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EXECUTIVE SUMMARY

This is the final report on the FAA Grant No. 93-G-068 program conducted by the Quality and
Integrity Design Engineering Center (QIDEC), Department of Mechanical Engineering, University
of Utah. The program is entitled “The Role of Fretting Corrosion and Fretting Fatigue on Aircraft
Rivet Hole Cracking.”

A lap joint panel removed from an aircraft used in service was investigated for evidence of fretting
induced cracking in and adjacent to the rivet holes. Cracks were found in all of the rivet holes that
were inspected. Generally, they had nucleated in regions where there was evidence of fretting.
This is significant because it indicates a potential for multiple-site damage occurring more rapidly
than might be anticipated from a fatigue analysis or testing that did not consider fretting. In
addition, fretting also could produce cracks at holes not viewed as “fatigue critical.”

A sensitivity study was conducted to determine the effects of fretting on the fatigue lives of 2024-
T3 clad sheet aluminum alloy riveted joint specimens prepared with either FV or CE rivets using
either C-squeeze riveting or a rivet gun with bucking bar riveting procedures. It was found that
fretting damage led to crack nucleation in all failed specimens. It also was concluded that with
respect to fretting fatigue lives, based only on the results of this research program, the better
overall rivet is the 7050 FV rivet. In spite of the previous conclusion, seven of eight specimens
riveted by FV/C-squeeze procedures had rivet heads crack. This was concluded to have caused a
reduction in specimen lives.

A method was developed to predict coefficient of friction characteristics within a fretted contact
during the nucleation of a crack. This required development of a system capable of determining
the coefficient of friction at controllable slip amplitudes as small as 80 microinches and a
verification test system. The method received limited verification and would be worth pursuing in
further research because the results of such research might provide meaningful insights concerning
the mechanisms of failure in riveted joints and other connections which involve fretting fatigue.

A finite element method was used to calculate the state of stress at CE rivet locations where
fretting-nucleated cracks were observed during the sensitivity study portion of this grant program.
This model predicted that after joint loading and unloading a residual compressive stress remains in
the plate with the countersink, near the location where the body of the rivet makes contact with the
plate. Then when the far field stress is reapplied the material near where the body of the rivet
contacts the plate attains a tensile stress of less than 25,000 psi while higher tensile stresses occur
near the junction of the body and countersink portions of the rivet.

The primary conclusion of this grant program is that fretting in riveted joints is a potentially major
cause of crack nucleation in aircraft skin structure. It is a hazard at each rivet. This leads to the
conclusion that design of riveted joints which ignores or inadequately considers fretting fatigue
may result in multiple-site damage, which is recognized by the aviation community as a significant,
yet unresolved, issue.

1X/X



1 INTRODUCTION.

This report is submitted in accordance with the requirements of Department of Transportation,
Federal Aviation Administration Regulation 9550.7, Research Grants Program. It covers the two
year grant no. 93-G-068 program entitled “The Role of Fretting Corrosion and Fretting Fatigue on
Aircraft Rivet Hole Cracking.” The program was conducted by the Quality and Integrity Design
Engineering Center (QIDEC), Department of Mechanical Engineering, University of Utah.

The American Society for Testing and Materials defines fretting as “a wear phenomenon occurring
between two surfaces having oscillatory relative motion of small amplitude” and fretting corrosion
as “a form of fretting wear in which corrosion plays a significant role” [1]. Fretting and fretting
corrosion can be present in any area of an aircraft structure (e.g., engines, aircraft primary and
secondary structure, and landing gear components) in which small amplitude cyclic slip between
adjacent contacting materials is possible. When at least one of the fretted components also
experiences fatigue loading, the process is called fretting fatigue. The effects are synergistic with
the component life possibly being reduced by an order of magnitude or more as a result of fretting
fatigue when compared to fatigue without fretting. The main effect of the fretting is an accelerated
nucleation of cracks which then may propagate due primarily to the fatigue loading [2]. Rivets and
mechanically fastened joints in general are particularly susceptible to fretting fatigue which can
result in multiple-site damage because the damage can occur at many rivet holes. The damage can
link up in aircraft structures and if not detected during inspection could create catastrophic results.
Thus, it is imperative to understand the role of fretting fatigue in producing multiple-site damage in
riveted aircraft joints.

The work performed under this grant was organized into four subprograms as explained in the
procedures section which follows. The work was interrelated, with the performance of each
subprogram enhanced by the results and experience obtained during the performance of the others.

2 PROCEDURES.

2.1 INSPECTION OF A LAP JOINT PANEL FROM A SERVICE AIRCRAFT.

A lap joint panel from Saudi Air, Boeing 707-320C, serial number 19810 (39,834 hours and
26,017 flight cycles) was investigated for evidence of fretting induced cracking in and adjacent to
the rivet holes. A picture of this panel, which was provided by Boeing Defense and Space Group,
is shown in figure 1. Of interest is the lap joint region that runs horizontally across the panel,
slightly above the center of the picture.

The panel was visually inspected and inspected with an optical microscope. Selected riveted joints
then were sectioned in the vertical direction in figure 1 and the rivets removed. The rivet holes
were inspected visually and with an optical microscope. Then the rivet holes and regions adjacent
to the holes were inspected in a scanning electron microscope (SEM). To aid in crack detection,
tensile loading was used to expand the rivet holes. Procedures were similar to those used by
Piascik et al. [3]. Following these inspections, those rivet hole sections which had cracks of
interest, based on subjective evaluation, were fractured so that the crack surfaces could be
inspected to determine the crack nucleation sites.

Figure 2 shows the rivet pattern and numbering scheme assigned to the rivets in the panel. The
critical row of rivets is that containing rivets 1, 4, ..., 46, 49. Rivet 46 was randomly selected
from this row and then its hole and those of proximate rivets 43, 47, 48, and 49 were inspected in
a pilot investigation. Based on the results of this investigation, it was decided to inspect all rivet
holes in the critical row and five additional randomly selected rivet holes in the other two rows.
The rivet holes that were inspected are darkened in figure 2.



Figure 1. Picture of the lap joint panel that was investigated.
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Figure 2. Rivet pattern and numbering scheme assigned to the rivets in the panel. The rivet
holes that were inspected are darkened.



2.2 SENSITIVITY STUDY.

A sensitivity study was conducted to determine the effects of fretting on the fatigue lives of riveted
joint specimens made from 2024-T3 clad sheet aluminum prepared with either 7050 aluminum
alloy FV rivets or 2017 aluminum alloy CE rivets. Figure 3 depicts profile views of an FV and a
CE rivet. Specimens were riveted using either C-squeeze riveting or a rivet gun with bucking bar.

e o

60° 50°

FV rivet CE rivet

Figure 3. Profile views of an FV and a CE rivet.

Initially, eighteen specimens were prepared, tested, and examined in accordance with the plan in
appendix A. The 0.063 gage 2024-T3 clad sheet aluminum alloy coupons for the specimens were
inventoried, sized, allodined, and primed. Then, all specimens were fabricated in accordance with

the drawings in appendix B. The eighteen specimens were fabricated with riveting procedures as
follow:

four C-squeeze joints with 7050 FV rivets,

four C-squeeze joints with 2017 CE rivets,

five rivet gun with bucking bar joints with 7050 FV rivets, and
five rivet gun with bucking bar joints with 2017 CE rivets.

Testing was conducted using a single MTS servo hydraulic load system with a 10 Hz sine wave
driving signal, a maximum nominal tensile stress of 17 ksi, and a stress ratio R = 0.1. The
drawings in appendix C are for the system that was used to counter the tendency of the riveted
joints to bend in the riveted area when under out-of-plane tensile loading. Figure 4 shows a
specimen attached in the MTS load frame with the antibending system installed.

Analysis of the test results indicated that the lives of CE riveted specimens were shorter than
expected. Investigation showed that the rivet hole countersink depths were too great for these
specimens and this was hypothesized to be the cause of the decreased lives. Consequently, twelve
additional specimens were prepared, tested, and examined using similar procedures as before, in
accordance with the plan in appendix D. The twelve specimens were fabricated from 0.063 gage
2024-T3 clad sheet aluminum alloy with riveting procedures as follow:

four C-squeeze joints with 7050 FV rivets,
four C-squeeze joints with 2017 CE rivets, and
four rivet gun with bucking bar joints with 2017 CE rivets.

The CE riveted specimens were included for the data they generated. The FV riveted specimens
were included to allow correlation with the initial testing program. To the extent possible, all



conditions for the second test were the same as the conditions for the initial testing program except
for the depth of the CE rivet hole countersinks.

