vay & 2 -
S, (pw> v ( > ix

— NKRsU2 (%) (2.37)

o

Among the operations indicated previously are five associated
with integration. It is possible to obtain closed form ex-
pressions for these operations with the aid of Eq. (2.32) for
p/pe. It is convenient to represent the five integrals by the
following notation:

Uc p
f PN\vav = 1. — 1, (2.38)
Us P
Uc p
f PYau = 7. - 7, (2.39)
Us Po
d _ L dU. U
Xf ( ) vav = 1.9 = O @40)
_dv dU, dUs
Xf ( ) cax " Bax @4
Ue p
f P\ vau = 1. — I, (2.42)
0 P

where F, @, I, and J are functions of U given in Appendix B.
Utilizing these expressions in Eqs. (2.36) and (2.37) and
realizing that U; = 3U,, we then have

AMpy/pw) .
I, —1I, = 0 (2.43)

U, 1 ) 1, au. U.
I:E<GC*EG5>—<I’¢—*15>]R52dX I:TZ“X

o= J5) — (I — 15)] dE* dU. ) <”';’i> (2.44)

al. dX

Equation (2.43) immediately provides R; as a function of U,
through I,

= [Mpy/px)/ s ~ L) |2 (2.45)
and hence also
B Mpy/p) dI R?F,
aU.  d.—Ip*dU., (I, — 1) (2.48)

for use in Eq. (2.44). Substituting Egs. (2.45) and (2.46)
into (2.44), we obtain

fU)(@U/dr) = K (2.47)

where into f(U.) are lumped all of the constants and func-
tions of U, that are then present. This function is given in
Appendix B also.

Finally, if Eq. (2.47) is integrated from the start of the
developed region X, to any downstream station, X,, we have

U
fl * F(U)dU, = ;(*de (2.48)

where U is the centerline velocity (nondimensionalized) at
Xx. Note that K cannot be brought outside the right-hand
integral because of its dependence upon M; and hence, in the
developed region, upon X. The integral on the left-hand
side cannot be obtained in closed form for the general two-
gas case (or, for that matter, even for the reduced one-gas
case) because of the complex nature of f(U.). Thus both
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integrals must be obtained by numerical integration, a pro-
cedure quite feasible, however, on even a modest-sized
digital computer.

Fortunately, the lower limit on the right-hand integral
X, can be found in closed form from the analysis for the core
region. Briefly, we see from Appendix A that the equation
that corresponds to (2.48) for the core region is

Riy p
[ swoyar. = [ kax (2.49)

For this case, however, K. is a constant throughout the core,
as has already been discussed, and thus it can be brought out-
side the integral. TFurthermore, f(R;) unlike f(U.) can be
integrated in elosed form. Therefore, it is possible to write
(2.49) as

FRy) — F(1) = KXx (2.50)

where F represents this closed-form integral. Since we
know that R; goes to zero at the end of the core, we can solve
for X, by substituting X, for X4 and O for R, in the preceding
expression. Hence,

X, = [FO) — F(1)/K.] (2.51)

Thus, with Eqs. (2.45, 2.48, and 2.51) we have solutions
for the spreading Rs(X) and the decay U.(X) in the devel-
oped region. (The corresponding equations for the spread-
ing Rs(x) and the decay R:(z) in the core are available in the
Appendix A.)

This now allows us to compute the local velocity anywhere
in the flow by means of the velocity profile equations that
are written in terms of U,, Rs, and R;. Finally, with a
knowledge of U, all the other flow parameters of interest can
be obtained from the expressions previously given.

3. Comparison of Theory with Experiment—
Evaluation of K

We turn to the evaluation of the dependence of the shear
stress parameter K on M; and the determination of the ac-
curacy with which the behavior of turbulent free jets can be
predicted by this method. To accomplish these tasks, two
programs were initiated.

TFirst, the equations of the present analysis were coded for
solution on a high-speed digital computer. This was done
in such & manner that either given K as a function of M5, the
flowfield could be computed, or given the flowfield from ex-
perimental results, the dependence of K on M; could be ob-
tained. Thus, initially, the evaluation of K could be estab-
lished from available experimental data and then later, the
decay of a jet with any initial conditions could be found by
using these values of K.

Second, a series of turbulent jet mixing experiments were
performed. These were designed to provide data over a
range of values of the initial jet conditions such as molecular
weight, enthalpy, Mach number, and jet nozzle over- and
under-expansion. The results of these experiments, together
with data available in the literature, were then utilized, first
to evaluate K and then to compute a complete description of
the behavior of velocity decay.

