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EXECUTIVE SUMMARY

A semianalytic solution of the constant heating rate Arrhenius integral is the basis of a new
isoconversion method for determining the activation energy and frequency factor of an arbitrary,
single-step reaction from a series of temperature scanning experiments. No assumptions about the
form of the rate law are necessary to apply the present integral method to the analysis of non-
isothermal reaction data. Thermogravimetry data for a low-density polyethylene at various
constant heating rates were analyzed using the new method and the activation energy E, = 200
kJ/mol and the frequency factor A =2 x 10!1 s-! determined from the data for anaerobic pyrolysis
were in the range of published values for this polymer under these conditions. The new
isoconversion method was also used to analyze differential scanning calorimetry data for the curing
reaction of phenylethynyl-terminated imide oligomers and provided an activation energy E, = 133
kJ/mol in quantitative agreement with published work. A single value for the frequency factor was
obtained for the phenylethynyl curing reaction using the present method A = 1 x 107 s71, wh1ch 1S
well within the range A = 104-109 s-1 estimated from the original work.

The agreement of the Arrhenius activation energy and frequency factor for polyethylene pyrolysis
- and the phenylethynyl curing reaction determined by the present method with literature values for
these quantities suggests the general utility of the simple new isoconversion integral method for
determining kinetic parameters of single-step reactions from constant heating rate experiments.
Determination of a physically meaningful reaction rate law from isothermal experiments is now
possible since the Arrhenius rate constant can be obtained independent of any assumptions about
reaction order or the form of the conversion function.



INTRODUCTION

Many technologically important processes and reactions occur under nonisothermal conditions and
it is often desired to calculate or predict the progress of the reaction over time during transient
heating. Integral methods of nonisothermal analysis utilize cumulative values of a species
concentration, heat of reaction, weight loss, etc., measured in temperature scanning experiments to
extract the kinetic parameters of a reacting system and determine a suitable rate law [1-13]. These
powerful methods derive from the programmable heating rate capability of modern thermal analysis
equipment and are useful for calculating preconversion during the heatup period in isothermal
experiments [11], for testing reaction models over a broad temperature and conversion range [13],
. etc. Despite their utility however, integral methods have suffered from low sensitivity, a
dependence on the form of the rate law, an assumption that the reaction mechanism does not
change with temperature, and the somewhat cumbersome mathematics of the series approximations
for the Arrhenius integral required in the analyses [3, 11]. An exact solution of the Arrhenius
integral is possible only for nonlinear temperature programs [3], but this capability is beyond most
commercial instruments.

Since the overwhelming majority of thermal analyses are conducted at constant heating rate, the
present work seeks to develop a more useful approximation for the Arrhenius integral under
experimental conditions of a linear temperature program and extend these results to the
unambiguous determination of Arrhenius kinetic parameters. It is hoped that the results of this
work will aid process development of new fire resistant thermoset resins and advance the study of
polymer flammability by allowing more accurate calculation of the gasification rate in the pyrolysis
zone of burning polymers [14]. Since the rate-limiting step in polymer pyrolysis is the breaking of
primary chemical bonds in the molecule [15], a direct method for determining pyrolysis rate
constants will facilitate the decoupling of diffusion and chemical kinetics during burning and help
relate polymer structure to flammability.

BACKGROUND
Rate laws of the type
do _
ac = HoT) €y

are the basis for almost all of the kinetic methods used in differential thermal analysis and
differential scanning calorimetry [1-13, 16]. In equation 1, T is the absolute temperature and is a

C(t) - C(0)

* = Tl —C(0)



fractional conversion in terms of the instantaneous, C(t), initial, C(0), and final, C(eo), values of a
measurable reaction parameter such as a species concentration, heat of reaction, and pyrolyzed
mass. Equation 1 is written such that o increases with time, t. The temperature dependence of
f(at,T) is usually assumed to reside exclusively in a rate constant, k, which has the Arrhenius form

k = A exp(-Ex/RT)

where A is the pre-exponential or frequency factor, E, the activation energy for the reaction, and R
the universal gas constant. These assumptions lead to the generalized reaction rate law

do. _
ar = k@ ()