Figure 4. Specimen attached to the MTS load frame with the antibending
system installed.

All actions for the sensitivity study portion of this program were performed in such a manner as to
ensure the statistical integrity of the program. Full use was made of random number generation,
blocking, and other statistical sampling techniques in deciding the riveting procedures to use and
the orders in which specimens were to be machined, riveted, or tested. The operator, equipment,
and procedures were the same for all specimen preparation and testing operations.



During data reduction, statistical comparisons of the fatigue lives of specimens within a sample®
and between samples were made by standard cumulative normal distribution function hypothesis
testing methods [4]. In these procedures, a hypothesis is stated concerning whether the values to
be compared are from the same population. The level of confidence desired in the results of the
analysis is also assumed. A standard table is entered with a “Z” value that is a measure of the
number of standard deviations between the values to be compared. This provides a measure of the
confidence that the values are not from the same population which is compared to the desired level
of confidence. Alternately, given a desired confidence level, the corresponding “Z” value can be
determined. Then the hypothesis is accepted or rejected based on the confidence or “Z” value
determined. Acceptance of the hypothesis means that you can be confident (at the level of
confidence chosen) that the values are not from the same population. This provides statistical
justification for considering one population superior to the other based on the conditions of the
experimental program and the confidence level chosen. For example, for this program the sample
with the “statistically” longer mean life is considered to be from a population with better fretting
fatigue life characteristics than the sample with the shorter mean life. Rejection of the hypothesis
means that there is no statistical basis for considering one population superior to the other based on
the conditions of the experimental program and the confidence level chosen.

For this program 99 percent confidence (“Z” value of 2.326) was used for comparison in all cases
except one where 95 percent confidence (“Z” value of 1.645) was used. In comparing specimens
within a sample, the specimen being considered was assumed not to be from the same population.
Therefore, the difference between the sample mean (without the value of the specimen being
considered) and the value for that specimen was determined. This difference was divided by the
sample standard deviation (computed without the value of that specimen) to determine the “Z”
value. For comparisons between samples, the two samples were assumed to be from the same
population. A combined standard deviation (standard error of the difference) for the two samples
was computed by the equation:

SD = [61/ (n)V2] + [0o/ (n)V/2]

where: SD is the standard error of the difference
O, is the standard deviation for the first sample
n; is the number of values in the first sample

O, is the standard deviation for the second sample
n, is the number of values in the second sample

Then the difference in the sample means was divided by this “SD” value to determine the “Z” value
which was compared to the “Z” value of 2.326 or 1.645.

Following testing, the fracture surfaces of the failed specimens were investigated in order to gain
insights into the factors that resulted in failure, especially the influence of fretting on the fatigue
process.

* Except as justified in the discussion, a sample is considered to be all specimens from the same
test program produced with the same type rivets and riveting procedures.



2.3 PREDICTION OF COEFFICIENT OF FRICTION DURING FRETTING.

Traditionally for many materials the metal dry friction between contacting surfaces has been
characterized by a ratio of the friction force which impedes relative motion between the surfaces to
the normal force which holds the surfaces together. There are two such ratios: the coefficient of
static friction (us) as motion is impending and the lower-value coefficient of kinetic friction (uk)
while there is relative motion or slip between the surfaces. These values are global in that they and
slip amplitude are considered constant within the contact region. Also, they are not considered to
be functions of wear (cycles), contact area, geometry, and surface roughness.

In fretting fatigue portions of the fretted interface may experience relative slip while other portions
may stick (not slip) and the boundary of the stick-slip region experiences high-stress
concentrations that can resultin crack nucleation. Additionally, the friction characteristics within a
fretted interface change with cycling due to wear. Therefore, to better understand the fretting
fatigue process it is necessary to understand friction at the local level and how it changes with
cycling. In this program where a finite element model was used local is defined as the element size
of 0.00048 in2.

A method was developed to predict coefficient of friction characteristics within a fretted contact
during the nucleation of a crack. The method consists of an iterative procedure that compares
computed local frictional values from a three-dimensional (3D) linear ADINA® finite element model
with predicted frictional values and updates the predictions as necessary until agreement is reached
at each model node. Starting with the first cycle, the method steps forward in cycles at a rate that
ensures convergence until the required number of cycles has been considered. A flow chart of the
protocol that ensures convergence is shown in figure 5.

The method uses coefficient of friction data determined using the system shown mounted in an
MTS load frame in figure 6. A drawing of this system is shown in figure 7, and a drawing of the
contact area is shown in figure 8. This system is capable of determining coefficient of friction

values at slip amplitudes as low as 80 microinches (2 micrometers) with uncertainty as shown in
table 1.

Table 1. Total uncertainty in the measurement of coefficient of friction data
(worst on worst error analysis)

Variable Sources of uncertainty Total
uncertainty
Ratio of Thermal drift of tangential load sensor +7.9 %
tangential to Signal noise of tangential load sensor maximum
normal forces  Angle of load application (wire)
relative to bridge

Thermal drift of displacement sensor
Signal noise of displacement sensor
Angle of sensor relative to bridge

Relative Thermal drift of displacement sensor +9.7 %
displacement  Signal noise of displacement sensor maximum
Angle of sensor relative to bridge

Eighteen tests were conducted to determine frictional values of 2024-T3 on 2024-T3 at slip
amplitudes of 80, 440, or 800 microinches and average normal tractions of 2,000, 6,750, or
13,000 psi to develop the coefficient of friction data needed to support the method verification.



Place starting values of coefficient of friction into a finite
element model of a contact condition and solve for the
displacements and stress state at the first cycle.

< Place the coefficients of friction [<A&
¥ predicted into the finite
element model, then solve it.

Can any path

~"dependency or convergence
violations be found in the solution?

y 1o yes |
Accept the predicted coefficients Predict the coefficients of friction
of friction as being valid at the at a cycle number which is less
current cycle number. than the cycle number which
resulted in the convergence or
v path dependency violation. >

Has the Predict the coefficients
current cycle number of friction at a cycle

Stop )< exceeded the maximum desired? number beyond the
yes ”"| current cycle number.
no

Figure 5. Flow chart of the method to predict how the coefficient of friction will change
for a fretting contact.

A system was developed to provide verification of the coefficient of friction prediction method
discussed above. The system is shown mounted in an MTS load frame in figure 9 and a drawing
of the system is shown in figure 10. This system uses indirect verification by measuring strain
values adjacent to the fretted contact which can be compared with strain values predicted by the
coefficient of friction prediction method. The verification system uses a flat rectangular contact
surface 1.22 in. along by 0.1 in. across the direction of fatigue loading.

The coefficient of friction prediction method is general purpose and can be used with an ADINA®
model of whatever contact geometry is being considered. The verification system geometry was
modeled during this program. Due to symmetry along and across the fatigue loading direction, one
quarter of the 1.22 by 0.1 in. surface was modelled by the ADINA® program. This was modelled
with a 64 element array (16 elements along by 4 elements across the direction of fatigue loading).

The systems mentioned above were developed as part of the FAA program. More detailed

information concerning these systems is contained in reference [5] or can be obtained by contacting
the authors.



Figure 6. Close-up view of the fretting test apparatus.
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Figure 7. Major components of the coefficient of friction during fretting test apparatus.

Figure 8. Truncated cone on half space fretting contact geometry.



Figure 9. The verification test apparatus installed in a load frame. (The items to the right
of the apparatus are bridge completion resistors, thermal compensation gages,
and shunt calibration jumpers).
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Figure 10. The verification test apparatus with the major components labeled.

2.4 RIVETED JOINT COMPUTER SIMULATION.

A finite element model of a one rivet section of the CE joint tested during the sensitivity study
portion of this grant was constructed. This was considered to be a valid baseline condition to use
for applying the method for prediction of coefficient of friction during fretting (section 2.3) to a
riveted joint. This model was developed and executed for a simulated 1 1/2 cycles as shown in

figure 11.
1.0 +
g
Q
&
2
S
|95}
0.01—+
0

Figure 11. Cycles simulated during the analysis. The scale factor was based upon a

Time

far field maximum stress of 17,000 psi as used in the sensitivity study.