Experimental Test Program
The experimental program performed had two purposes.

The first was to evaluate the parameter K, checking to see

Table 1 High-speed runs

Gas mi/Mme A/ /ho "1 M1 Mest  weft/ur  Teff/m1

Nitrogen  0.967 0.933 1.402 3.30 3.59 1.03 1.14
Nitrogen 0.967 0.906 1.402 3.30 2.95 0.962 0.848
Methane 0.554 1.89 1.31 @3.10 3.34 1.03 1.14

a Note that methane, flowing through the same nozzle geometry, emerges
at a different M. This results from the different v, for methane, which
changes the area ratio = Mach number relationship.
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if its value did indeed depend primarily on M5 The second
was to compare the general form of the solutions obtained
with the experimental results, once K had been established.
To accomplish these goals, the experiments performed in-
cluded 1) a range of Mach numbers, including both super-
sonie and subsonic jets; 2) a range of jet stagnation enthal-
pies; 3) a range of jet molecular weights; and 4) both prop-
erly and improperly expanded jets.

High-speed tests

This first series of tests was designed to gather data on both
the effects of molecular weight and the effects of over- and
under-expansion at supersonic speeds. To accomplish the
latter, two nitrogen jets were run through a Mach number
3.3 nozzle. However, the stagnation pressure of one was
such that an underexpansion at the nozzle exit resulted (py/
Po = 1.51), whereas the other was such that an overexpansion
existed at the exit (pi/p. = 0.60). The analysis assumes
that the static pressure is everywhere constant and so p1/pe
= 1; therefore, some correction must be applied. This was
done by computing an effective initial Mach number, initial
velocity, and exit jet radius as that which would result from
an isentropic expansion (or compression) of the flow to the
condition for which the static pressure in the jet is equal to
the pressure in the surrounding environment. If then this
effective Mach number is used as the initial condition on M,
and the effective velocity and radius are used for the quanti-
ties u; and 7, the present analysis can be applied. Part of
the rationale for this transformation is that the flow, if not
properly expanded initially, will eventually adjust itself to
conditions that do correspond to a static pressure equal to
that in the environment. These adjusted conditions will
then govern the behavior of the decay, the flow having little
memory of the original situation. The other part of the
rationale is that the edge of a stationary inviscid jet that is
not mixing with its surroundings is a free streamline of con-
stant pressure. This pressure is equal to the ambient pres-
sure. Thus, if a thin free-mixing layer analysis were to be
applied to this inviseid pieture, the proper boundary condi-
tions would be a pressure equal to the ambient pressure
throughout and a velocity difference equal to the properly
expanded velocity.

To investigate the effects of the jet molecular weight at
supersonic speeds, methane, & gas close to one-half the weight
of nitrogen, was chosen. The same nozzle was used as in the
nitrogen runs. In addition, the same degree of underex-
pansion as in the nitrogen run was picked to minimize any
improper expansion effect if present. Thus, it was hoped
that 1) the two nitrogen runs would show up the effects, if
any, of improper expansion and that 2) the methane test,
when compared to the underexpanded nitrogen case, would
indicate any effects of molecular weight not accounted for
in the analysis. A summary of the initial conditions of the
three high-speed runs is given in Table 1.

The velocity decay along the axis was computed from total
head pressure measurements and the data were fed into the
digital computer program. Calculations of K in the de-
veloped region were obtained from several locations for each
jet; the criterion for the selection of these locations was
that the location was interior to at least two data points so
that a good estimate of the local slope could be obtained.
The results thus determined are shown by the open symbols
in Fig. 2.

An evaluation of the values of K associated with the core
region of each jet (K,) was provided by the computer also.
For this, BEq. (2.51) was solved for K, using the experi-
mentally determined core lengths X.. The results are shown
by the closed symbols in Fig. 2. It can be seen that all the
values of K associated with both the core and developed re-
gions appear to lie along a common curve, thus tending to
confirm the proposition that improper expansion can be ac-
counted for by the method described previously, which im-
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Fig. 2 High-speed test series.

plies that, so long as it does not flap, the existence of a shock
structure in a free jet does not have a first-order effect upon
mixing rate. Turther, it appears that the effects of molecular
weight enter only through their effect upon the local density
so that K is only a function of the local Mach number Ms.
Figure 3 shows the general character of decay curves pre-
dicted by this method together with the experimental data
upon which the generation of K was based.