If k is independent of o and f() is independent of T, separation of variables in equation 2 gives

F(0) = f:?‘(l% - L ‘kdt = fo * Ae-E/RT gy 3)

where primed symbols denote variables of integration. At constant temperature, F(o) = kt which
is the basis for isothermal kinetic analyses [1, 3, 11, 13, 17]. A variety of f(o) have been assumed
or derived for individual cases [1, 4, 5, 13, 17] such that a linear F(t) versus time plot is obtained
at a particular temperature having slope k(T). The Arrhenius parameters A and E, for the reaction
are determined from a number of constant temperature experiments by plotting the natural
logarithm of k(T) versus 1/T over the temperature domain of interest.

The isothermal procedure based on equation 2 requires a priori knowledge of F(a), and the
measured kinetic parameters are valid only for the temperature range examined. Usually f(o) and
therefore F(o) are not known prior to the experiment so various methods have been proposed to
- allow determination of E, and f(a) separately or in combination from a series of temperature-
scanning experiments at different constant heating rates [1-3, 6-13]. For a constant heating rate,
dT/dt =, equation 3 can be written

F@) = 4 fT T e-E/RT g1 @)

where the sample temperature is uniform but changes linearly from T, to T over the time interval
(0, t). Application of nonisothermal or integral methods to experimental data requires evaluating
the exponential temperature (Arrhenius) integral on the right hand side of equation 4.
Unfortunately, the Arrhenius integral has no exact solution so numerical or approximate solutions
are required.



Approximate solutions for the Arrhenius integral can be expressed in terms of the quantity x =
—E/RT so that equation 4 takes the form

AE, (X ox" _, AE Nk
F(o) = ﬁx ;,"z'dx = —Biap(x) 6 )

o

everal series expansions have been used to represent p(x) in equation 5 and Flynn and Wall
provide an excellent review [3]. Typical of these series solutions is an asymptotic expansion of the
exponential integral obtained from a single integration by parts [18], i.e.,

X[, 21 31, 4
p(x)=-§—§[1+—f+%2—+;§...] ©6)
A and Schlomilch’s expansion [19]
_ ex 1 2 4
O o 1] R Ry R ey €y i oy iy s R @

A property of these integral expansions is that the difference between the true value of the function
and the sum of a finite number of terms in the series is essentially of the order of magnitude of the
last term retained. This requires that either —x >30, or that a few terms be retained in the series
expansions for —x < 10, to achieve an accuracy greater than 95%. An empirical equation for p(x)
was proposed by Doyle [6],

p(x) =7.03 x 10-3 ¢ X BX) @®)

where B(x) ranges from 1.195 to 1.034 over the domain x =-10 to —60. An average value, B(x)
= 1.052, is often used in integral methods of thermal analysis [2, 3, 6, 8, 11, 13].

ARRHENIUS INTEGRAL APPROXIMATION
The intractability of multiterm series approximations required for accurate evaluation of the
- Arrhenius integral has limited the utility of integral methods for quantitative kinetic analysis. The
following is a simple, semianalytic result which provides better accuracy than any previous single

term approximation of the constant heating rate Arrhenius temperature integral.

Begin by defining a new variable, y = eX/x2 , so that equation 4 becomes

Fo = pt[ ) ay ©)

Yo



with f(y) = x/(x-2). A single integration by parts gives

_ AE, eX X T_eXax
F@) = g {[x’(x’—Z)] o ZLO "'2(""2)2} "

Repeated integration by parts transforms the right hand side of equation 10 into

X

F(o) =

AE, e 2 8 o H+0x D)+ ] (11)

PR X(x'~2) [1 XD T X -2)?