The model simulated one of the fasteners on the critical row as shown in figure 12. The boundary
conditions of the model are shown in figure 13. The portion of far field stress which was
considered to be transferred by the critical row of fasteners was based on other research in QIDEC
[6]. The model included the influence of plasticity of the upper sheet, lower sheet, and rivet.
Kinematic hardening was assumed. The interfay sealant and the friction between the rivet and the
sheets also were included in the model. The direction of the axis of the rivet was not constrained.
The ADINA-IN® and ADINA-PLOT® codes used to obtain the plots found in this report will be
made available upon request to the authors.
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Figure 12. Diagram of a riveted joint used during the sensitivity study with the
boundaries of the computer model shown in dashed lines.
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O = applied stress
(17,000 psi max.)

Symmetry

No stress

0370 0.63 0

Figure 13. Boundary conditions of the model.

A plot of the model is shown in figure 14 and a plot of the riveted joint mesh is shown in figure
15. A plot of half of the upper plate mesh is shown in figure 16. This figure includes an arrow
indicating the high stress region in which the stress plots described in section 3.4 are shown.
Figure 17 shows a magnified view of this high stress region mesh.

Figure 14. Mesh of the entire model. The dark areas are due to the resolution of the
plotter and have no practical significance.
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Figure 17. Mesh of the region just underneath the countersink in the upper plate
in the region of highest stress concentration.

3 RESULTS.
3.1 INSPECTION OF ATAP JOINT PANFL FROM A SERVICE AIRCRAFT.

Visually, without magnification, the panel appeared to be serviceable and corrosion free. There is
no reason to believe that this panel would have been inspected further or replaced in a periodic
inspection. However, close optical inspection showed the presence of a black substance indicative
of fretting at all but two of the rivet holes in the panel.

By optical microscope and/or SEM inspection fretting debris was found in all of the rivet holes that

were inspected. Additionally, cracks were found in the fretting debris in each hole. Figures 18
and 19 show examples of cracks in fretting debris in rivet holes as previously defined in figure 2.
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Figure 18. Example of cracks in fretting debris in rivet hole 1. The top of the picture is
in the countersink region and the bottom is in the rivet body region.
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Figure 19. Example of cracks in fretting debris in rivet hole 46. The top of the picture is
in the countersink region and the bottom is in the rivet body region.
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Several cracks were found in regions that appeared to have had relatively little fretting damage.
However, these cracks were generally attributable to other identifiable causes such as the crack
emanating from a void or inclusion as shown in figure 20.

#

x60@ 0855 2BKkVY 5S0wun

Figure 20. Crack emanating from a void or inclusion in a relatively unfretted region
in rivet hole 49.

Based on examination of the surfaces of the rivet holes and examination of the crack surfaces for
those cracks in fretting debris, it was determined that crack nucleation generally occurred in the
rivet body region of the rivet holes near the countersink region of the holes. This can be seen in

figures 18 and 19. Crack surface views of two other fatigue cracks within the rivet holes are
shown in figures 21 and 22.

Observation of figures 21 and 22 can lead to a misconception that only single cracks occurred.
This was not necessarily the case, but rather a function of how the region near the rivet hole was

fractured for inspection. As can be seen in figure 23, numerous cracks were possible within the
rivet holes.

Subjectively, it seemed that fretting damage was more severe in holes in the region near rivet hole
47. For this rivet, the axis of the machined countersink was not concentric to the axis of the hole
as drilled. It is believed that this misalignment may be responsible for the increase in fretting
damage in holes near rivet hole 47.
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Figure 21. Crack surface at rivet hole 49. The top of the picture is in the rivet body region
and the bottom is in the countersink region.

x4@ B8

Figure 22. Crack surface at rivet hole 50. The top of the picture is in the countersink region
and the bottom is in the rivet body region.
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Figure 23. Crack surface at rivet hole 1. The fracture surface shows several cracks, and
additional cracking can be seen on the rivet hole surface to the right of the figure.

3.2 SENSITIVITY STUDY.

Data pertaining to the fabrication, testing, and analysis of individual specimens are contained in

appendix E. Specimens 1 through 18 are the initial test specimens. Specimens IR through 12R
are for the second test program. ;

Desired rivet head clearance above the joint surface was 0.003 in. (See drawings FAASPC94044
and FAASPC94045 in appendix B.). For the initial testing, the modal value of CE rivet head
clearance was found to be 0.000 in. (flush) with 77 percent of the values from -0.001 to 0.001 in.
For the follow-on testing, the modal value of CE rivet head clearance was 0.003 in.with 88 percent
of the values from 0.002 to 0.004 in. For all testing, the modal value of FV rivet head clearance
was 0.002 in with 81 percent of the values from 0.001 to 0.003 in.

For all specimens, failure resulted from instability due to fatigue crack propagation in the line of
rivets 11 through 15 as shown in figure 24. Cycles-to-failure data are shown in table 2. With the
exception of some relatively short cracks, all fatigue cracks that were identified had nucleated n
fretted regions within or adjacent to the rivet holes. These locations of fretting were identified by
observed fretting debris. Tables 3 and 4 contain a listing of the locations of fretting debris in
which cracks nucleated for the CE and the FV rivets respectively. Figures 25 and 26 contain the
keys for the location codes in tables 3 and 4 respectively. Figures 27 and 28 show typical cracks
which nucleated in fretted regions. Figure 29 shows the fracture surface of a plate for which crack
nucleation was in the region between the 2024 alloy sheets.
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Figure 24. Riveted region in a sensitivity study specimen showing the rivet numbering scheme.

Specimens 3, 13, and 10R did not fracture (break into two pieces) because the error detectors
sensed failure and activated the interlocks which stopped specimen loading before fracture could
occur. Because of the extent of cracking in these specimens (for example see figure 30), it is felt
that additional cycling would have been minimal if the test had not been stopped because the
interlocks were activated. Therefore, the cycle count at the time of interlock for each specimen was
used in the data analysis.

Seven of the eight specimens riveted with FV/C-Squeeze procedures were found through optical
microscope inspection to have cracks along a chord of the circular top of the rivet head. Four of
these rivet heads (one each in specimens 8, 11, 3R, and 10R) had fractured. Figure 31 shows
fractured specimen 11 in which rivet 13 has fractured and a crack is observed inrivet 11. In all, 12
rivets were observed to be cracked or fractured. Of these, one was in rivet 11, three were in rivet
12, five were in rivet 13, and three were in rivet 14. No cracks were found in any CE or FV/rivet
gun with bucking bar specimens. The fracture surface of rivet 13 specimen 11 is shown in figure
32. Ratchet marks near the arrow in this figure indicate that fatigue cracks nucleated at the
countersink surface of the rivet. This is confirmed in figure 33 which shows fatigue striations
located at the point of the arrow in figure 32.
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Table 2. Sensitivity study cycles to failure

2017 CE specimens 7050 FV specimens
Specimen Cycles Specimen Cycles
Initial Program
Rivets installed by rivet gun with 9 32,200 5 178,020
bucking bar 18 33,580 1 216,450
7 36,880 17 248,090
15 41,400 16 248,860
4 43,130 12 363.780
Mean 37,438 251,040
Standard Deviation 4,763 69,376
Rivets installed by C-squeeze 14 - 37,380! 8 142,6602-3
3 40,270 11 146,8602.3
10 54,080 13 167,720
6 38.030 2 1935203
Mean 47,440 162,690
Standard Deviation 10,146 23,292
Mean without 37,380 value 50,793
Standard Deviation without 37,380 9,325
Follow-on Program
Rivets installed by rivet gun with 2R 87,680
bucking bar 4R 95,690

11R 101,890
&R 107.710

Mean 98,243
Standard Deviation 8,583
Rivets installed by C-squeeze 12R 112,890 3R 120,0502.4

9R 127,980 10R 156,6402.3
5R 139,250 6R 157,3403
IR 168.980 7R 174.4603

Mean 137,275 152,123

Standard Deviation 23,736 22,915

Mean without 120,050 value 162,813

Standard Deviation without 120,050 10,092

Consolidated FV/C-squeeze statistics
(without 120,050 value)

Mean 162,743
Standard Deviation 17,471

For unknown reasons, seating of the rivets in this specimen was found to be incomplete on
inspection the day after the riveting. Twelve rivets were removed and the specimen reriveted.
Specimen had fractured rivet heads.

3 Cracks were observed in rivet heads that had not fractured as a result of testing.

Failure of the grips (not the specimen) occurred during this test. The grips were fixed and the
test continued.
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Table 3. Locations of fretting debris in which cracks nucleated and frequency of nucleation within
the debris for CE riveted joints. See figure 25 for the meaning of the location codes.