Low-speed tests

A series of subsonic jet mixing experiments were per-
formed using five gases so as to provide a spread in molecular
weight from 4 to 88. All gases were run at the same exit
Mach number so as to eliminate, to as large a degree as pos-
sible, the effect of Mach number, and thereby isolate the
effects, if any, of the wide range of molecular weights. A
summary of the initial conditions of the low speed runs is
given in Table 2.

Note that there was a significant spread in stagnation en-
thalpy. This is because of the temperature change associ-
ated with the Joule-Thompson effect in throttling from the
high-pressure storage bottles to the appropriate stagnation
chamber pressure, as well as the difference in ¢, among the
gases.
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Fig. 3 Centerline velocity decays, high-speed series.
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Table 2 Low-speed run series

Gas my/Me hi®/he V1 M,
Helium 0.138 5.465 1.671 0.750
Methane 0.554 1.702 1.309 0.750
Nitrogen 0.967 0.871 1.402 0.750
Carbon Dioxide 1.519 0.699 1.304 0.750
Freon 3.038 0.684 1.159 0.750

Values of K for the developed regions and the cores of the
five jets were initially determined in the same manner as in
the high-speed tests. Despite a ratio of 22:1 in molecular
weight, there appeared to be no discernible separation of the
K’s because of these factors. However, as a group, the values
initially computed were noticeably higher than those obtained
from the high-speed runs. The reason for these high values
was traced to the existence of an appreciable boundary layer
at the nozzle exit for the low-speed runs. Because of the
relatively low velocity and the small nozzle used in these
tests (exit diameter of 0.246 in.), one might expect a signifi-
cant layer to be present. A survey of the jet at M, = 0.75
using air revealed an exit plane boundary-layer thickness
that was 299 of the nozzle radius 7, and a total momentum
flux that was only 87.5% of the pyu.2rr? assumed in the
analysis [see Eq. (2.12)]. If no compensation is made in the
analysis for the effects of such a layer, the more rapid decay
that actually results from the lower initial momentum level
and the fact that a thicker mixing layer has been built up
in the jet, will be falsely attributed to higher values of K. A
correction for this effect can be obtained by computing the
“equivalent” jet that possesses at some station Az, down-
stream of its origin, the same momentum flux and mass flux
as does the measured jet at its exit plane. Knowing both
the momentum and mass flux from profile measurements,
the initial radius of the equivalent jet, 7/, and its additional
core length Az, can be computed. When the test data then
are reduced in terms of the new jet radius ' and a distance
Az, is added to the measured core length, the resulting values
of K then agree well with those determined from the high
speed data. (This correction is discussed in more detail in
Appendix C.) The values of K associated with the developed
regions of each jet for the five gases tested are shown as open
points in Fig. 4. Also included is the corrected value of K.
obtained as outlined above for the case of the nitrogen jet.

In Fig. 5, the low-speed and high-speed K correlations
have been combined and a suggested curve has been faired
through the group. Figure 6 compares the computed decay
utilizing the K, My faired eurve of Fig. 5 with the measured
decay for three of the gases.

Final Evaluation of K

Other experimental results

To gather still more data for the establishment of & K vs
M; curve, additional experimental data were sought. One
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Fig. 4 Low-speed test series.
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obvious source was the work of Warren.® Although all of his
experiments were performed with air mixing with air, the
absence of an effect upon K of molecular weight has now been
fairly well established. Submitting Warren’s data to the
computer, the several values of K shown in Fig. 7 were ob-
tained.

It was noticed that these values of K were generally below
the data generated at ARAP§ A closer look at Warren’s
tests reveals that a sharp-edged nozzle was used. By con-
trast, in the ARAP test program the jet emanated from a
nozzle block whose thickness was many times the exit
diameter. Figure 8 indicates this contrast and also sug-
gests the resulting difference between the two cases in the
flow pattern of an entrained gas. It is reasonable to believe
that a jet emanating from a flat surface will decay somewhat
more rapidly than the same jet emanating from a sharp-edged
nozzle because of this difference in the entrainment pattern.
Indeed, a measurable drop in impingement pressure resulting
from a jet in which the nozzle was surrounded by a large
plate compared to the same jet in the absence of a plate has
been noted in other experimental work at ARAP. More
detailed measurements must be made before a definite con-
clusion can be reached on this point, but tentatively the
curves generated from the ARAP and Warren data (Fig. 8)
have been labeled blunt-edged and sharp-edged nozuzle,
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Fig. 6 Centerline velocity decays, low-speed series.

§ Warren comments on his one high K value. He feels that it
may be caused by improper nozzle performance.
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respectively, in the composite presentation of the K data
given in Fig. 9.