)

For the normal temperature ranges and activation energies of scanning thermal analysis, the lower
limit in the final solution can be neglected since —x, >> —x. Moreover, since —x > 10 (typically),
only the first term of equation 11 need be retained

_ AE, ex _ ART? _E.JRT
F@ = B 32 = BE,+2RD) ° 4

By way of comparison Doyle’s approximation (equation 8) leads to the single-term result
AE
F(o) = 7.03x107° ‘Bﬁa e-1.052E/RT 13)

while the first term of the asymptotic expansion (equation 7) gives

‘ 2
Fa) ~ a2 &= ART oprr (14)

PR x2 ~ BE,

Equation 12 differs from equation 14 by the factor 2RT in the denominator. Because of their
simplicity, equations 13 and 14 are commonly used in integral methods of thermal analysis [1-3,
6-8, 11-13].

The relative percent error associated with the use of Doyle’s approximation (equation 13) and the
~ single term asymptotic expansion (equation 14) as solutions of the Arrhenius integral for a
physically realistic domain of x are plotted in figure 1 along with the error for the present result,
equation 12. The “exact” value of the Arrhenius integral used for the error calculation was
obtained by double precision numerical integration of equation 4 using the trapezoidal rule with a
step size of 0.5K between the limits: T, = 300K, T. Figure 1 shows that equation 12 is



significantly more accurate than either of the single-term approximations, equation 13 or equation
14, as a solution of the Arrhenius integral. Equation 12 under predicts the true value of the

Arrhenius integral by less than 1% over the domain —x 210 normally encountered in experimental
- studies. Comparable accuracy requires at least three terms of the asymptotic expansion or two
terms of the Schlomilch expansion [20].
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FIGURE 1. PERCENT RELATIVE ERROR VERSUS X =-E,/RT FOR EQUATIONS 12, 13,
AND 14 AS APPROXIMATIONS FOR THE ARRHENIUS INTEGRAL

Figure 2 is a plot of the percent relative error versus temperature using equation 12 to approximate
the Arrhenius integral for a range of activation energies. An accuracy of greater than 99% is
obtained for E, = 100 kJ/mol over the temperature range normally examined in scanning thermal
analyses. The positive catastrophe in figure 2 at low temperatures is the result of neglecting the
lower limit of integration in arriving at equation 12, which becomes significant as T approaches T.
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FIGURE 2. PERCENT RELATIVE ERROR VERSUS TEMPERATURE FOR EQUATION 12
WITH E, = 50, 100, 150, 200, AND 300 kJ/mol

ACTIVATION ENERGY FROM CONSTANT HEATING RATE EXPERIMENTS

The determination of both A and E, from isothermal or nonisothermal experiments requires a priori
knowledge of f(a) or F(at). A common functional form for f(a) is an arbitrary (n-th) order
reaction [1,3-13, 17, 18] which allows an analytic solution for F(a) and provides an additional
fitting parameter—the reaction order, n. However while A and E, have physical significance [14],
their numerical values and the reaction order determined from three-parameter fits of n-th order
kinetics to conversion data is questionable except in the case of a well defined reaction mechanism
[3]. To circumvent the need to assume n-th order reaction kinetics to extract kinetic parameters,
isoconversion methods [2, 6, 8, 11, 12, 19] have been developed which utilize temperature and
heating rate data at a fixed value of o and thus, presumably, a fixed value of F(o). This eliminates
* the need to assume a functional form for F(c) to determine the activation energy of the reaction but
precludes simultaneous determination of the frequency factor. Typical of the isoconversion
methods is an iterative technique for determining E, directly from conversion versus temperature
data at different heating rates proposed by Wall [2]. The method is based on Doyle’s
approximation of the Arrhenius integral (equation 13) which can be differentiated to give

dl_rllﬁ =~ —B(X)E

R
o)



where T() is the temperature corresponding to a specific degree of conversion at a particular
heating rate. The method requires successive approximations of E, as the empirical coefficient
B(x) is incremented for each new value of E/RT(c). The activation energy thus determined is
independent of F(a) to the extent that the assumptions used to obtain equations 1—4 are valid but
the method is tedious to apply and empirically based [1, 3].