[ Specimen CEl CE2 CE3 CEA CE5 CE6

3

4 6 1
6 17 3 1 1
7 2 2 2

9 1 5 4

10 2 4 1

14 2 6 1
15 2 6 1

18 8 1

1R 1 6 2 2
2R 3 1

4R 7 1 1
5R 1?7 2 7 1 1
8R 1,17 1 5 3 3
OR 1 3 3 2
TIR 7 2 T
2R 2 5 1 2

CE4 CES5 CE6

CE3 CE2

Figure 25. Drawing of a hole in a plate for a CE rivet showing the coded locations of cracks
which nucleated from fretted regions. The codes are used in table 3 above and in
the text.
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Table 4. Locations of fretting debris in which cracks nucleated and frequency of nucleation
within the debris for FV riveted joints. See figure 26 for the meaning of the location

codes.
[ Specimen FV1 FV2 FV3 FVa FV> FV6 V7
1 3 1 2
2 37 1 2, 17 1
5 2 6 3
8 57 17 2
11 47
12 7 1
13
16 4 1
17 1 4 5 4
3R 17 3 3 2
6R 1 2 1 3
7R 1 1 1 1
T0R

FV4 gys FV6 FV7

AN
\\/(y {é(é(/\\

FV3 FVv2 FV1

Figure 26. Drawing of a hole in a plate for an FV rivet showing the coded locations of cracks
which nucleated from fretted regions. The codes are used in table 4 above and in the
text.
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Figure 27. Fracture surface of a crack which nucleated within a region subject to fretting.
The fretting is at location CES5 of figure 25. '

x88 @995 24KV Sa8um

Figure 28. Fracture surface of a crack which nucleated within a region subject to fretting.
The fretting is at location FV6 in figure 26.
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Figure 29. Fracture surface (bottom of picture) for crack from a fretted area (see arrow)
between the plates. The substance at the top of the picture is interfay sealant.
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Figure 30. View of test specimen 3 showing extensive cracking but not fracture.
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Figure 31. Fractured specimen 11 in which rivet 13 has fractured and a crack is observed
inrivet 11.

x4 9811 26KY  1mm

Figure 32. The fracture surface of rivet 13 specimen 11. Ratchet marks near the arrow
indicate that fatigue cracks nucleated at the countersink surface. The striations
in figure 33 are at the point of the arrow in this figure.
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Figure 33. Striations indicative of fatigue crack propagation in rivet 13 specimen 11.
This picture is at the point of the arrow in figure 32 and is oriented in the
same direction as that figure.

3.3 PREDICTION OF COEFFICIENT OF FRICTION DURING FRETTING.

Based on the work of Vincent, et al. [7] results of each of the eighteen coefficient of friction data
collection tests were collected in a three-dimensional plot (friction log) of the ratio of the tangential
to the normal force versus relative displacement versus cycles as shown in figure 34. The plot in
figure 34 is for a test with 440 microinches slip and 6,750 psi normal load. A corresponding plot
of the ratio of tangent to normal forces versus relative displacement showing the hysteresis loops is
in figure 35. The related plot of the ratio of tangent to normal forces versus log cycles is in

figure 36. The mismatch in the scale in figure 36 is because of the 5.0° offset in the view as
shown in figure 37.

The plots of the eighteen tests were analyzed and a curve fitting equation was developed which was
used to compute frictional values for the coefficient of friction prediction method discussed in
section 2.3. An example plot of the curve fitting equation values is shown by the plot in figure 38
which also corresponds to 440 microinches slip and 6,750 psi normal load. The variability of the
coefficient of friction can be seen by comparing figures 36 and 38 with corresponding figures 39
and 40 which are for 800 microinches slip and 13,000 psi normal load.

Representative local frictional values resulting from application of the coefficient of friction
prediction method to the verification system geometry are shown in table 5. Because for a given
cycle count the four values across the array were the same for any distance along the fatigue
loading direction, a single value is shown for each of the 16 element sets along the fatigue loading
direction for each cycle count. These are shown for several cycle count values in table 5.
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Figure 34. Typical friction log of coefficient of friction during fretting test.
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Figure 35. Example of hysteresis loops for coefficient of friction during fretting test
(see figure 37 for an explanation of the view).
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Figure 36. Example of the ratio of tangential to normal force versus cycles for a coefficient of
friction during fretting test (440 microinches slip and 6,750 psi normal load). See
figure 37 for an explanation of the view.
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Figure 37. Friction log idealization with illustration of the different views of coefficient of friction
during fretting test data plotted.
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Figure 38. An example plot of the curve fitting equation values corresponding to 440 microinches
slip and 6,750 psi normal load.
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Figure 39. Example of the ratio of tangential to normal force versus cycles for a coefficient of
friction during fretting test (800 microinches slip and 13,000 psi normal load).
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Figure 40. An example plot of the curve fitting equation values corresponding to 800 microinches
slip and 13,000 psi normal load.

Table 5. Representative local coefficient of friction values resulting from application of the co-
efficient of friction prediction method to the verification system geometry. The top of
the table is at the edge and the bottom is at the center of the fretting pad as measured

along the axis of fatigue loading. The ditto marks mean the value is the same as the
value above it.

Cycles ---> 0 4 16 64 103 155 259 301 448 895
Pad edge 0.251 0.323 0.521 1.130 0.845 0.972 1.112 1.091 1.127 1.130
! ! " 0.619 0.652 0.779 1.033 0.933 " !
" ) 0.386 0.503 0.536 0.663 0.917 0.817 1.108 "
" 0.251 0.281 0.398 0.431 0.558 0.812 0.712 1.003 "
" " " " ALl " " " " 1 ‘003
) " " ! ! " " " 0.837 0.837
" " " ! " " " " 0.712 0.712
! " ! ! ‘ " 0.558 0.558 0.558 0.558
" " " ! ) 0.431 0.431 0.431 0.431 0.431
Pad center " ! ! ! 0.368 0.368 0.368 0.368 0.368 0.368
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A comparison of the strains predicted by the coefficient of friction prediction method and
experimentally determined strains from the verification system test are shown in figure 41. Three
experimental curves are shown as three of the eight possible symmetric locations were gaged
during the test. Of these three gages, two were located on the same side of one fretting pad and the
third gage was located on the other fretting pad.
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Figure 41. Predicted and experimentally determined strains of the verification apparatus.

3.4 RIVETED JOINT COMPUTER SIMULATION.

Figure 42 is a mapping of the fatigue loading direction stresses as defined in figure 16 at the point
indicated by the “b” in figure 11. This is when the far field stress is returned to 170 psi after the
first loading to 17,000 psi. Figure 43 is a mapping of the fatigue loading direction stresses as
defined in figure 16 at the point indicated by the “c” in figure 11. This is when the far field stress
is increased back to 17,000 psi.
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Figure 42. Fatigue loading direction stresses within the plate after the far field stress is increased
to 17,000 psi, then decreased to 170 psi. Stresses are as discussed in figure 16. The

stresses range from 15,000 psi (darkest) to -55,000 psi (lightest) in fifteen increments
of 5,000 psi each.

Figure 43. Fatigue loading direction stresses within the plate after the far field stress is
increased to 17,000 psi, decreased to 170 psi, and returned to 17,000 psi.
Stresses are as discussed in figure 16. The stresses range from 60,000 psi
(darkest) to 18,000 psi (lightest) in fifteen increments of 3,000 psi each.
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4 DISCUSSION.

4.1 INSPECTION OF A LAP JOINT PANEL FROM A SERVICE AIRCRAFT.

Some general comments can be made from this investigation. Multiple cracking was observed in
the riveted joint panel that was examined. Virtually all rivet holes contained cracks. The longest of
those that were measured was 0.025 in. long, as shown in figure 21. These cracks generally
nucleated in regions of damage due to fretting. It is not known if these cracks were propagating
during most of the life of the joint while in service or if they nucleated and grew to their present
size then stopped or if nucleation required a relatively large portion of the life to this investigation
and then the cracks propagated steadily. This type of information is necessary to determine the
influence these cracks would have in a multiple-site damage assessment.

4.2 SENSITIVITY STUDY.

The data from table 2 were analyzed following the statistical procedures described in paragraph
2.2.

The life of specimen 14 (37,380 cycles) was compared with the mean life of the other CE/C-
squeeze specimens (50,793 cycles) resulting in a “Z” value of 1.438 which is less than 2.326.
Therefore, specimen 14 was retained as part of the sample. The reader may chose to eliminate this
specimen for procedural reasons. Such elimination does not change the results of the analyses
which follow.