In addition to Warren’s tests, the incompressible work of
Corrsin and Uberoi'® and of Hinze and van der Hegge Zijnen!!
were evaluated and are also shown in Fig. 9. Remembering
that a differentiation of experimental data is required to
evaluate K and that such a process magnifies any scatter in
the measured data, the final agreement of the K’s, as shown
in Fig. 9, is thought to be quite satisfactory.

A sample prediction.

Attempts were made to predict the behavior of several
high-enthalpy nitrogen jets measured by Avco Corporation
by using the final K vs M; curves of Fig. 9.7 As in the case
of the ARAP low-speed tests, there was an appreciable
boundary layer present as the jet emanated from a thick-
edged nozzle. Utilizing the corrective procedure discussed
previously for jets with boundary layer and using the
values of K from the blunt-edged curve, the decay of each
jet was computed and compared with the measured data.
A sample of this comparison is given in Fig. 10. Note that
the enthalpy ratio A,°/h. was over 34, yet the agreement us-
ing the analysis developed in this report is excellent. It
should be noted that at these high-enthalpy levels the gases
are far from ideal. Nevertheless, in this case the mean ¢, and
m, as given by Egs. (2.21) and (2.25), were not far different
from the properly computed local, nonideal values, so that
the analysis given here is applicable. This fortuitous situa-
tion cannot be expected to hold for all gases at high enthal-
pies. Thus, a modification of the analysis should be made
to account properly for the nonideal behavior of gases if ex-
tremely high-enthalpy jets of arbitrary gases are of interest.

4. Conclusions

The results of an experimental study of compressible free
jet mixing have been presented. In order to analyze these
data, an extension of Warren’s momentum integral method
for predicting the turbulent mixing and decay of axially sym-
metric, eompressible, free jets to the case of the mixing of
dissimilar gases was developed. A comparison of the experi-
mental results with this model of turbulent mixing permitted
the following rather general conclusions to be drawn.

The decay and spreading rates of free jets appear to be
local phenomena and depend, to first order, only upon the
local Mach number in the vicinity of the region of maximum
shear, and a correlation of the mixing-rate parameter K with
the Mach number at the point where the local mean velocity
has fallen to one-half its value on the jet centerline is observed.

waprep Neozzle

Fig. 8 Effect of nozzle configuration upon entrainment.

9 The information of these Avco tests was made available to
ARAP by R. John.!?
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does not, again to first order, affect the mixing-rate param-
eter K, the proper magnitude of the decay being obtained
by computing the decay of the equivalent, properly expanded
jet.

There appears to be an effect of the exact nozzle exit con-
figuration on the initial decay and spreading rates. Further
study of this effect is necessary, but it appears, in general,
that jets issuing normally from a plane surface have, initially,
a slightly higher mixing rate than those issuing from a sharp-
edged nozzle.

If an appreciable amount of boundary layer exists in the
nozzle that initially forms a free jet, a correction must be
made to Warren’s method. This correction can be obtained
by computing the equivalent jet that possesses at a station
Az, downstream of its origin, the same momentum flux and
mass flux as does the measured jet at its exit plane.

Appendix A: Development of the Equations
for the Core Region

In the core, the velocity profile is given by Eq. (2.13)

U = ule—)\(rﬂ—rﬁ/ra?—n‘z) r>ory
(A1)
= U r<r7r;
and the Reynolds stress by Eq. (2.16)
= Kps(rs — 1:)(w1/2) (0u/0r)s, (A2)

If the same nondimensionalizations as were used previously
are now introduced, i.e., B = r/rl, = w/u, X = /1y, ete.,
Eq. (2.30) becomes

- 75/patn® = (ps/pe) [FKARs — Ri)|(OU/OR)r,  (A3)
and Eq. (2.31) becomes
U=1 for
U = ¢—MR*—Ri*/Ri—Ri?) for

0<R<R;
R, <R< » (A4
In the core, Egs. (2.33) and (2.34) become
(QU/OR)r; = —MRs/(Rs? — R.?) (A5)

and
RdR = —[(Rs* — RAHAU/2\U] (AB)

When these expressions are substituted into Eqs. (2.28) and
(2.29), the indicated differentiations accomplished, and the
integral notation of Eqs. (2.38-2.42) adopted, one obtains
two expressions analogous to Eqs. (2.43) and (2.44). (Note
that integration in the core must be broken into two parts:
0 < R < R;, for which conditions are constant and R; <
R< )

Mpy/pe) X — B2

I1—Io= R52—Ri2

(A7)

Although similar in form to Eq. (2.48) for the developed re-
gion (except for the change in variable from U. to R:), the
preceding equation differs in two ways. Tirst, as previously
discussed, K. is a constant in the core. Second, f(R:) ean
be integrated in closed form unlike the f(U.) in Eq. (2.48).
Performing the integration yields an expression for the down-
stream station X as a function of core width R;:

Xo = et [2 - B - @ — wRe

K=D
| YRy 1+ ¥
oy (1 YR, T w)] (413)

where ¢, ¢, and D are functions given in Appendix B. The
end of the core occurs when R;, = 0. Thus from the fore-
going expression,

e Lk

Appendix B: Complete Expressions for the
Symbols Utilized in the Text

fUes) = E.Rs f(B:) = DR:i(Rs + R:)/Rg***

(pr/pe) (201 — Is) — s — L) — (J1 — J3)]
(ps/pe) I1 = To) N

D =

Fo[3UcJe — J5) — (Le = I 1} [N (ps/ p) UK — Lo)]
= (e/V) + (JU + ¢/W)

Centerling velocity decay — Nitrogen into air

<} 5 10 15 20 25 30 35
x/r,

Fig. 10 Comparison of high-enthalpy test with present
theory.

** Note that R5 in the developed region is given by Eq. (2.45)
and that R% in the core is given by Eq. (A9).
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I =alnV 4 gInW + v Ind
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® = (4 — 2BU — ¢)/(A — 2BU + q)
@ = e/ B = —f/2B
v = (2Bg + Af)/2Bq
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_ (¢ — B B ;
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where A, B, 9%, and @ are the basic run constants that describe
the initial condition of the jets as discussed in the text, and
the subscripts refer to evaluation of the parameters for spe-
cific values of U, ie., 1,0, ¢ (for U.), and 5 (for Uy = U./2).

Appendix C: Boundary-Layer Correction

It was pointed out in Sec. 3 that a correction for the effect
of the presence of a boundary layer at the nozzle exit plane
of a jet could be obtained by the computation of an approxi-
mate equivalent jet. In this appendix, the development of
this correction is given in some detail.

Referring to Fig. 11, an equivalent jet is defined as follows:

1) The momentum flux in the equivalent jet at some length
Az. is equal to the measured momentum flux of the real jet
at the nozzle exit. Thus

prustmr? + 27 ‘ﬁw putrdr = nlpntar?] (C1)
1

where
7 = measured momentum flux/p; w,%rr,?
2) The mass flux in the equivalent jet at Az. is equal to the
measured mass flux of the real jet at the nozzle exit.  Hence,

p1u17rri2 + 27 ﬁm purdr = n*[pluﬂrrlz] (02)

where
7* = measured mass flux/purr:?

Letting r;’ be the initial radius of the equivalent jet and
utilizing the fact that the total momentum flux in the equiva-
lent jet is conserved, we can also write

p1u1211’7‘1'2 = 7][P1u1271'7'12] (03)
or
r'*/r® =19

If now 7’ is used to nondimensionalize the radii in (C1) and
(C2), these expressions become

’ Ej" e ﬁ ’ L—
R4 2 <p1> [ (pm> UR'AR' = 1 (C4)
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Fig. 11 Sketch showing equivalent jet nomenclature.

® *
R+ 2 <pi°> f ; <£> UR'AR' = n (C5)
P R’ \ po 7

where the primes denote the use of r,” for the nondimensional-
ization. Using Eq. (A6) from Appendix A and the I and J
notation utilized previously for the resulting integrals, the
preceding expressions become

R% + (pu/p) (5’2 — R/HA/ NI — L]l =1 (C6)
B2 + (p/p)(Bs'? — R/H(A/N)[J — Jol = 9*/y (C7)

Eliminating R;’ between these two equations yields an ex-
pression for the nondimensionalized core radius of the equiva-
lent jet in terms of its original radius,

W = Jo)/(I1 — L) — 7%/
Jo—=Jo/Ii — I — 1

Ry = (C8)

Having found the core radius, the nondimensional distance
back to the origin of the equivalent jet AX,” = Ax,/r’ can
be found from Eq. (A13) in Appendix A.

Thus, before processing the measured data from a jet with
an initial boundary layer such that the initial momentum
flux is 9 [prusari?] and the initial mass flux is 9* [pyurr 2], all
measurements should be referred to 7,/ rather than r and
the measured core length should, in addition, be lengthened
by the amount AX .’ as obtained previously.
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