~ An analogous but more direct method for determining E, from constant heating rate experiments
without any assumptions about the form of f(a) or its integral F(a) follows from equation 12.
Taking the natural logarithms of equation 12

In[F(o)] = InA — Inf -1 -In(2-x) + x (15)

1
" T(o)

where x= x(a) = -E,/RT(a). If F(at) and A are independent of temperature and P is treated as a
continuous variable, equation 15 can be “differentiated” with respect to the reciprocal
isoconversion temperature, 1/T(ct),

d 1nf

1
)

= -T([2-x-52-] (16)

The 2/(2—x) term on the right hand side of equation 16 accounts for less than two percent of the
bracketed quantity for —x = 10. Neglecting this term, the result for the slope of a plot of heating
rate versus the reciprocal temperature at any fixed conversion is

—dhl’B = _[%+2T(a)] 17)
d=—
T(c)

from which the activation energy at a particular conversion is

d InB 1%

ERTAC)) + 2T(a)]

E,(0) = —R[



FREQUENCY FACTOR FROM CONSTANT HEATING RATE EXPERIMENTS

If the activation energy of the reaction is known (e.g., from equation 18) and 3, T(c) data are
available, then equation 15 is a single equation with two unknowns, A and F(a). Determination of
. a unique value for the frequency factor, A, from equation 15 therefore requires a numerical value
for F(a). If F(o) satisfies the usual condition for the normalized conversion integral F(o)) = 1 at o
=1 (cf. references 3, 17), then In[F(cr)] = 0 at completion of the reaction and equation 12 becomes
for T(ax=1) =T(1)

E
In[F(1)] = 0 = In[A] - In[B] - In [-T(l— ln[2+ KT ] - T (19)

from which
m[T?—H] = In[A] - {ln[2+Ea/RT(1)] + Rﬁ—(l)> . (20)

Equation 20 states that a plot of In[B/T(1)] versus the quantity {In[2 + E/RT(1)] + E/RT(1)} at
the incipient completion temperature of the reaction T(1) has a slope equal to negative unity and an
intercept of In[A]. The frequency factor is calculable by direct substitution of E, and B,T(1) data
pairs into equation 20 after some rearrangement.

_ B{E+2RT()} SE/RT()
RT(1)2

21)

Alternatively, E, may be used as a fitting parameter in equation 20 to obtain unit negative slope in a
plot of In[B/T(1)] versus {In[2 + E,/RT(1)] + EJRT(1)}, yielding In[A] as the intercept. The unit
slope method allows simultaneous determination of both the global activation energy and frequency
factor of an arbitrary single-step reaction from a few temperature scanning experiments without any
assumptions about the reaction order or the functional form of f(cx).

EXPERIMENTAL
POLYETHYLENE PYROLYSIS.

Table 1 is a compilation of fractional mass loss temperatures T(a) obtained in our laboratory for
anaerobic pyrolysis of 3-5 mg samples of low-density polyethylene (M, = 35,000 g/mol, Myw/M,
=4.5,p =0.906 g/cm3, Aldrich Chemical) under nitrogen in a thermogravimetric analyzer (Perkin
Elmer TGA-7) at constant heating rates B = 5, 10, 20, 40, 60, and 80 K/min. Figure 3 is a
composite of the data in table 1 plotted as In[B] versus 1/T(a) for volatile fractions o = 0.01, 0.02,
 0.05, 0.10, 0.20, 0.50, and 1.00. High correlation coefficients (r2 > 0.98) were obtained for all
of the linear regression curves of In[8] versus 1/T(c) and the slopes at each conversion were used
in equation 18 to calculate the activation energies plotted in figure 4 versus fractional conversion.