The life of specimen 3R (120,050 cycles) was assumed not to be from the same population as the
lives of the other FV/C-squeeze specimens. Therefore, its value was set aside while the mean
value of the FV/C-squeeze sample from the initial testing program (162,690 cycles) was compared
to that from the second program (162,813 cycles, without specimen 3R). Comparison of these
samples resulted in a “Z” value of 0.007 which is less than 2.326. Therefore the two samples,
without specimen 3R, were assumed to be from the same population. Comparison of the life for
specimen 3R with the combined sample of all seven of the other FV/C-squeeze specimens (mean =
162,743 cycles and standard deviation = 17,471 cycles) resulted in a “Z” value of 2.444 which is
greater than 2.326. Therefore the assumption that specimen 3R was not from the same population
was justified and the data for specimen 3R were not considered further.

By inspection, results for those specimens which had not fractured (3, 13, and 10R) or had rivet
holes where fatigue cracking was not observed (1 and 7R) were considered to be part of the
populations of their respective samples. This was based on the fact that none of their fatigue lives
were a low extreme value within the sample.

The CE/rivet gun sample from the initial test program (mean = 37,438 cycles) was compared to
that from the second program (mean = 98,243 cycles) resulting in a “Z” value of 9.468.
Additionally, the CE/C-squeeze sample from the initial test program (mean = 47,440 cycles) was
compared to that from the second program (mean = 137,275 cycles) resulting in a “Z” value of
5.303. Because both of these “Z” values were greater than 2.326 and in both cases the greater
lives were from the second test program, the hypothesis that the excessive countersink depth was
the cause of decreased lives for the initial testing was considered to be validated. Therefore the CE
data from the initial program were not considered further.

The CE/rivet gun data from the second test program (mean = 98,243 cycles) were compared to the
CE/C-squeeze data from the second program (mean = 137,275 cycles) resulting in a “Z” value of
2.415 which is greater than 2.326. Therefore, for the 2017 CE riveted specimens, C-squeeze
fretting fatigue lives were longer than rivet gun with bucking bar lives.
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The FV/rivet gun data (mean = 251,040 cycles) were compared to the combined FV/C-squeeze
data (mean = 162,743 cycles) resulting in a “Z” value of 2.347 which is greater than 2.326.
Therefore, for the 7050 FV riveted specimens, rivet gun with bucking bar fretting fatigue lives
were longer than C-squeeze lives. Also, it can be seen from inspection of table 2 (notes 2 and 3)
that the cracked and fractured rivets were in the shorter lived FV/C-squeeze specimens. Also,
those FV/C-squeeze specimens with fractured rivet heads had the shortest lives.

The CE/rivet gun data from the second test program (mean = 98,243 cycles) were compared to the
FV/rivet gun data (mean = 251,040 cycles) resulting in a “Z” value of 4.326 which is greater than
2.326. Therefore, for the rivet gun with bucking bar procedure, 7050 FV riveted specimens had
longer fretting fatigue lives than 2017 CE riveted specimens.

The CE/C-squeeze data from the second test program (mean = 137,275 cycles) were compared to
the FV/C-squeeze data (mean = 162,743 cycles) resulting in a “Z” value of 1.650 which is less
than 2.326. Therefore, at the 99 percent confidence level no conclusion could be drawn.
However at the reduced 95 percent confidence level (“Z” = 1.645) the data from this test program
indicated that for C-squeeze procedures, 7050 FV riveted specimens had longer fretting fatigue
lives than 2017 CE riveted specimens.

4.3 PREDICTION OF COEFFICIENT OF FRICTION DURING FRETTING.

Several observations can be made from the results of the verification test as shown in figure 41.
The values of the predicted and experimentally determined strains were within 16% of each other
during the first 40 to 50 cycles. Also, the general shapes of the predicted and experimentally
determined strain curves were similar. However, after the first 1000 cycles the experimentally
obtained values of strain were only about 56% of those predicted. This was considered to be a
successful comparison given the complexity of the various input systems. Nonetheless, research
to determine the reasons for the variation between the predicted and experimental values might
provide insights into the local mechanisms of friction.

4.4 RIVETED JOINT COMPUTER SIMULATION.

Figure 42 shows compressive stresses in the plate near where the shank of the rivet contacts the
plate when the far field stress was reduced to 1% of its maximum value after the initial loading to
17,000 psi. This indicates that plasticity would have occurred in this region during the initial
loading to 17,000 psi. From this, it can be inferred that residual stresses would be developed
within the material(s) that would influence the overall stress state as cycling continued. This might
be an advantage for cracks nucleated in the plate near where it is contacted by the shank of the
rivet. The propagation of these cracks might be slower during the period in which the crack tip
remained within the region influenced by the residual compressive stresses. The plasticity also
could result in tipping of the rivet from its initial axis. This would change the stress and
displacement conditions within the fretted interface adjacent to the rivet thereby influencing the
local fretting fatigue process and possibly resulting in tractions due to friction that increased
maximum shear stress and influenced yielding.

In figure 43 after reloading to 17,000 psi, the region of material near where the shank of the rivet

contacts the plate attains a tensile stress of less than 25,000 psi while higher tensile stresses occur
near the junction of the shank and countersink portions of the rivet.

35



5 _CONCLUSIONS.
5.1 INSPECTION OF A LAP JOINT PANEL FROM A SERVICE AIRCRAFT.

It is concluded that fretting damage led to crack nucleation within the panel that was investigated.
This is significant because it indicates a potential for multiple-site damage occurring more rapidly
than might be anticipated from a fatigue analysis or testing that did not consider fretting. In
addition, fretting also could produce cracks at holes not viewed as “fatigue critical.”

5.2 SENSITIVITY STUDY.
Fretting damage led to crack nucleation in all failed specimené.

It is concluded with 99 percent confidence that with respect to fretting fatigue lives and based on
the results of this research program:

For 2017 CE rivets, C-squeeze is a better riveting procedure than rivet gun with bucking
bar.

For 7050 FV rivets, rivet gun with bucking bar is a better riveting procedure than C-
squeeze.

If the rivet gun with bucking bar procedure is to be used it is better to use 7050 FV rivets
than 2017 CE rivets.

It is concluded with 95 percent confidence that with respect to fretting fatigue lives and based on
the results of this research program: _
If the C-squeeze procedure is to be used it is better to use 7050 FV rivets than 2017 CE
rivets. This coupled with the preceding conclusion leads to the conclusion that with respect
to fretting fatigue lives and based only on the results of this research program, the better
rivet is the 7050 FV rivet.

Rivet fracture by fatigue contributed to the decreased lives for applicable specimens from the
combined FV/C-squeeze riveted sample.

5.3 PREDICTION OF COEFFICIENT OF FRICTION DURING FRETTING.

It is concluded that the method used to predict the coefficient of friction during fretting and the
method of obtaining the material data are worth pursuing in further research. The results of such
research might provide meaningful insights concerning the mechanisms of failure in riveted joints
and other connections which involve fretting fatigue.

5.4 RIVETED JOINT COMPUTER SIMULATION.

The state of stress predicted by the model indicates that if cracks nucleated by fretting or other
mechanisms at the surface of the plate which contacts the body of the rivet, the propagation of
these cracks might be slower during the period in which the crack tip remained within the region
influenced by the residual compressive stresses.
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APPENDIX A—PLAN FOR FABRICATION, FATIGUE TESTING, AND
EXAMINATION OF RIVETED JOINT SPECIMENS (MARCH 20, 1995)

1. Overview

1.1. The Quality and Integrity Design Engineering Center (QIDEC) of the University of Utah is in
the process of fabricating 18 riveted joint specimens to be used in fatigue testing. QIDEC is either
contracting or performing all fabrication procedures as described in paragraph 2. This is a revision
from the previous plan which assumed that QIDEC would contract with Macnab Manufacturing
which would fabricate the specimens. QIDEC will perform all testing and examination of failed
specimens in accordance with paragraph 3.

1.2. The 18 specimens will be fabricated from 0.063 gage 2024-T3 clad sheet aluminum alloy
with riveting procedures as follow:

four C-squeeze joints with 7050 Briles rivets,

four C-squeeze joints with 2017 CE rivets,

five rivet gun with bucking bar joints with 7050 Briles rivets, and
five rivet gun with bucking bar joints with 2017 CE rivets.

1.3. In the paragraphs that follow, reference is continually made to table Al which shows the
specimen preparation and testing protocol to be followed. Two sets of QIDEC drawings are also
attached. The first gives the specific procedures to be followed in those cases where the specimen
preparation work is not contracted outside of QIDEC. The second shows the system to be used
during the fatigue testing to counter the tendency of the riveted joints to bend in the riveted area
when under tensile loading.