Individual values for the activation energy at each conversion calculated by equation 18 were

within 10.2% of the mean value plotted in figure 4 indicating that E, determined by this method is

essentially independent of temperature.

TABLE 1. HEATING RATE AND FRACTIONAL MASS LOSS TEMPERATURES FOR
PYROLYSIS OF LOW-DENSITY POLYETHYLENE

Heating Rate T(0.01) | T(0.02) | T(0.05) | T(.10) | T(0.20) | T(0.50) T(1.0)

K/min K K K K K K K
5 639 655 680 695 711 726 762
10 658 678 699 715 730 749 779
20 673 691 712 726 740 761 792
40 689 706 727 741 756 776 808
60 699 713 734 749 764 784 821
80 709 723 744 758 773 793 833
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FIGURE 3. PLOT OF NATURAL LOGARITHM OF HEATING RATE VERSUS THE
RECIPROCAL TEMPERATURE FOR VOLATILE FRACTIONS, a = 0.01, 0.02, 0.05, 0.10,

0.20, 0.50, AND 1.0 FOR LOW MOLECULAR WEIGHT, LOW-DENSITY POLYETHYLENE
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FIGURE 4. ACTIVATION ENERGY VERSUS FRACTIONAL WEIGHT LOSS FOR LOW-
DENSITY POLYETHYLENE CALCULATED FROM EQUATION 18

The variation in activation energy with weight loss observed in figure 4 for low molecular weight,
low-density polyethylene suggests the possibility of consecutive thermal degradation reactions or a
single-step reaction with a distribution of activation energies over the conversion domain.
Alternatively, F(o) or A may be temperature dependent so that their derivatives with respect to 1/T
are nonzero as was assumed in deriving equation 18. The relatively constant value E, = 200
kJ/mol for conversions above about twenty percent in figure 4 is within the range of literature
values E, = 192-263 kJ/mol reported for this polymer under these experimental conditions [21].

Figure 5 is a plot of the T(1) data in table 1 according to equation 20 for the low-density
polyethylene of this study. Unit negative slope in figure 5 was obtained for E, = 200 kJ/mol in
agreement with the method of equation 18 and figure 4. The correlation coefficient for the linear
regression curve was r2 = 0.99. The intercept of the linear plot in figure 5 is 26.039 = In[A] from
which A = 2.0 x 10!l 571, a typical value for the frequency factor or pre-exponential term in
polymer thermal degradation [13].

10
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FIGURE 5. PLOT OF In[B/T] VERSUS {In[2 + E,/RT] + E,/RT} FOR THERMAL
DEGRADATION OF LOW-DENSITY POLYETHYLENE AT COMPLETE CONVERSION
ACCORDING TO EQUATION 20 WITH E, = 200 kJ/mol

PHENYLETHYNYL CURING REACTION.

The present isoconversion integral method of nonisothermal kinetic analysis was also applied to
differential scanning calorimetry data for the curing reaction exotherm of phenylethynyl-terminated
imide oligomers obtained by Hinkley [22, 23]. These nonisothermal phenylethynyl curing
experiments were conducted on approximately 7 mg samples of the oligomer in a differential
~ scanning calorimeter (Shimadzu DSC-50) at heating rates of 5, 20, 40, 60, and 80 K/min.
Samples of fine powder were contained in open platinum pans purged with nitrogen during the
temperature scanning experiments. Fractional conversion, o, was calculated as the cumulative heat
of reaction up to a particular temperature in the scanning experiments divided by the total heat of
reaction at the incipient temperature of complete reaction according to standard methods [24].