2. Joint Fabrication Procedures

2.1. QIDEC obtained 36 6-in.-wide coupons of 2024-T3 clad sheet aluminum, a bag of CE rivets
and a bag of Briles rivets.

2.1.1. The coupons were numbered consecutively as unpacked and the thickness of each end of
each coupon was measured twice with a digital micrometer and recorded. Based on these
measurements, the coupons were paired for manufacturing into sets such that the coupon thickness
in the coupon where the rivet heads are to be located was the same for all joints, and the coupon
thicknesses adjacent to the bucktails were conducive to experimental blocking. Otherwise, random
number generation was used to match coupons and, within each experimental block, to determine
rivet type, riveting procedure, the order of machining, and the order of riveting. The results of this
sorting procedure are shown in table A1l.

2.1.2. Rivets from the bags of rivets were measured until sufficient rivets of each type with
identical measurements were available for all joints to be manufactured. These dimensions were
0.1875 in. diameter by 0.3475 in. length (including head) for the Briles rivets and 0.188 in.
diameter by 0.346 in. length (including head) for the CE rivets.

2.2. The 36 coupons were allodined in a single batch in accordance with MIL-C-5541
class 1A.

2.3. The 36 coupons were coated in a single batch with BMS 10-11 type 1 class A adhesive
primer.

2.4. Each coupon will be machined to size in accordance with QIDEC drawings FAASPC94042
and FAASPC94043.



2.5. Each set of coupons will be clamped together in a machining fixture and not separated until all
of the machining in the rivet area is completed.

2.6. All sets will be machined and marked in accordance with QIDEC drawings FAASPC94044
and FAASPC94045 using one milling machine. The order of machining will be as shown in table
Al. Initially, pilot holes will be drilled with a centering drill to ensure alignment. Number 10
double margin drills ground to 0.192 in. diameter will be used to drill all rivet holes. Countersink
stops will be used to drill all countersinks in order to ensure consistent countersink depth. These
stops were set based on inspection of holes drilled and countersunk during pilot machining work
sessions. The settings will not be changed during the specimen machining program. The specific
drill and countersink used to machine each hole will be identified and documented.

2.7. Rivet hole diameters will be measured using a Meyer C-10 gage set and recorded for all rivet
holes in each coupon where the rivet heads are to be located.

2.8. Joints will be riveted in accordance with QIDEC drawings FAASPC94046, FAASPC94047,
FAASPC94048, and FAASPC94049. The order of riveting will be as shown in table Al. All
specimens within a block will be riveted during the same riveting session. Procedures for each
block and between blocks will be as consistent as possible and documented for each rivet,
specimen, and block. Specifically, the same person will perform the same tasks using the same
equipment and procedures during riveting of all specimens to the extent feasible and appropriate.
The diameter of each bucktail will be determined to be within specifications by use of go/no-go
gages. Environmental (temperature and relative humidity) and lighting conditions will be as
consistent as possible. Temperature and relative humidity will be recorded at the time that the
riveting of each specimen is begun.

2.9. Rivet head clearances will be computed and recorded for all rivets in each specimen based
upon measurements using a machinists microscope.

3. Joint Fatigue Testing and Examination Procedures

3.1. All testing will be conducted on the same calibrated MTS servo hydraulic tension testing load
system. Prior to testing, the load system will be aligned by direct alignment of the grips.
Additionally, alignment will be verified prior to and following testing of each block of specimens
(see table A1) using an alignment specimen to be produced by QIDEC.

3.2. Testing will be conducted sequentially within four test blocks. The order of testing, based on
random number generation within each block, will be as shown in table Al. Fatigue loading will
be with a 10 Hz sine wave driving signal, a maximum nominal tensile stress of 17 ksi, and a stress
ratio of R = 0.1. The system shown in the attached drawings will be used during the fatigue
testing to counter the tendency of the riveted joints to bend in the riveted area when under tensile
loading. Temperature and relative humidity will be recorded at the time that the testing of each
specimen is begun. Total cycles to fracture will be determined for each specimen.

3.3. Following testing, failed joints will be stored in a desiccant chamber when they are not being
examined.

3.4. The joints will be examined optically with litle or no magnification and using an optical
microscope to identify probable locations and causes of crack nucleation. Then, metallographic
and fractographic investigations will be performed to confirm the causes of crack nucleation and
identify the mechanisms involved in the process. Photographs will be taken as appropriate.
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APPENDIX B—FABRICATION DRAWINGS FOR SENSITIVITY
STUDY SPECIMENS
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APPENDIX D—PLAN FOR FABRICATION, FATIGUE TESTING, AND
EXAMINATION OF RIVETED JOINT SPECIMENS (AUGUST 4, 1995)

1. Overview

1.1. The Quality and Integrity Design Engineering Center (QIDEC) of the University of Utah is in
the process of fabricating 12 riveted joint specimens to be used in fatigue testing. QIDEC is either
contracting or performing all fabrication procedures as described in paragraph 2. QIDEC will
perform all testing and examination of failed specimens in accordance with paragraph 3. This is a
follow-on group of specimens. Testing of the initial specimens discussed in the March 20, 1995,
plan resulted in significantly shorter lives for the CE specimens than for the FV specimens. It was
considered that the rivet depth may have been too great for the CE specimens and that further
testing was needed. This is the resulting experimentation program.

1.2. The 12 specimens will be fabricated from 0.063 gage 2024-T3 clad sheet aluminum alloy
with riveting procedures as follow:

four C-squeeze joints with 7050 FV rivets,
four C-squeeze joints with 2017 CE rivets, and
four rivet gun with bucking bar joints with 2017 CE rivets.

1.3. In the paragraphs that follow, reference is continually made to the attached table D1 which
shows the specimen preparation and testing protocol to be followed. Referenced drawings were
provided with the March 20, 1995, plan

2. Joint Fabrication Procedures

2.1. QIDEC obtained 66 6.25-in-wide coupons of 2024-T3 clad sheet aluminum. CE and FV
rivets remained from the initial test program.

2.1.1. The coupons were numbered consecutively as unpacked and the thickness of one end of
each coupon was measured twice with a digital micrometer and recorded. This procedure was
stopped when 28 coupons (24 for use and 4 spares) with the same thickness of 0.062 in were
identified. Random number generation was used to match coupons and within each experimental
block to determine rivet type, riveting procedure, the order of machining and the order of riveting.
The results of this sorting procedure are shown in table D1.

2.1.2. Sufficient rivets of each type with identical measurements were available for all joints to be
manufactured. These dimensions were 0.1875 in. diameter by 0.3475 in. length (including head)
for the FV rivets and 0.188 in. diameter by 0.346 in. length (including head) for the CE rivets.
These are the same dimensions as for the initial program.

2.2. Each coupon was machined to size in accordance with QIDEC drawings FAASPC94042 and
FAASPC94043.

2.3. The 28 coupons were allodined in a single batch in accordance with MIL-C-5541
class 1A by the same company that did the allodining for the initial program.

2.4. The 28 coupons are being coated in a single batch with BMS 10-11 type 1 class A adhesive
primer by the same company that did the priming for the initial program.

2.5. Each set of coupons will be clamped together in a machining fixture and not separated until all
of the machining in the rivet area is completed.
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2.6. All sets will be machined and marked in accordance with QIDEC drawings FAASPC94044,
and FAASPC94045 using one milling machine. The order of machining will be as shown in
table D1. Initially, pilot holes will be drilled with a centering drill to ensure alignment. Number
10 double margin drills ground to 0.192 in. diameter will be used to drill all rivet holes.
Countersink stops will be used to drill all countersinks in order to ensure consistent countersink
depth. These stops were set based on inspection of holes drilled and countersunk during the initial
36 specimen test program. The FV countersink will be set as it was in the initial program. The CE
countersink will be set to reduce rivet depth. The settings will not be changed during the specimen
machining program. The specific drill and countersink used to machine each hole will be identified
and documented.

2.7. Rivet hole diameters will be measured using a Meyer C-10 gage set and recorded for all nivet
holes in each coupon where the rivet heads are to be located.

2.8. Joints will be riveted in accordance with QIDEC drawings FAASPC94046, FAASPC94047,
and FAASPC94049. The order of riveting will be as shown in table D1. All specimens within a
block will be riveted during the same riveting session. Procedures for each block and between
blocks will be as consistent as possible and documented for each rivet, specimen, and block.
Specifically, the same person will perform the same tasks using the same equipment and
procedures during riveting of all specimens to the extent feasible and appropriate. The diameter of
each bucktail will be determined to be within specifications by use of go/no-go gages.
Environmental (temperature and relative humidity) and lighting conditions will be as consistent as
possible. Temperature and relative humidity will be recorded at the time that the riveting of each
specimen is begun.

2.9. Rivet head clearances will be computed and recorded for all rivets in each specimen based
upon measurements using a machinists microscope.

3. Joint Fatigue Testing And Examination Procedures

3.1. All testing will be conducted on the same calibrated MTS servo hydraulic tension testing load
system. Prior to testing the load system will be aligned by direct alignment of the grips.
Additionally, alignment will be verified prior to or following testing of each block of specimens
(see table D1) using an alignment specimen produced by QIDEC.

3.2. Testing will be conducted sequentially within four test blocks. The order of testing, based on
random number generation within each block, will be as shown in table D1. Fatigue loading will
be with a 10 Hz sine wave driving signal, a maximum nominal tensile stress of 17 ksi, and a stress
ratio of R = 0.1. The system shown in the drawings provided with the March 20, 1995, plan will
be used during the fatigue testing to counter the tendency of the riveted joints to bend in the riveted
area when under tensile loading. Temperature and relative humidity will be recorded at the time
that the testing of each specimen is begun. Total cycles to fracture (test system interlock activation)
will be determined for each specimen.

3.3. Following testing, failed joints will be stored in a desiccant chamber when they are not being
examined.

3.4. The joints will be examined optically with little or no magnification and using an optical
microscope to identify probable locations and causes of crack nucleation. Then, metallographic
and fractographic investigations will be performed to confirm the causes of crack nucleation and
identify the mechanisms involved in the process. Photographs will be taken as appropriate.
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APPENDIX E—DATA FOR FABRICATION, FATIGUE TESTING, AND
EXAMINATION OF RIVETED JOINT SPECIMENS

Specimen 1 FV rivet, rivet gun with bucking bar Riveting temp. 75 deg. F/ RH 40%
216,450 cycles to failure Test temp. 74 deg. F/ RH 48%

Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .007" Head clear. .002" Head clear. .003"
Remarks: Bucktail .284" Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .007" Head clear. .004" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .006" Head clear. .003" Head clear. .004"
Remarks: Remarks: Remarks:

Remarks: No fatigue cracking observed at rivet holes 14 and 15.

Specimen 2 FV rivet, C-squeeze Riveting temp. 75 deg. F/ RH 39%
193,520 cycles to failure Test temp. 74 deg. F/ RH 48%
Hole diam. .192" Hole diam. .191" Hole diam. .192"
Head clear. .004" Head clear. .003" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .004" Head clear. .006"
Remarks: Remarks: Remarks:
Hole diam. .192" o Hole diam. .192" Hole diam. .191"
Head clear. .003" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .003" Head clear. .001" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .191" @ Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .002" Head clear. .001"
Remarks: Remarks: Remarks:
Remarks:
Specimen 3 CE rivet, C-squeeze Riveting temp. 75 deg. F/ RH 39%
40,270 cycles to failure Test temp. 74 deg. F/RH 47%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. -.001" Head clear. -.001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .191" Hole diam. .192"
Head clear. -.001" Head clear. -.001" Head clear. .005"
Remarks: Remarks: Remarks:
Hole diam. .192" 0 Hole diam. .192" Hole diam. .191"
Head clear. .000" Head clear. .001" Head clear. -.001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .191"
Head clear. .000" Head clear. .000" Head clear. -.001"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .191" Hole diam. .192"
Head clear. -.001" Head clear. -.001" Head clear. -.001"
- Remarks: Remarks: Remarks:

Remarks: Specimen did not fracture. No crack observed at rivet hole 11.
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Specimen 4

CE rivet, rivet gun with bucking bar

Riveting temp. 75 deg. F/ RH 40%

43,130 cycles to failure Test temp. 75 deg. F/ RH 47%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .000" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .001" Head clear. .000"
Remarks: Remarks: Remarks: reriveted
Hole diam. .192" o Hole diam. .192" Hole diam. .191"
Head clear. .001" Head clear. .000" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .001" Head clear. .001" Head clear. .000"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. -.002" Head clear. -.002" or more Head clear. -.002" or more
Remarks: Remarks: Remarks:
Remarks:
Specimen S FV rivet, rivet gun with bucking bar Riveting temp. 75 deg. F/ RH 42%
178,020 cycles to failure Test temp. 74 deg. F/RH 32%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .001" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .003" Head clear. .002" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .004" Head clear. .002"
Remarks: Remarks: Remarks:
Remarks:
Specimen 6  CE rivet, C-squeeze Riveting temp. 74 deg. F/ RH 43%
58,030 cycles to failure Test temp. 74 deg. F/ RH 38%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .000" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .191" Hole diam. .192"
Head clear. .006" Head clear. .001" Head-clear. .000"
Remarks: reriveted Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .001" Head clear. .000"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .002"
Remarks: Remarks: . Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .000" Head clear. .000"
Remarks: Remarks: Remarks:
Remarks:
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Specimen 7 CE rivet, rivet gun with bucking bar Riveting temp. 75 deg. F/ RH 42%
36,880 cycles to failure Test temp. 74 deg. F/ RH 34%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .000" Head clear. -.005"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" Hole diam. .191"
Head clear. -.001" Head clear. .000" Head clear. .000"
Remarks: Remarks: Remarks: reriveted
Hole diam. .192" o Hole diam. .191" Hole diam. .192"
Head clear. .001" Head clear. -.001" Head clear. -.002"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .002" Head clear. .001" Head clear. -.001"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. -.001" Head clear. -.004" Head clear. -.002"
Remarks: Remarks: Remarks:
Remarks:
Specimen 8 FV rivet, C-squeeze Riveting temp. 74 deg. F/RH 43%
142,660 cycles to failure Test temp. 74 deg. F/ RH 35%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" Hole diam. .191"
Head clear. .003" Head clear. .005" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" o Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .004" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .191" @ Hole diam. .192"
Head clear. .002" Head clear. .003" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .001" Head clear. .001"
Remarks: Remarks: Remarks:
Remarks:
Specimen 9 CE rivet, rivet gun with bucking bar Riveting temp. 74 deg. F/ RH 40%
32,200 cycles to failure Test temp. 74 deg. F/ RH 43%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. -.001" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .000" Head clear. -.001"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .000" Head clear. -.003"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" @ Hole diam. .192"
Head clear. -.001" Head clear. .000" Head clear. .000"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. -.002" Head clear. -.002" Head clear. -.001"
Remarks: Remarks: Remarks:
Remarks:



Specimen 10  CE rivet, C-squeeze Riveting temp. 75 deg. F/RH 39%
54,080 cycles to failure Test temp. 74 deg. F/ RH 46%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .002" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .191"
Head clear. .004" Head clear. -.001" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .191"
Head clear. .004" Head clear. .003" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .002" Head clear. .002"
Remarks: Remarks: Remarks:
Remarks:
Specimen 11  FV rivet, C-squeeze Riveting temp. 74 deg. F/ RH 42%
146,860 cycles to failure Test temp. 74 deg. F/ RH 39%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .005" Head clear. .003" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .003" Head clear. .007"
Remarks: Remarks: Remarks:
Hole diam. .192" o Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .001" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .001" Head clear. .002" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" ® Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .002" Head clear. .001"
Remarks: Remarks: Remarks:
Remarks:
Specimen 12  FV rivet, rivet gun with bucking bar Riveting temp. 74 deg. F/RH 42%
363,780 cycles to failure Test temp. 74 deg. F/ RH 45%
Hole diam. .191" Hole diam. .191" Hole diam. .192"
Head clear. .005" Head clear. .003" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .191" Hole diam. .192"
Head clear. .003" Head clear. .004" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .004" Head clear. .004"
Remarks: Remarks: Remarks: reriveted
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .003" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .191"
Head clear. .003" Head clear. .003" Head clear. .002"
Remarks: Remarks: Remarks:

Remarks: Not machined with specimens 9-11 as planned.
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Specimen 13

FV rivet, C-squeeze

Riveting temp. 77 deg. F/ RH 40%

167,720 cycles to failure Test temp. 74 deg. F/RH 43%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .001" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .002" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .004" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .001" Head clear. .002" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .191" @ Hole diam. .192" Hole diam. .191"
Head clear. .001" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:

Remarks: Specimen did not fracture. No crack observed at rivet hole 15.