Hinkley’s analysis of these data using Wall’s [2] isoconversion method and Doyle’s integral
approximation (equation 13) for a = 0.10, 0.30, 0.50, and 0.90 yielded an average activation
energy for the phenylethynyl curing reaction E, = 139.0 £3.3 kJ/mol. However for this activation
energy and temperature range, X = — E,/RT = —(139 kJ/mol)/(8.314 J/mol-K)(800K) = -21 and the
more accurate empirical constant B(x) = 1.098 [2] should have been used in equation 13 in place of
the average B(x) = 1.052. This second iteration of B(x) as per Wall [2] improves the activation
energy estimate for the phenylethynyl curing reaction to E, = 133.2 3.2 kJ/mol which agrees well
with studies by other investigators who had found E, = 132.3 and 152.8 kJ/mol for the curing
reaction of phenylethynyl-terminated model compounds [25]. Attempts by Hinkley to determine a
single frequency factor for the phenylethynyl curing reaction were unsuccessful due to the presence
of the two unknowns, F() and A in equation 13. Hinkley assumed n-th order kinetics with n =
3/2 and used the B-independent conversion value o = 0.48 at the peak reaction rate temperature to

11



obtain a numerical value for F(o = 0.48). Substituting F(0.48) into equation 13 resulted in a range
of frequency factors A = 10* to 10° s-! for the phenylethynyl curing reaction.

Hinkley's phenylethynyl curing data at complete conversion were not published in his original
work [23] but were kindly provided and are given in table 2. Analysis of these data using equation
18 with the best-fit slope of the linear regression of In[B] versus 1/T(1) gives an average E, =
132.8 £0.6 kJ/mol. Substituting E, = 132.8 kJ/mol into equation 21 gives A = 9.8 +0.8 x 106 s-1
for the five data pairs. By comparison, the unit negative slope method (equation 20) plotted in
. figure 6 gives E, = 133.4 kJ/mol and A = 10.7 x 106 s-1 with a correlation coefficient r2 = 0.992.
These activation energies for the phenylethynyl curing reaction determined from equations 18 and
20 are self-consistent and in quantitative agreement with the published values while the frequency
factors for this reaction determined from equation 20 and 21 are well within the estimated range for
this Arrhenius parameter.

TABLE 2. HEATING RATE AND INCIPIENT COMPLETION TEMPERATURES FOR
PHENYLETHYNYL CURING REACTION [23]

Heating Rate, K/min 5 20 40 60 80
T(a=1), K 726 778 795 810 821
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FIGURE 6. PLOT OF In[B/T] VERSUS {In[2 + E/RT] + E,/RT} FOR CURE OF
PHENYLETHYNYL-TERMINATED IMIDE OLIGOMER AT COMPLETE CONVERSION
ACCORDING TO EQUATION 20 WITH E, = 133 kJ/mol
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CONCLUSIONS

A semianalytic solution of the constant heating rate Arrhenius integral is the basis of a new
isoconversion method for determining the activation energy and frequency factor of an arbitrary,
single-step reaction from a series of temperature scanning experiments. No assumptions about the
form of the rate law are necessary to apply the present integral method to the analysis of non-
isothermal reaction data. Thermogravimetry data for a low-density polyethylene at various
constant heating rates were analyzed using the new method and the activation energy E, = 200
kJ/mol and the frequency factor A =2 x 101! s-1 determined from the data for anaerobic pyrolysis
were in the range of published values for this polymer under these conditions. The new
isoconversion method was also used to analyze differential scanning calorimetry data for the curing
reaction of phenylethynyl-terminated imide oligomers and provided an activation energy E, = 133
kJ/mol in quantitative agreement with published work. A single value for the frequency factor was
obtained for the phenylethynyl curing reaction using the present method A = 1 x 107 s-1, which is
well within the range A = 104-10° s-1 estimated from the original work.

The agreement of the Arrhenius activation energy and frequency factor for polyethylene pyrolysis
and the phenylethynyl curing reaction determined by the present method with literature values for
these quantities suggests the general utility of the simple new isoconversion integral method for
determining kinetic parameters of single-step reactions from constant heating rate experiments.
Determination of a physically meaningful reaction rate law from isothermal experiments is now
possible since the Arrhenius rate constant can be obtained independent of any assumptions about
reaction order or the form of the conversion function f(c).
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