Specimen 14  CE rivet, C-squeeze Riveting temp. 77 deg. F/ RH 41%

37,380 cycles to failure Test temp. 74 deg. F/ RH 42%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .004" Head clear. .001"
Remarks: reriveted Remarks: Remarks: reriveted
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. -.001" Head clear. .000" Head clear. -.002"

Remarks: reriveted
Hole diam. .192"
Head clear. .001"
Remarks: reriveted
Hole diam. .191"
Head clear. .000"
Remarks: reriveted
Hole diam. .192"
Head clear. .000"
Remarks:

Remarks: reriveted
e Hole diam. .192"
Head clear. .000"
Remarks: reriveted
Hole diam. .192"
Head clear. .000"
Remarks: reriveted
@ Hole diam. .192"
Head clear. -.002"
Remarks: reriveted

Remarks: reriveted

Hole diam. .192"
Head clear. .001"
Remarks: reriveted
@ Hole diam. .192"
Head clear. .000"
Remarks:
Hole diam. .192"
Head clear. .000"
Remarks: reriveted

Remarks: Data are suspect because the reriveting was done the day after the joint was initially riveted.
Specimen 15  CE rivet, rivet gun with bucking bar Riveting temp. 78 deg. F/ RH 42%

41,400 cycles to failure Test temp. 74 deg. F/ RH 50%

Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .000" Head clear. .000"
Remarks: Remarks: Remarks:

Hole diam. .191" Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. -.001" Head clear. .000"
Remarks: Remarks: Remarks:

Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .000" Head clear. .000"
Remarks: Remarks: Remarks:

Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .001" Head clear. .001" Head clear. .001"
Remarks: Remarks: Remarks:

Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .000" Head clear. -.001"
Remarks: Remarks: Remarks:

Remarks:
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Specimen 16  FV rivet, rivet gun with bucking bar Riveting temp. 78 deg. F/ RH 39%
248,860 cycles to failure Test temp. 74 deg. F/ RH 49%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .002" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .001" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" o Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .001" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .002" Head clear. .001" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Remarks:
Specimen 17  FV rivet, rivet gun with bucking bar Riveting temp. 78 deg. F/ RH 37%
248,090 cycles to failure Test temp. 74 deg. F/ RH 46%
Hole diam. .192" Hole diam. .192" Hole diam. .191"
Head clear. .002" Head clear. .003" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" o Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .001" Head clear. .002" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .001"
Remarks: Remarks: Remarks:
Remarks:
Specimen 18  CE rivet, rivet gun with bucking bar Riveting temp. 78 deg. F/ RH 39%
33,580 cycles to failure Test temp. 74 deg. F/ RH 42%
Hole diam. .191" Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .001" Head clear. unknown
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .000" Head clear. unknown
Remarks: Remarks: Remarks:
Hole diam. .192" 3 Hole diam. .192" Hole diam. .192"
Head clear. .000" Head clear. .000" Head clear. unknown
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Q Hole diam. .192"
Head clear. .001" Head clear. .000" Head clear. unknown
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. -.001" Head clear. -.001" Head clear. unknown
Remarks: Remarks: Remarks:
Remarks:



Specimen 1R CE rivet, C-squeeze

Riveting temp. 74 deg. F/ RH 52%

168,980 cycles to failure Test temp. 75 deg. F/ RH 44%
Hole diam. .191" Hole diam. .192" Hole diam. .191"
Head clear. .004" Head clear. .004" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .191"
Head clear. .003" Head clear. .003" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .191" e Hole diam. .191" Hole diam. .192"
Head clear. .003" Head clear. .003" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .191"
Head clear. .005" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .191" @ Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Remarks:
Specimen 2R  CE rivet, rivet gun with bucking bar Riveting temp. 74 deg. F/RH 52%
87,680 cycles to failure Test temp. 75 deg. F/RH 55%
Hole diam. .191" Hole diam. .192" Hole diam. .191"
Head clear. .004" Head clear. .004" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" Hole diam. .191"
Head clear. .003" Head clear. .002" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .191" e Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .003" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" Q Hole diam. .192"
Head clear. .005" Head clear. .003" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Remarks:
Specimen 3R  FV rivet, C-squeeze Riveting temp. 74 deg. F/RH 51%
120,050 cycles to failure Test temp. 75 deg. F/RH 41%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .005" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .003" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" o Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .003" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .002" Head clear. .000"
Remarks: Remarks: Remarks:

Remarks: Grips failed at 38,090 cycles
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Specimen 4R CE rivet, rivet gun with bucking bar

Riveting temp. 74 deg. F/RH 57%

95,690 cycles to failure Test temp. 75 deg. F/RH 51%
Hole diam. .191" Hole diam. .192" Hole diam. .192"
Head clear. .005" Head clear. .004" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" Hole diam. .191"
Head clear. .004" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" o Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .002" Head clear. .005"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .003" Head clear. .004" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .003" Head clear. .002"
Remarks: Remarks: Remarks:
Remarks:
Specimen SR CErivet, C-squeeze Riveting temp. 74 deg. F/RH 57%
139,250 cycles to failure Test temp. 74 deg. F/ RH 53%
Hole diam. .191" Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .004" Head clear. .006"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .004" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .006" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" @ Hole diam. .192"
Head clear. .004" Head clear. .004" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .191" @ Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Remarks:
Specimen 6R  FV rivet, C-squeeze Riveting temp. 74 deg. F/RH 57%
157,340 cycles to failure Test temp. 75 deg. F/ RH 56%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .001" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .001" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. ..191"
Head clear. .000" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" @ Hole diam. .192"
Head clear. .002" Head clear. .001" Head clear. .001"
Remarks: Remarks: - Remarks:
Hole diam. .191" @ Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .001" Head clear. .003"
Remarks: Remarks: Remarks:
Remarks:



Specimen 7R FV rivet, C-squeeze

Riveting temp. 74 deg. F/RH 58%

174 460 cycles to failure Test temp. 74 deg. F/ RH 43%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .003" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .002" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .001" Head clear. .001"
Remarks: Remarks: Remarks:
Remarks: No fatigue cracking observed at rivet holes 12 and 15.
Specimen 8R  CE rivet, rivet gun with bucking bar Riveting temp. 75 deg. F/ RH 58%
107,710 cycles to failure Test temp. 75 deg. F/ RH 50%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .003" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" 9 Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .004" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Remarks:
Specimen 9R  CE rivet, C-squeeze Riveting temp. 75 deg. F/ RH 58%
127,980 cycles to failure Test temp. 75 deg. F/ RH 50%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .003" Head clear. .007"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .007" Head clear. .014" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .005" Head clear. .005"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" @ Hole diam. .192"
Head clear. .005" Head clear. .003" Head clear. .004"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .002"
Remarks: Remarks: Remarks:

Remarks:



Specimen 10R FV rivet, C-squeeze

Riveting temp. 75 deg. F/ RH 60%

E-10

156,640 cycles to failure Test temp. 75 deg. F/ RH 37%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .000" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .005" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .001" Head clear. .002" Head clear. .001"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" @ Hole diam. .192"
Head clear. .001" Head clear. .002" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .000" Head clear. .002"
Remarks: Remarks: Remarks:
Remarks: Specimen did not fracture on side of rivet hole 15.
Specimen 11R CE rivet, rivet gun with bucking bar Riveting temp. 75 deg. F/ RH 60%
101,890 cycles to failure Test temp. 75 deg. F/ RH 43%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .003" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .191"
Head clear. .003" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" e Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .002" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .191" @ Hole diam. .192"
Head clear. .003" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .002"
Remarks: Remarks: Remarks:
Remarks:
Specimen 12R  CE rivet, C-squeeze Riveting temp. 75 deg. F/RH 59%
112,890 cycles to failure Test temp. 74 deg. F/ RH 38%
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .002" Head clear. .002" Head clear. .005"
Remarks: Remarks: Remarks:
Hole diam. .192" Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .003" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" 0 Hole diam. .192" Hole diam. .192"
Head clear. .004" Head clear. .002" Head clear. .005"
Remarks: Remarks: Remarks:
Hole diam. .191" Hole diam. .192" @ Hole diam. .192"
Head clear. .003" Head clear. .002" Head clear. .002"
Remarks: Remarks: Remarks:
Hole diam. .192" @ Hole diam. .192" Hole diam. .192"
Head clear. .003" Head clear. .003" Head clear. .003"
Remarks: Remarks: Remarks:
Remarks:





