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1.0 INTRODUCTION

1.1 Purpose

The purpose of this technology assessment is to define a multiphase research study
program investigating Onboard Inert Gas Generation Systems (OBIGGS) and
Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane
systems design and certification requirements (Subtask 1); explore state-of-the-art
technology (Subtask 2); develop systems specifications (Subtask 3); and develop an
initial system design (Subtask 4). If feasible, consideration may be given to the
development of a prototype laboratory test system that could potentially be used in
commercial transport aircraft (Subtask 5). These systems should be capable of
providing inert nitrogen gas for improved fire cargo compartment fire suppression

and fuel tank inerting and emergency oxygen for crew and passenger use.

Subtask 1 of this research study, presented herein, defines current production
aircraft certification requirements and design objectives necessary to meet
mandatory FAA certification requirements and Boeing design and performance
specifications. These requirements will be utilized for baseline comparisons for
subsequent OBIGGS/OBOGS application evaluations and assessments.

1.2 Background

Oxygen systems, as they are currently designed for use on commercial transport
aircraft, include passenger oxygen for use in the event of a sudden loss of cabin
pressure (provided by either compressed oxygen or solid chemical oxygen
generators) and gaseous oxygen for use by the flight deck crew. There is also
portable gaseous oxygen available for medical use and for protective breathing
equipment. The use of oxygen on commercial aircraft, required by FAA regulations,
does pose a potential fire safety hazard because of the extremely high gas
combustion temperatures that can be produced by combustible materials burning in
either a pure or oxygen-enriched air environment. This is true of any oxygen system
in any environment. Passenger and crew oxygen requirements make up a significant
part of this contract study.

NASA/CR—2001-210903 1



In order to protect commercial passenger transport from the potential danger of in-
flight fires, especially those that can ignite in inaccessible areas during flight (cargo
compartments, engine nacelles, and APU bays), fire protection systems and design
techniques have been developed to provide enhanced protection in all phases of
aircraft operations. Present-day suppression systems rely on sealed cargo
compartments and the use of Halon 1301 to extinguish fires. There are currently no
mandated requirements for inerting any compartments or sections of a commercial
airplane. Continued production of Halon has been banned by international
agreement because of its damaging effect on the stratospheric ozone layer. The
possibility of using an OBIGGS to provide an alternative means of fire protection for
existing areas where Halon 1301 is currently used and inerting center wing tanks is
a major part of this contract study.

Chemical interference with combustion (Halon) and decreasing oxygen
concentration (inerting) are two different methods that can be employed for fire
containment or prevention. Chemical interference is currently obtained by injecting
Halon gas into a sealed compartment to lower the oxygen (air) concentration to
inhibit combustion. Halon effects fires in two ways: (1) it lowers the oxygen
concentration, and (2) lowers the combustion chemical reaction rate by combining
with reactants. For long-duration protection, after initial “knockdown” applications of
Halon 1301, additional Halon is metered into the compartment to suppress or
extinguish fires by chemical reactions in the fire zone. This technique has proven to
be highly effective against both open flame and deep-seated fires for lengthy
periods of time. Inerting an air volume to preclude combustion can be accomplished
by lowering the oxygen concentration by injecting an inert gas such as nitrogen or
carbon dioxide (gases that will neither support nor sustain combustion) to the point

whereby combustion cannot occur.

For the purpose of this contract study, two principle inerting applications were
considered in each of the aircraft models selected: cargo compartments (forward,
aft, and bulk) and center wing fuel tanks (CWT). In the latter application, CWT fuel
inerting, the military has demonstrated that in both live gun fire and laboratory
testing an ullage oxygen concentration of 9% or below will preclude catastrophic
overpressures in fuel tanks and dry bays.

NASA/CR—2001-210903 2



1.3 Technical Approach

A technology that has been developed for generating oxygen and nitrogen gas from
air is gas separation. This can be accomplished by application of different
technologies such as by the use of a permeable membrane or pressure swing
adsorption or by air distillation columns. Gas separation devices can separate an
incoming stream of air into two exit streams with the composition of one being
nitrogen-enriched air (approximately 95% nitrogen and 5% oxygen) and the other
being oxygen-enriched air. These devices are currently in use in commercial trucks
and ships to transport fresh fruit and vegetables in a nitrogen gas atmosphere to

preserve freshness and for a longer storage life.

There are some military aircraft that employ gas membranes for the generation of
nitrogen for fuel tank inerting and dry bays for fire and explosion protection and
oxygen for crew breathing. The aircraft nomenclatures for these systems are:
Onboard Inert Gas Generation System (OBIGGS) and Onboard Oxygen Generation
System (OBOGS).

There are newer technologies in development that utilize distillation columns and
cryogenic coolers to generate and store both liquid nitrogen and oxygen to meet the
requirements for inerting and passenger and crew breathing. One such system now
in development is called TALON, an acronym for total atmospheric liquefaction of
oxygen and nitrogen. This type of system is capable of providing 99% pure oxygen

and >96% pure nitrogen.

Chemical generation of inert or oxygen gases is quite common as evidenced by
onboard chemical oxygen generators in passenger aircraft, quick response
automotive airbags, and special nitrogen generators used for dry bay fire protection
on some military aircraft and helicopters. These are pyrotechnic devices that are
squib activated to produce chemical reactions that generate the desired gases.
These types of systems can be activated or deployed virtually instantaneously. As

an example, automotive airbags are inflated by chemical gas generators.

1.4 Task Assignment and Work Authorization

The authorization for Subtask 1 of this contract study was provided by NASA
Contract NAS1-20341, Task Assignment No. 11, Work Order 92M42, document
NASA/CR—2001-210903 3



reference number 126 (NAS1-20341/SDE), dated June 7, 1999. The period of
performance was stated to be June 15-December 15, 1999 and later revised to
June 15-June 30, 2000, with an escalation in costs. The total contract cost was
$385,687 (cost plus no fees).

1.5 Aircraft Models Selected for Study

This study used one configuration of each model of the Boeing family of aircraft in
current production: the single-aisle 737-800 (fig. 1.0-1) and 757-200 (fig. 1.0-2) and
the twin-aisle 767-300 (fig. 1.0-3), 777-300 (fig. 1.0-4), and 747-400 (fig. 1.0-5). In
addition, the 747-400 Combi was included because of its unique requirements for
accommodating both main deck cargo and passengers.

NASA/CR—2001-210903 4
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2.0 AIRPLANE REQUIREMENTS

2.1 Regulatory Issues and Requirements

Common Federal Aviation Regulations (FAR), etc
Unique FARs, etc

Appendix A contains applicable Federal Aviation Regulations and advisory circulars.

2.2 Design Requirements

Unique Boeing requirements

Design Requirements Objectives (DR&O). This is a proprietary Boeing document
that defines Boeing’ requirements above and beyond those required by the FAA.
The DR&O defines how structure will be designed, design allowables, installation
and integration requirements, inspection, quality and performance. These
requirements have been developed and honed over many years of building aircraft
and are considered proprietary to our core business.

NASA/CR—2001-210903 9






3.0 OXYGEN SYSTEMS

3.1

Crew Oxygen System Description

Crew oxygen systems provide supplemental oxygen to the flight deck to protect the
crew from hypoxia during a decompression event. Along with hypoxia protection, the
crew system is designed to protect its users from smoke and toxic fumes in the

event of a fire.

Gaseous oxygen is stored in large, 1,850-psi high-pressure cylinders located in the
lower forward section of the aircraft. The pressure of the stored oxygen for the flight
deck is reduced from 1,850 psi to 70 psi for use in the crew oxygen masks.
Standard Boeing flight decks oxygen systems can accommodate up to one pilot,
one co-pilot, and two observers for a total of four users in an emergency situation.
Federal Aviation Regulations (FAR) and Joint Aviation Requirements (JAR) require
pressure of the storage cylinder be monitored at all times to ensure there is a
sufficient quantity of oxygen available to the pilots for the given flight profile that is
being flown. This is accomplished by having the pressure in the cylinder displayed
on the flight deck. Figure 3.0-1 shows the schematic of the crew oxygen system.
This schematic and the information provided in this section on the crew oxygen

system are common across all Boeing commercial jet transport aircraft.

NASA/CR—2001-210903 11
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Figure 3.0-1. Crew Oxygen System Schematic

The high-pressure storage cylinders are available in several different sizes but the
most common capacity is 3,200 L of usable oxygen. These cylinders are
manufactured using drawn steel or can be assembled using KEVLAR® or graphite
composite materials. These cylinders are classified by Department of Transportation
(DOT) as 3Ht and require hydrostatic testing every 3 yr to ensure structural integrity.
Figure 3.0-2 shows a typical oxygen gas storage cylinder.

NASA/CR—2001-210903 12



Oxygen cylinders are initially charged to 1,850 psi. Through pilot usage and system
leakage the pressure decreases over time. Depending on the intended flight profile,

there is a minimum pressure that must be maintained for safe operation.

An additional cylinder can be added to satisfy flight requirements or the desire to
lengthen service intervals of the oxygen system. The penalty for this added weight
and loss of space can be justified through operational savings of cost and time.

Figure 3.0-3 shows the typical crew oxygen cylinder installation.

Figure 3.0-2. Typical Oxygen Gas Storage Cylinder

NASA/CR—2001-210903 13
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The crew oxygen masks are of a quick-donning design that have two primary
functions. They provide supplemental oxygen to the user in the event of aircraft
decompression and protect the user from smoke and toxic fumes that may result

from a fire. Figure 3.0-4 shows a typical flight crew quick-donning type mask.

Figure 3.0-4. Flight Crew Quick-Donning Mask

The crew masks have three protection settings that the user can select. The settings
are Normal, 100%, and Emergency. The performance for each setting is defined by

NASA/CR—2001-210903 15



FAA Technical Standard Orders (TSO) C78 and C89. The Normal setting allows the
mask to perform as a diluter-demand type mask. This setting mixes ambient air with
100% oxygen to provide hypoxia protection. The mask regulator automatically
adjusts the quantity of oxygen to be mixed depending on cabin altitude. This setting
is the most commonly used because it provides sufficient hypoxia protection and
conserves the supply of stored oxygen. It should be noted that this setting is used
when pilots are required to use oxygen: when one pilot leaves the flight deck or
when the aircraft is flying at an altitude above 41,000 ft.

The 100% mask setting provides 100% oxygen to the user and does not allow
ambient air into the mask. This setting is the default setting when the mask is
removed from the storage box. This setting provides the user protection from smoke
and toxic fumes that may enter the flight deck. The quantity of oxygen supplied is
automatically adjusted for cabin altitude. The 100% setting consumes significantly
more oxygen than the Normal setting because all of the oxygen the user requires
comes from the stored oxygen supply. This setting is used only during the first few
minutes of an emergency descent after which time the user switches to the Normal
setting.

The Emergency setting is manually selected only in the event that smoke or fumes
enter the mask or goggles. This is a momentary setting that dispenses 100%
oxygen at an increased pressure to purge the mask and goggles of any gaseous

contamination.

3.1.1 Crew Oxygen System Consumption

The FAA and JAA require that protective oxygen be provided in the event of a
decompression from maximum certified altitude down to 10,000 ft. The explanation
for descent profile can be found in section 3.2, “Passenger Oxygen System
Description.” However, this is not the primary factor for determining oxygen
quantities required by the federal regulator agencies. For smoke and toxic fume
protection, FAR/JAR 25.1439 require 15 min per crew member at a cabin pressure
altitude of 8,000 ft. This equates to 300 L normal temperature pressure dry (NTPD)
of usable oxygen when demand equipment is used. This is equivalent to an average

NASA/CR—2001-210903 16



equipment performance rate of 300 L/15 min = 20 L/m NTPD. The total quantity of
stored oxygen can then be calculated:

4 crewmembers * 300 L per crewmember = 1,200 L

This illustrates that a minimum of 1,200 L of usable oxygen must be available during
normal mission operations. In the event the supply of oxygen falls below this
minimum level, the pilot is required to reassess the flight plan and take appropriate
action. This value is the absolute minimum quantity required by the FAA and the
Joint Aviation Authorities (JAA).

Minimum flight dispatch pressures of the oxygen supply must also be determined.
This takes into consideration specific crew mask designs that may dispense more
than the minimum quantities of oxygen, flight usage of oxygen, and the temperature
of the stored oxygen. All of these factors have an impact on the quantity of oxygen

that is available for use. The average rate at which oxygen is consumed is:
20 L/m * 4 crewmembers = 80 L/m

What has been discussed so far is the minimum crew oxygen requirements for
FAA/JAA certification of the aircraft. Another aspect that must be considered is the
airline operational plan for the aircraft. Many twin-engine commercial jet aircraft
today operate under extended-range twin-engine operations (ETOPS). This allows
an aircraft that has experienced a decompression to remain at a altitude higher than
10,000 ft for greater aircraft performance. Under these conditions, pilots will require
oxygen for greater lengths of time. The quantity of oxygen required depends on the
altitude and the duration of time spent at that altitude. Terrain clearance is another
operational condition in which an aircraft can not descend directly to 10,000 ft but
must cruse at a higher altitude to clear high mountains. Often a second oxygen
cylinder is added to provide sufficient quantities of oxygen to meet these operational

requirements.

NASA/CR—2001-210903 17



3.1

3.2

2 Crew Oxygen System Weight

Weights for typical crew oxygen systems are shown in table 3.0-1. The system
weights shown consist of the oxygen cylinder, cylinder support hardware, regulators,
valves, hoses, and tubing. It does not include the weight of the crew mask and
stowage box located on the flight deck.

Table 3.0-1. Crew Oxygen System Weights For Study Aircraft

Aircraft Model Weight, Ib
737-800 55
757-200 57
767-300 55
777-300 42 (one cylinder)

77 (two cylinders)
747-400 60 (one cylinder)
110 (two cylinders)

Passenger Oxygen System Description

In the event of an aircraft decompression, supplemental oxygen is provided to
passengers and flight attendants to protect them from the effects of hypoxia. The
FAA and JAA require that the passenger oxygen system must activate before the
aircraft cabin’s altitude exceeds 15,000 ft and be capable of producing the required
amount of oxygen in less than 10 sec. The passenger system is not designed to
protect from smoke and toxic fumes, only hypoxia. The passenger mask must meet
the requirements of TSO C64a. Figure 3.0-5 shows a typical passenger oxygen

mask.

The supplemental oxygen system must provide passenger protection from the
aircraft's maximum certified altitude to a cabin altitude of 10,000 ft. FAA/JAA
25.1441(d) limits commercial jet transport cabin altitude to less than 40,000 ft during
a rapid decompression. For this reason, the system must survive altitudes up to and
including the maximum certified altitude but its performance requirements start at a
maximum cabin altitude of 40,000 ft down to 10,000 ft. Typical Boeing aircraft

NASA/CR—2001-210903 18



descent profiles that would be flown in the event of a decompression are shown in
figure 3.0-6.

The first curve portrays an aircraft flying a typical 12-min profile that provides for the
minimum aircraft descent profile. This descent profile will clear most terrain
obstacles in North America, South America, Europe, and Asia. It should be noted
that the aircraft is capable of descending at a faster rate and from maximum
certified altitude to below 10,000 ft than is shown by the 12-min curve. This is a fixed
profile that is used for consistency across all Boeing models and can be used for the
vast majority of city pairs that airlines currently fly.

The second curve shows a typical 22-min profile that is used to clear some
mountainous terrain in South America and in Asia. It covers the majority of city pairs
that airlines fly that can not be covered by the 12-min descent profile.

The third profile can be customized to meet severe terrain clearance conditions,
typically over the Himalayan Mountains. The “hold at altitude” time depends greatly
on the city pairs being flown and the availability of acceptable diversion airports in
the event of a decompression emergency. Some of the longer routes may have total
flight times that require oxygen for 70 min. These route structures are specific to

customer operational requirements.

There are two types of passenger oxygen systems available for commercial jet
transport. They are chemical generation systems and stored gaseous systems.
Each will be described in detail later. Figure 3.0-7 shows the schematic for the two
different types of oxygen systems. The 12- and 22-min profile curves shown in figure
3.0-6 usually have passenger oxygen systems that are of the chemical generation
type. The third descent profile always uses a stored-gas type of passenger oxygen
system to utilize its oxygen storage flexibility.

NASA/CR—2001-210903 19



Figure 3.0-5. Passenger Oxygen Mask
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3.2.1 Chemical Supplemental Oxygen System

In a chemical oxygen system, oxygen is stored in the form of chemicals that are
inside a metal container called an oxygen chemical generator, which is installed in
the overhead personal service unit (PSU). Figure 3.0-8 shows a PSU with a
chemical generator installed. The oxygen generator starts producing 99.5% pure
oxygen when the chemical reaction is initiated after the firing mechanism is
activated. The firing mechanism is activated when mask is pulled by the user.
Pulling the mask releases a safety pin that allows a pyrotechnic ignition of the
chemicals inside the oxygen generator. Figure 3.0-5 shows the passenger masks
hanging from lanyards that are connected to the safety pins.

Oxygen generators are designed to provide oxygen for two, three, four, or five
people. The quantity and the mixture of chemical inside the generator are
determined by the aircraft descent profile supported. For example, a chemical
generator that will support a 12-min profile for four people will have a unique
chemical mixture and size that will provide sufficient oxygen to meet FAA/JAA
requirements. Once designed, its chemical makeup is fixed; thus, the amount of
supplemental oxygen it produces is fixed. This generator would not be able to
support other descent profiles unless the entire profile was beneath the 12-min
profile curve for that generator. It should also be noted that the performance of the
generator is independent of altitude. A generator's production of oxygen is time
dependant only. Time starts when the firing mechanism is activated. If a different
descent profile is required, a new oxygen generator must be designed and certified.

Although a chemical oxygen passenger system is limited in its descent profile
flexibility, it has proved to be light weight, reliable, and cost effective for the vast
majority of aircraft that can operate with a 12- or 22-min emergency descent profile.

If an airline requires additional route flexibility or more than 22-min of supplemental
oxygen, a gaseous oxygen system is the only option.

NASA/CR—2001-210903 23
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Figure 3.0-8. Passenger Service Unit With Chemical Oxygen Generator



3.2.2 Gaseous Supplemental Oxygen System

In a passenger gaseous oxygen system, gaseous oxygen is stored in 3,200-L
cylinders at 1,850 psi. The cylinders are located in either the forward or aft lower
compartments of the aircraft. Figure 3.0-9 shows a typical passenger oxygen
cylinder installation. After passenger oxygen masks are deployed, a passenger can
start the flow of oxygen by pulling the mask to his or her face. Figure 3.0-7 is a
passenger system schematic. The quantity of supplemental oxygen delivered to
each individual is metered by at least two flow control units (FCU) that automatically
adjust system pressure depending on the cabin altitude. FCUs deliver the required
amount of 100% oxygen to the passenger masks, which mix the oxygen with
ambient air.

The greatest advantage of a gaseous system is its flexibility in accommodating
different flight profiles and extending an aircraft’'s capabilities by simply adding
cylinders. The cost and weight of stored oxygen may be higher than that of a
chemical oxygen system but its flexibility to accommodate different descent profiles
makes it the only practical option for some flight operations.
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3.2.3 Supplemental Oxygen Requirements

The FAA and JAA requirements for supplemental passenger oxygen systems are
the same for both chemical and gaseous type systems. The amount of
supplemental oxygen that is required for each person flying on a commercial jet
transport aircraft is defined in FAR/JAR 25.1443(c). It states the mean tracheal
oxygen partial pressure in mm. Hg. required at different cabin altitudes. To make
these values more useful for our analysis, they are converted to L/m NTPD for cabin
altitude starting at 10,000 ft and then in 1,000-ft increments to 40,000 ft. This
conversion is a lengthy process and is covered in Society of Automotive Engineers
(SAE) document AIR 825B, section VI.

The FAA requires passenger oxygen mask to meet TSO-C64a. This Technical
Standard Order defines the minimum performance for passenger oxygen masks.
For flow rate performance, the TSO references SAE standard AS 8025 for mask
design and AS8025 references AIR 825B for the performance values.

Table 3.0-2 lists the minimal supplemental oxygen requirements needed for an
individual at each cabin altitude to meet FAR 25.1443(c). These consumption rates
are consistent for any commercial jet transport aircraft. In any system design it is
prudent to add a safety factor to the minimum requirements to allow for component
performance tolerances and possible mask leakage around the face. For our
analysis, a 5% safety factor is added. Table 3.0-2 also lists the values for system-
level performance for supplemental oxygen provided to each individual.

By using the emergency descent profiles listed in table 3.0-2, it is possible to
calculate the rate of consumption of oxygen at each altitude and the total quantity of
oxygen required for each major model.
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Table 3.0-2. Minimum Oxygen Required at Cabin Altitude

Cabin altitude, ft AIR 825B FAR minimum Minimum system
x 1,000 theoretical oxygen, L/m NTPD flow, L/m NTPD
oxygen, L/m
NTPD
10 0.008 0.018 0.018
11 0.107 0.114 0.119
12 0.203 0.204 0.214
13 0.296 0.292 0.306
14 0.386 0.376 0.395
15 0.473 0.458 0.481
16 0.553 0.538 0.565
17 0.639 0.615 0.646
18 0.717 0.689 0.724
18.5 0.756 0.730 0.767
18.5 0.744 0.723 0.759
19 0.820 0.794 0.834
20 0.967 0.934 0.980
21 1.110 1.068 1.121
22 1.248 1.204 1.264
23 1.381 1.344 1.411
24 1.510 1.481 1.555
25 1.634 1.612 1.693
26 1.754 1.738 1.825
27 1.869 1.860 1.953
28 1.981 1.992 2.092
29 2.089 2.122 2.228
30 2.192 2.247 2.359
31 2.292 2.368 2.486
32 2.389 2.499 2.624
33 2.481 2.630 2.762
34 2.571 2.754 2.892
35 2.657 2.891 3.036
36 2.740 3.025 3.176
37 2.819 3.164 3.322
38 2.895 3.307 3.472
39 2.967 3.453 3.626
40 3.035 3.603 3.783
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3.24 737 Oxygen Consumption Calculation

The rate of oxygen consumption for the 737 can be calculated by multiplying the
total number of individuals that require supplemental oxygen by the rate at which
each individual needs oxygen, which is dependent on cabin altitude. The rate of
supplemental oxygen required for each individual is defined by FAR 25.1443(c) and
is discussed in section 3.2.3. The results are shown in table 3.0-2 under “Minimum

system flow.”

The total number of individuals requiring oxygen is dependent on three factors. The
first is the maximum number of passengers that can be accommodated by the 737
configuration. Second is the number of attendants that are required to support the
maximum passenger count. Third, FAR 25.1447(c)(1) requires an additional 10%
oxygen masks distributed evenly throughout the passenger cabin.

The maximum number of passengers for the 737-800 is limited to 189 by the FAA.
The FAA requires at least one flight attendant for every 50 passengers for a total of
four attendants. The total number of individuals requiring supplemental oxygen is
then calculated as follows:

Total number of individuals = (189 passengers + 4 attendants) = 1.10
Total individuals = 212

The rate of oxygen consumption at each altitude can then be calculated as follows
for the 737-800:

Rate of oxygen consumption = total individuals * L/m at altitude

Rate of oxygen consumption = 212 * value from table 3.0-2

The results for these calculation are shown in table 3.0-3 under “L/m NTPD” and

shown graphically in figure 3.0-10.

Total oxygen consumed is dependent on the aircraft descent profile as described in

section 3.2. By using data from table 3.0-3 and then defining a descent profile
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similar to those shown in figure 3.0-6, the total oxygen consumed can be calculated
by integrating the area under the curve between 40,000-ft and 10,000-ft altitudes.

Table 3.0-3. 737-800 Oxygen Consumption Rate Calculations

Altitude, ft Rate, L/m L/m NTPD
x 1,000

10 0.018 3.8

11 0.119 25.2
12 0.214 45.4
13 0.306 64.9
14 0.395 83.7
15 0.481 102.0
16 0.565 119.8
17 0.646 137.0
18 0.724 153.5
18.5 0.767 162.6
18.5 0.759 160.9
19 0.834 176.8
20 0.98 207.8
21 1.121 237.7
22 1.264 268.0
23 1.411 299.1
24 1.555 329.7
25 1.693 358.9
26 1.825 386.9
27 1.953 414.0
28 2.092 443.5
29 2.228 472.3
30 2.359 500.1
31 2.486 527.0
32 2.624 556.3
33 2.762 585.5
34 2.892 613.1
35 3.036 643.6
36 3.176 673.3
37 3.322 704.3
38 3.472 736.1
39 3.626 768.7
40 3.783 802.0
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3.2.4.1 737 Oxygen System Weight

The weight provided for the 737-800 includes the chemical oxygen generator only.
The weight numbers do not include the weight of the passenger service units
because they are required to be installed independently of the system that delivers
or produces the supplemental oxygen supply.

The chemical oxygen system that provides a 12-min supply of oxygen weighs 74 Ib.

3.25 757 Oxygen Consumption Calculation

The rate of oxygen consumption for the 757 can be calculated by multiplying the
total number of individuals that require supplemental oxygen by the rate at which
each individual needs oxygen, which is dependent on cabin altitude. The rate of
supplemental oxygen required for each individual is defined by FAR 25.1443(c) and
is discussed in section 3.2.3. The results are shown in table 3.0-2 under “Minimum

system flow.”

The total number of individuals requiring oxygen is dependent on three factors. The
first is the maximum number of passengers that can be accommodated by the 757
configuration. Second is the number of attendants that are required to support the
maximum passenger. Third, FAR 25.144(c)(1) requires an additional 10% oxygen
masks distributed evenly throughout the passenger cabin.

The maximum number of passengers for the 757-200 is limited to 236 by the FAA.
The FAA requires at least one flight attendant for every 50 passengers for a total of
six attendants. The total number of individuals requiring supplemental oxygen is
then calculated as follows:

Total number of individuals = (236 passengers + 6 attendants) = 1.10
Total individuals = 266

The rate of oxygen consumption at each altitude can then be calculated as follows
for the 757-200:

Rate of oxygen consumption = total individuals * L/m at altitude

NASA/CR—2001-210903 32



Rate of oxygen consumption = 266 *value from table 3.0-2

The results for these calculation are shown in table 3.0-4 under “L/m NTPD” and

shown graphically in figure 3.0-11.

Total oxygen consumed is dependent on the aircraft descent profile as described in
section 3.2. By using data from table 3.0-4 and then defining a descent profile
similar to those shown in figure 3.0-6, the total oxygen consumed can be calculated
by integrating the area under the curve between 40,000-ft and 10,000-ft altitudes.
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Table 3.0-4. 757-200 Oxygen Consumption Rate Calculations

Altitude, ft X Rate, L/m L/m NTPD

1,000
10 0.018 4.8
11 0.119 31.7
12 0.214 56.9
13 0.306 81.4
14 0.395 105.1
15 0.481 127.9
16 0.565 150.3
17 0.646 171.8
18 0.724 192.6
18.5 0.767 204.0
18.5 0.759 201.9
19 0.834 221.8
20 0.98 260.7
21 1.121 298.2
22 1.264 336.2
23 1.411 375.3
24 1.555 413.6
25 1.693 450.3
26 1.825 485.5
27 1.953 519.5
28 2.092 556.5
29 2.228 592.6
30 2.359 627.5
31 2.486 661.3
32 2.624 698.0
33 2.762 734.7
34 2.892 769.3
35 3.036 807.6
36 3.176 844.8
37 3.322 883.7
38 3.472 923.6
39 3.626 964.5
40 3.783 1006.3
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3.2.5.1 757 Oxygen System Weight

The weight provided for the 757-200 includes the chemical oxygen generator only.
The weight numbers do not include the weight of the passenger service units
because they are required to be installed independently of the system that delivers
or produces the supplemental oxygen supply.

The chemical oxygen system that provides a 12-min supply of oxygen weighs
100 Ib.

The chemical oxygen system that provides a 22-min supply of oxygen weighs
151 Ib.

3.2.6 767 Oxygen Consumption Calculation

The rate of oxygen consumption for the 767 can be calculated by multiplying the
total number of individuals that require supplemental oxygen by the rate at which
each individual needs oxygen, which is dependent on cabin altitude. The rate of
supplemental oxygen required for each individual is defined by FAR 25.1443(c) and
is discussed in section 3.2.3. The results are shown in table3.0-2 under “Minimum
system flow.”

The total number of individuals requiring oxygen is dependent on three factors. The
first is the maximum number of passengers that can be accommodated by the 767
configuration. Second is the number of attendants that are required to support the
maximum passenger count. Third, FAR 25.1447(c)(1) requires an additional 10%
oxygen masks distributed evenly throughout the passenger cabin.

The maximum number of passengers for the 767-300 is limited to 350 by the FAA.
The FAA requires at least one flight attendant for every 50 passengers for a total of
eight attendants. The total number of individuals requiring supplemental oxygen is
then calculated as follows:

Total number of individuals = (350 passengers + 8 attendants) = 1.10
Total individuals = 394
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The rate of oxygen consumption at each altitude can then be calculated as follows
for the 767-300:

Rate of oxygen consumption = total individuals * L/m at altitude

Rate of oxygen consumption = 394 * value from table 3.0-2

The results for these calculation are shown in table 3.0-5 under "L/m NTPD” and
shown graphically in figure 3.0-12.

Total oxygen consumed is dependent on the aircraft descent profile as described in
section 3.2. By using data from table 3.0-5 and then defining a descent profile
similar to those shown in figure 3.0-6, the total oxygen consumed can be calculated
by integrating the area under the curve between 40,000-ft and 10,000-ft altitudes.
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Table 3.0-5. 767-300 Oxygen Consumption Rate Calculations

Altitude, ft X Rate, L/m L/m NTPD

1,000
10 0.018 7.1
11 0.119 46.9
12 0.214 84.3
13 0.306 120.6
14 0.395 155.6
15 0.481 189.5
16 0.565 222.6
17 0.646 254.5
18 0.724 285.3
18.5 0.767 302.2
18.5 0.759 299.0
19 0.834 328.6
20 0.98 386.1
21 1.121 441.7
22 1.264 498.0
23 1.411 555.9
24 1.555 612.7
25 1.693 667.0
26 1.825 719.1
27 1.953 769.5
28 2.092 824.2
29 2.228 877.8
30 2.359 929.4
31 2.486 979.5
32 2.624 1033.9
33 2.762 1088.2
34 2.892 1139.4
35 3.036 1196.2
36 3.176 1251.3
37 3.322 1308.9
38 3.472 1368.0
39 3.626 1428.6
40 3.783 1490.5
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3.2.6.1 767 Oxygen System Weight

The weight provided for the 767-300 includes the chemical oxygen generator only.
The weight numbers do not include the weight of the passenger service units
because they are required to be installed independently of the system that delivers
or produces the supplemental oxygen supply.

The chemical oxygen system that provides a 12-min supply of oxygen weighs
158 Ib.

The chemical oxygen system that provides a 22-min supply of oxygen weighs
366 Ib.

3.2.7 777 Oxygen Consumption Calculation

The rate of oxygen consumption for the 777 can be calculated by multiplying the
total number of individuals that require supplemental oxygen by the rate at which
each individual needs oxygen, which is dependent on cabin altitude. The rate of
supplemental oxygen required for each individual is defined by FAR 25.1443(c) and
is discussed in section 3.2.3. The results are shown in table 3.0-2 under “Minimum

system flow.”

The total number of individuals requiring oxygen is dependent on three factors. The
first is the maximum number of passengers that can be accommodated by the 777
configuration. Second is the number of attendants that are required to support the
maximum passenger count. Third, FAR 25.1447(c)(1) requires an additional 10%
oxygen masks distributed evenly throughout the passenger cabin.

The maximum number of passengers for the 777-300 is limited to 550 by the FAA.
The FAA requires at least 1 flight attendant for every 50 passengers for a total of 10
attendants. The total number of individuals requiring supplemental oxygen is then
calculated as follows:

Total number of individuals = (550 passengers + 10 attendants) = 1.10
Total individuals = 616
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The rate of oxygen consumption at each altitude can then be calculated as follows
for the 777-300:

Rate of oxygen consumption = total individuals * L/m at altitude
Rate of oxygen consumption = 616 * value from table 3.0-2

The results for these calculation are shown in table 3.0-6 under “L/m NTPD” and

shown graphically in figure 3.0-13.

Total oxygen consumed is dependent on the aircraft descent profile as described in
section 3.2. By using data from table 3.0-6 and then defining a descent profile
similar to those shown in figure 3.0-6, the total oxygen consumed can be calculated
by integrating the area under the curve between 40,000-ft and 10,000-ft altitudes.
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Table 3.0-6. 777-300 Oxygen Consumption Rate Calculations

Altitude, ft X Rate, L/m L/m NTPD

1,000
10 0.018 11.1
11 0.119 73.3
12 0.214 131.8
13 0.306 188.5
14 0.395 243.3
15 0.481 296.3
16 0.565 348.0
17 0.646 397.9
18 0.724 446.0
18.5 0.767 472.5
18.5 0.759 467.5
19 0.834 513.7
20 0.98 603.7
21 1.121 690.5
22 1.264 778.6
23 1.411 869.2
24 1.555 957.9
25 1.693 1042.9
26 1.825 1124.2
27 1.953 1203.0
28 2.092 1288.7
29 2.228 1372.4
30 2.359 1453.1
31 2.486 1531.4
32 2.624 1616.4
33 2.762 1701.4
34 2.892 1781.5
35 3.036 1870.2
36 3.176 1956.4
37 3.322 2046.4
38 3.472 2138.8
39 3.626 2233.6
40 3.783 2330.3
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3.2.7.1 777 Oxygen System Weight

The weight calculations for the 777-300 gaseous oxygen system include the weight
of storage cylinders, support assemblies, brackets, pressure regulators, flow control
units, couplings, tubing, hoses, and miscellaneous hardware used for installation.
The weight numbers do not include the weight of the passenger service units
because they are required to be installed independently of the system that delivers
or produces the supplemental oxygen supply.

A passenger system consisting of four storage cylinders is required to provide the
minimum oxygen supply for the maximum passenger occupancy and the equivalent
of a 12-min emergency descent profile. The weight of this system would be 237 Ib.

The average quantity of oxygen storage cylinders installed on the 777-300 is 11. A
system of this size will weigh 539 Ib.

The chemical oxygen system that provides a 12-minute supply of oxygen weighs
213 Ib.

The chemical oxygen system that provides a 22-minute supply of oxygen weighs
509 pounds.

3.2.8 747 Oxygen Consumption Calculation

The rate of oxygen consumption for the 747 can be calculated by multiplying the
total number of individuals that require supplemental oxygen by the rate at which
each individual needs oxygen, which is dependent on cabin altitude. The rate of
supplemental oxygen required for each individual is defined by FAR 25.1443(c) and
is discussed in section 3.2.3. The results are shown in table 3.0-2 under “Minimum

system flow.”

The total number of individuals requiring oxygen is dependent on three factors. The
first is the maximum number of passengers that can be accommodated by the 747
configuration. Second is the number of attendants that are required to support the
maximum passenger count. Third, FAR 25.1447(c)(1) requires an additional 10%
oxygen masks distributed evenly throughout the passenger cabin.
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The maximum number of passengers for the 747-400 is limited to 600 by the FAA.
The FAA requires at least 1 flight attendant for every 50 passengers for a total of 12
attendants. The total number of individuals requiring supplemental oxygen is then
calculated as follows:

Total number of individuals = (600 passengers + 12 attendants) = 1.10
Total individuals = 673

The rate of oxygen consumption at each altitude can then be calculated as follows
for the 747-400:

Rate of oxygen consumption = total individuals * L/m at altitude

Rate of oxygen consumption = 673 * value from table 3.0-2

The results for these calculation are shown in table 3.0-7 under “L/m NTPD” and

shown graphically in figure 3.0-14.

Total oxygen consumed is dependent on the aircraft descent profile as described in
section 3.2. By using data from table 3.0-7 and then defining a descent profile
similar to those shown in figure 3.0-6, the total oxygen consumed can be calculated
by integrating the area under the curve between 40,000-ft and 10,000-ft altitudes.
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Table 3.0-7. 747-400 Oxygen Consumption Rate Calculations

Altitude, ft X Rate, L/m L/m NTPD

1,000
10 0.018 12.1
11 0.119 80.1
12 0.214 144.0
13 0.306 205.9
14 0.395 265.8
15 0.481 323.7
16 0.565 380.2
17 0.646 434.8
18 0.724 487.3
18.5 0.767 516.2
18.5 0.759 510.8
19 0.834 561.3
20 0.98 659.5
21 1.121 754.4
22 1.264 850.7
23 1.411 949.6
24 1.555 1046.5
25 1.693 1139.4
26 1.825 1228.2
27 1.953 1314.4
28 2.092 1407.9
29 2.228 1499.4
30 2.359 1587.6
31 2.486 1673.1
32 2.624 1766.0
33 2.762 1858.8
34 2.892 1946.3
35 3.036 2043.2
36 3.176 2137.4
37 3.322 2235.7
38 3.472 2336.7
39 3.626 2440.3
40 3.783 2546.0
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3.2.8.1 747 Oxygen System Weight

The weight calculations for the 747-400 include the weight of storage cylinders,
support assemblies, brackets, pressure regulators, flow control units,
couplings, tubing, hoses, and miscellaneous hardware used for installation.
The weight numbers do not include the weight of the passenger service units
because they are required to be installed independently of the system that
delivers or produces the supplemental oxygen supply.

A passenger system consisting of four storage cylinders is required to provide
the minimum oxygen supply for the maximum passenger occupancy and the
equivalent of a 12-min emergency descent profile. The weight of this system
would be 311 Ib.

The average quantity of oxygen storage cylinders installed on the 747-400 is
nine. A system of this size will weigh 562 Ib.

3.2.9  Oxygen Quality

The oxygen calculations for both crew and passenger systems use oxygen
quality that meets MIL-PRF-27210G, Type |. The quality of aviator’'s breathing
oxygen is at least 99.5% pure oxygen. This is the quality the FAA expects to be
used when specifying the requirements in FAR 25.1439, 25.1443, 25.1445,
25.1447, and 25.1450. Any system that could not generate this level of quality
would be subject to special conditions applied by the FAA. At a minimum,
increases to the supplemental oxygen flow rates would be required to meet the
equivalent levels of protection that is provided today. This could significantly
impact the total quantity that must be produced.

Additionally, the FAA may reduce the maximum allowed cabin altitude of
40,000 ft, which lowers the maximum cruise altitude of the aircraft. This would
affect the overall performance of the aircraft. If the percentage of oxygen drops
in the inspired gas mix to the user, then the maximum cabin altitude must also

drop to provide the equivalent level of safety.
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As seen in figure 3.0-15, to maintain a 10,000-ft equivalent altitude breathing
air (y-axis) at an altitude of 40,000 ft (x-axis), 100% oxygen must be used. To
maintain a 10,000-ft equivalent altitude breathing air using an 80% oxygen air
mix, the maximum cabin altitude would be approximately 37,000 ft.
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4.0 FIRE SUPPRESSION SYSTEMS

4.1

4.1

4.1

Cargo Compartment Fire Suppression Systems

A Introduction

Boeing airplanes use Halon 1301 (bromotrifluoromethane) as the extinguishing agent
in their cargo compartment fire suppression systems. As a result of the Copenhagen
Amendment to the Montreal Protocol, production of Halon 1301 has ceased as of
December 1993, and commercial use is prohibited except in those areas deemed
critical. Use of Halon 1301 in airplane fire suppression systems has been deemed
critical. To assess alternative agents for application in airplane fire extinguishing
systems, the air transport industry, including manufacturers, airlines, regulatory
agencies, and interested academia, formed the International Halon Replacement
Working Group (IHRWG). As of this writing, there is no apparent, immediate
replacement for Halon 1301 for large commercial airplane applications that is not cost
and weight prohibitive or is not toxic. This study provides the basis for evaluating the
viability of one potential alternative to Halon 1301: the Onboard Inert Gas Generation
System, better known by its acronym OBIGGS.

2 Scope

This section accomplishes two major tasks. First, it provides the cargo fire
extinguishing system design requirements and parameters of each major Boeing
airplane model representative of the airplanes manufactured and assembled in
Washington State. Heritage McDonnell Douglas airplanes are not included in this
study. Second, it lays the groundwork for assessing the viability of OBIGGS for

controlling a cargo compartment fire.

This study includes in its assessment current Class C lower lobe (below the
passenger deck) cargo compartments for the 737-800, 747-400, 757-300, 767-300,
and 777-300 airplanes as well as the Class B main deck cargo compartment on the
747-400 Combi airplane. Also briefly discussed in this document are electronic
equipment bay and lavatory fire protection and hand-held fire extinguishers.
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4.1.3 Design Overview

Boeing airplanes are currently designed and manufactured to requirements defined in
United States Department of Transportation, Federal Aviation Regulations Part 25,
Airworthiness Standards: Transport Category Airplanes1. Cargo or baggage
compartment fire protection systems must comply with one of four different cargo
classifications as defined in FAR 25.857. Of the four current cargo and baggage
compartment classifications, only the Class C cargo compartments require a built-in

fire extinguishing system by regulation.

Class B compartments on Boeing airplanes are also currently designed and
manufactured with a built-in fire extinguishing system as a result of one of four design
option requirements for compliance to an Airworthiness Directive (AD). ADs are the
means by which design changes are mandated by the FAA prior to formal codification
in the FAR and also carry the weight of law. A summary of the cargo compartment

classifications is included in table 4.0-1.
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Table 4.0-1. Cargo Compartment Classifications

Detection Extinguishing | Ventilation Liner Size
Class A | Crewmember | Crewmember N/A N/A Small
at station
Class Approved Crewmember Controlled | Yes, little No limit
B’ detection burner
system test®
Class C | Approved Built-in fire Controlled | Yes, big No limit
detection extinguishing burner
system system test’
Class No detection Oxygen Controlled Yes, big 1,000-f’[3
D? system starvation and limited | burner maximum
test?
Class E | Approved Depressurization | Controlled Yes, little No limit
detection burner
system test®

AmNorthlness Directive 93-07-15 added built-in fire extinguishing system and other equipment.
FAR Amendments 25-93 and 121-269 made Class D compartments obsolete.
L|ttle Burner Test per FAR 25, Appendix F, Part |
B|g Burner Test per FAR 25, Appendix F, Part Il

Fire protection in Class B and C cargo compartments is premised on early detection

of a fire, prompt discharge of the cargo fire extinguishing system, ventilation control,

and fire hardening of key areas within the cargo compartment.

The terms

extinguishing and suppression are used interchangeably within this paper. While

desirable, it is not always possible to fully extinguish a fire within an airplane's cargo

compartment through discharge of the airplane's fire extinguishing system. The

purpose of airplane cargo fire extinguishing systems is to prevent a cargo fire from

growing to catastrophic proportions by controlling or suppressing the fire until the

airplane can land at a suitable airport and more direct, aggressive fire extinguishing

tactics can be applied to the fire.
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4.1.3.1 Cargo Smoke Detection Systems

Both Class B and Class C cargo compartments require and are designed with smoke
detection systems. All Boeing models excepting the 737 utilize flow-through smoke
detectors in the cargo compartment smoke detection systems. The 737 airplane
models use area smoke detectors. A flow-through detection system consists of a
distributed network of sampling tubes, which bring air sampled through various ports
in the cargo compartment ceiling to smoke detectors located outside the cargo
compartment and then exhaust the air. An area detection system consists of smoke
detectors installed in various locations in the cargo compartment ceiling.

Once smoke is detected by either type of system, aural and visual alarms are
annunciated in the flight deck. A light on the applicable fire extinguishing arming
switch is illuminated in the airplane flight deck and an engine indicating and crew
alerting system (EICAS) message is displayed, alerting the flight deck crew to the
cargo compartment fire. A typical flow-through smoke detection system is
schematically represented in figures 4.0-1, 4.0-2, and 4.0-3.
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Figure 4.0-2. Representative 777 Flow-Through Cargo Smoke Detection System
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Figure 4.0-3. Flight Deck Indication and Control of Cargo Fire Protection System

41.3.2 Flight Deck Procedures for Cargo Fire

Once a cargo fire condition is annunciated in the flight deck, the crew initiates the

FAA-approved cargo fire protection procedure. A typical cargo fire protection

procedure is to

a. Push applicable ARM switch to ARMED.
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b. Push the DISCHARGE switch.
c. Set the landing altitude selector to 8,000 ft.

d. Go to one pack operation.

Pushing the ARM switch, illuminated when the respective cargo smoke detection
system is in alarm, sets the appropriate circuit to discharge Halon into the applicable
cargo compartment and configures a good portion of the airflow management
configuration. Arming the cargo fire extinguishing system is reversible without impact
to airplane system integrity. Pushing the DISCHARGE switch discharges the Halon
bottles, flow valves, and configures additional airflow management valves. Pushing
the DISCHARGE switch is irreversible. Halon discharge is accomplished by
pyrotechnic (explosive) cartridge activation. Airflow management that is activated
through the DISCHARGE switch is through spring-loaded, closed valves that are
manually reset. Setting the landing altitude commands the cabin pressurization
system (cabin altitude) to the altitude selected. Going to one pack controls airplane

ventilation rates.

Airflow management is accomplished to minimize smoke penetration from a
controlled cargo fire into occupied areas of the airplane and to minimize Halon
leakage from the cargo compartment. Airflow management in the fire mode is a
balancing act between smoke penetration and Halon retention. Airflow is needed to
prevent smoke from penetrating from a cargo fire into normally occupied areas of the
airplane typically located directly above the cargo compartment. Increased airflow
results in increased leakage through the various leakage paths in the cargo
compartments as the air migrates toward the outflow valves that control airplane

pressurization.
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4.1.3.3 Cargo Fire Extinguishing Systems

Boeing airplane cargo fire extinguishing systems provide minimum Halon 1301
concentration coverage for 1 hr or more, depending on the airplane model. Discharge
of the cargo fire extinguishing system occurs when the pilot pushes the DISCHARGE
switch after arming the applicable cargo compartment's cargo fire arming switch (fig.
4.0-3). Typically, the cargo fire extinguishing systems have a knockdown discharge
and a metered discharge of Halon 1301. The respective cargo compartments utilize
common bottles in the knockdown and the metered systems. The Halon from the
bottles can be discharged to one compartment or the other. There is not sufficient
Halon to provide adequate fire protection to both compartments simultaneously, and
the airplane is not required to fight a fire in both compartments simultaneously. The
probability of a cargo fire in one compartment is improbable. The probability there
would be a cargo fire in each compartment on the same flight is less than extremely
improbable. Figures 4.0-4, 4.0-5, and 4.0-6 give a visual overview of an airplane's fire
extinguishing system. Figures 4.0-7 and 4.0-8 are photographs of 747-400 lower lobe
and main deck cargo compartments.

CARGO FIRE

FWD ARM AFT

|IARMED) I ARMED|

FWD AFT

DISCH

AFT IN-LINE
PRESSURE SW

CARGO FIRE/ENGINE

CONTROL PANEL (P5)
DISCHARGE

NOZZLE (8)

FWD IN-LINE
PRESSURE SW.

FILTER/
REGULATOR

METERED

/ g
\ FWD CARGO

COMPARTMENT (REF)

Figure 4.0-4. 777 Cargo Fire Extinguishing System
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Figure 4.0-7. 747-400 Lower Cargo Compartment
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Figure 4.0-8. 747-400 Main Deck Cargo Compartment
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In all models, when a cargo fire is detected, knockdown Halon is discharged
immediately. The system is designed to provide a minimum 5% concentration by
volume initially. A minimum 3% concentration is provided for the remainder of the
flight. The 747-400, 757, 767, and 777 airplane models have a metering system
discharge. The 737 is not designed for a metering system discharge. The metering
system provides a steady-state Halon flow rate to the cargo compartment to maintain
minimum 3% Halon concentrations by volume. On the 757-300, the metering system
is activated at the same time as the knockdown discharge. On the 747-400, 767, and
777 models, the metering system is activated after a 20- or 30-min automatic time
delay. The required Halon flow rate through the metering system is controlled by a
regulation system and is a function of compartment leakage rate, cabin altitude, and
compartment temperature. Minimum Halon concentrations are required at all times
after detection of a fire for the required duration for any cargo-loaded configuration.
Table 4.0-2 summarizes the specific cargo fire extinguishing system performance
parameters by airplane model.
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Table 4.0-2. Cargo Fire Extinguishing Performance by Airplane Model

737-800 747-400 | 747-400 | 757-300 767-300 777-
main 300
deck
Initial discharge system
Quantity of Halon 1301, Ib | 33 110 294 33 80 137
Max concentration 15% 6.8% 7% 9% 7.4% 7%
forward* (main
deck)
Max concentration aft* 12% 6.2% n/a 8% 7.6% 6.6%
Time to 5% concentration | '/, min 2 min %smin | '/, min 1 min 2 min
Time to max 1/, min 3 min 1 min 1/, min 1"/, min 3 min
concentration
Metered discharge system | n/a
Quantity of Halon 1301, Ib 160 920 55 113 240
Sustained concentration 3.7% 3.2% 8% 3.2% 5.0%
forward
Sustained concentration 3.6% n/a 6% 3.8% 3.6%
aft
Duration above 3% >60 min >195 min | >90 min | >195 min | >195 min | >195
min
Sustained compartment test | 4 ft¥/m 82 ft’’m | 955 11 ft%m 61 ft¥/m 78 ft*/m
leakage rate in fire mode fosrward, 12 | forward, ft*/m forward, forwzgrd, forward
ft*/m aft, 84 #3/m 14 #3%m gf7t ft°/m ftSQ/?n it
(11 ft¥/m aft aft
forward, 19
ft*/m aft
unpressuri
zed)
Cabin altitude in fire mode 8,000 ft 8,500 ft 8,000- 9,500 ft 7,500 ft 8,000ft
8,500 ft
Initial cargo ventilation rate | None Upto Upto Uf to 300 Uép to 500 | Upto
Cargo fire extinguishing 70 1b 4101b 1,6801b | 1501b 310 1b 500 b
total system gross weight
*Empty compartment average concentration.
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The knockdown system in all Boeing airplane cargo fire extinguishing systems consist
of the Halon bottles discharged through a distribution tubing system to discharge
nozzles in the respective cargo compartment ceiling. In addition to the bottles and
distribution system, the knockdown system includes necessary wiring and control
circuitry. The knockdown system is sized as a function of compartment volume,
temperature, and cabin altitude and typically takes 1 to 2 min to reach maximum
concentrations. The Class C compartment Halon knockdown system has as little as
33 Ib of Halon for the 737-800 to as much as 137 Ib for the much larger 777-300
cargo compartments. The 747-400 Class B main deck compartment discharges 294
Ib of Halon in its knockdown system. Halon distribution systems are designed to

discharge Halon evenly throughout the cargo compartment.

The metered system is either discharged at the same time as the knockdown or after
a specified time delay and provides a steady-state Halon flow rate to maintain
compartment Halon concentrations above a minimum level for a specified duration.
The metered system typically includes fire extinguishing bottles, a filter/dryer, a
regulator, controlling orifices, a distribution tubing network, discharge nozzles in the
ceilings of the cargo compartments, and the necessary wiring and flight deck control.
The filter/dryer removes possible contaminants from the Halon discharge. The
regulator and controlling orifice function to maintain a constant Halon flow rate. The
metered flow rate is a function of compartment leakage. The higher the compartment
leakage rate, the higher the Halon flow rate must be to compensate. Cargo
compartments are generally designed to minimize compartment leakage when in fire
mode to maximize Halon retention and to reduce smoke penetration effects. Class C
compartment leakage rates vary from as little as 11 ft/m on the 757-300 to as much
as 99 ft¥m on the 777-300 airplane. The 747-400 Class B main deck compartment's

leakage rate was 955 ft°/m.
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4.1.3.4 Cargo Compartment Physical Parameters and Fire Hardening

Lower lobe Class C cargo compartments are long, narrow, and low in height, fitting
within the contours of the airplane's fuselage and airplane structure. Boeing airplane
Class C cargo compartments range in size from less than 800 ft* on the 737-800
airplane to greater than 6,000 ft° on the 777-300 airplane. The Class B main deck
cargo compartment on a 747-400 Combi has a volume of nearly 11,000 ftC. By
design, there is a 2-in clearance area between loaded cargo and the ceiling where the
Halon is discharged. However, with palletized and bulk cargo, this minimum clearance
is not always maintained in service and damage or obstruction to the discharge
nozzles and liners is possible. The sidewalls and ceiling of Class C compartments are
fire-hardened. Critical systems within a Class B compartment are protected by a fire-
hardened liner. A fire-hardened liner is one that passes the burn-through
requirements of FAR 25, Appendix F, Part lll. Table 4.0-3 summarizes the airplane
cargo compartment physical dimensions.
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Table 4.0-3. Cargo Compartment Physical Parameters by
Airplane Model (sheet 1 of 2)

737-800 | 747-400 | 757-300 | 767-300 | 777-300
Cargo compartment
free air space volume
Forward 719 ft° 5,000 ft* | 1,071 ft° | 3,096 ft° | 6,252 ft°
Length 298 in 510 in 495 in 486 in 590 in
Width 125 in 184 in 80 in 140 in 164 in
Height 42 inches | 80 inches | 44 68 inches | 80 inches
inches
Percent of Up to 50% | Up to Upto Up to
compartment 67% 75% 67%
volume occupied
by cargo
Aft 961 ft° 5,000 ft* | 1,295 ft° | 3,152 ft° | 5,667 ft°
Length 221in 680 in 558 in 572in 817in
Width 123 in 184 in 80 in 140 in 164 in
Height 45in 80in 54 in 68 in 80 in
Percent of Up to 50% | Up to Upto Upto Up to
compartment 67% 75% 67% 67%
volume occupied
by cargo
Main deck (747-400 10,912 ft°
only)
Length 672 in
Width 232in
Height 150 in
Percent of Up to
compartment 50%
volume occupied
by cargo
Cargo compartment
free air space volume
Forward 719 ft° 5,000 ft* | 1,071 ft° | 3,096 ft° | 6,252 ft°
Length 298 in 510 in 495 in 486 in 590 in
Width 125 in 184 in 80 in 140 in 164 in
Height 42 inches | 80 inches | 44 68 inches | 80 inches
inches
Percent of Up to 50% | Up to Upto Up to
compartment 67% 75% 67%
volume occupied
by cargo
Aft 961 ft° 5,000 ft* |1,295ft° [ 3,152 ft° | 5,667 ft°
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Table 4.0-3. Cargo Compartment Physical Parameters by
Airplane Model (sheet 2 of 2)

737-800 | 747-400 | 757-300 | 767-300 | 777-300

Length 221 in 680 in 558 in 572 in 817 in
Width 123 in 184 in 80 in 140 in 164 in
Height 45 in 80 in 54 in 68 in 80 in
Percent of Up to 50% | Up to Upto Upto Up to
compartment 67% 75% 67% 67%
volume occupied
by cargo

Main deck (747-400 10,912 ft°

only)
Length 672in
Width 232 in
Height 150 in
Percent of Up to
compartment 50%
volume occupied
by cargo
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4.1.3.5 Component Qualifications

All equipment installed in the airplane, fire protection systems and otherwise, are
qualified generally by rigorous, controlled qualification test procedures to demonstrate
the equipment's airworthiness. Equipment specifications and qualification
requirements are generally controlled through specification control drawings (SCD).
Occasionally problem statements are used to control equipment. SCDs provide
complete design, qualification, maintenance, and quality control requirements for any
specific component or equipment. The SCD defines airplane interface and spatial
envelope requirements, may refer to other Boeing and industry standard documents
for acceptable design and test requirements, identifies specific performance and test

validation requirements, and defines component quality control requirements.

4.1.3.5.1 General Maintenance Requirements

Cargo fire extinguishing systems are located inside pressurized areas of the airplane.
General Boeing maintenance requirements include, but are not limited to

a. No predetermined (scheduled) maintenance intervals on components, only
airplane maintenance schedules apply.

b. No piece parts or assemblies with definite life limits less than airplane life
expectancy.

c. No on-airplane adjustments.
d. No more than one mechanic for on-airplane maintenance and servicing.

e. Only "common" tools for on-airplane maintenance.
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4.1.3.5.2 System Performance Requirements

A system installed within an airplane must meet specific performance requirements.
Boeing cargo fire extinguishing system performance requirements include, but are not

limited to
a. A specific extinguishing agent quantity discharge for knockdown capability.

b. A specified rate of extinguishing agent discharge for a specified duration for
continued suppression capability.

c. Performance within parameters when exposed to life cycle and fatigue testing.

Qualification tests for normally operating equipment require that equipment be
operating within specified parameters during exposure to the test stimulus. For
equipment that requires periodic operation, the equipment must typically demonstrate
that it operates within specified parameters after exposure to the test stimulus. Fire
extinguishing system equipment is normally not operating and would typically not be

operating for some of the qualification tests.

4.1.3.5.3 Environmental Requirements

Equipment installed in Boeing airplanes must survive and operate in a broad range of
environments. The airplane may fly into and be stored in desert or in tundra
conditions. It may be cold-soaked or heat-soaked. The airplane may not be at
ambient, normally comfortable conditions prior to its required operation. Boeing
therefore imposes strict tests representative of the environmental conditions the
airplane is exposed to both for storage and for operating conditions. These
environmental conditions for equipment inside the pressurized areas of the airplane
include, but are not limited to, thermal (table 4.0-4), altitude (table 4.0-5), continuous
humidity, exposure to fluids, salt spray, and fungus. Fluids equipment may be
exposed to such substances as hydraulic fluid, lubrication oil, cleaning solvents, de-

icing fluid, fire extinguishing agent, insecticides, and sullage (waterborne dirt).
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Table 4.0-4. Operational and Nonoperational Environmental Temperature Limits

Low temperature: survival -55°C
(nonoperating)

Low temperature: short-term -40°C
operation

Low temperature: continuous -15°C
operation

High temperature: survival 85°C
(nonoperating)

High temperature: short-term 70°C
Operation

High temperature: continuous 70°C
operation

Table 4.0-5. Operational Pressure Altitude Limits

Normal operational -2,000 to 10,000 ft

Design limit for functioning | 25,000 ft continuous,

properly 43,000 ft transient (rapid
decompression)

4.1.3.54 Structural Requirements

An airplane can be a rough environment from routine shock and vibration exposure.
Equipment must be able to withstand continuous exposure to the shock of handling
and dynamic loads. These handling and dynamic loads include, but are not limited to,
mechanical shock, bench handling drop, shipping container handling drop, vibration,
acceleration, and airplane operating attitude. The vibration test is typically a
sinusoidal scan and 5 hr random vibration in a specified spectrum in each of three
perpendicular axes. The vibration tests are several times the normal airplane vibration
in order to decrease the time exposure to ensure component integrity. The vibration
spectrum varies based on location in airplane. Acceleration tests are conducted at 1.5
to 9.0 g, orientation dependent, or if the orientation is not known, 9.0 g in all
directions.

NASA/CR—2001-210903 71



4.1.3.5.5 Electrical Requirements

Boeing electrical requirements include, but are not limited to, ac and dc power
characteristics, normal and abnormal steady-state and transient characteristics,
voltage transients and spikes, electrostatic discharge susceptibility, radio frequency
susceptibility, lightning induced transients, electromagnetic induction, and grounding.
New airplane systems require continuous built-in test (BIT) monitoring to provide
operational integrity status of electrical equipment. If equipment contains software,
that software must be qualified independently of the hardware with its own

qualification plan and documentation.

41.35.6 Component Reliability

The overall cargo fire protection system, to demonstrate compliance to FAR
25.1309(b), must provide a numerical analysis that a catastrophic fire (an undetected
and/or uncontrolled in-flight fire) is extremely improbable (currently less than 10
chance of happening per flight hour). An airplane integrated cargo fire extinguishing
system (knockdown and metering systems and associated wiring and control) must
reliably provide inerting (adequate fire suppression) gas at minimum concentration
levels with a rate of less than 1x10™ failures per flight hour to meet the top-level
requirement. To support that requirement, a failure modes and effects analysis
(FMEA) must be developed to demonstrate the OBIGGS system itself must reliably
function with less than 1x10® failures per flight hour, assuming there is a non-
OBIGGS knockdown system. A comprehensive numerical analysis must be provided

to substantiate component and system reliability.

41.3.5.7 Health and Safety

Equipment shall be designed to adequately protect from personnel injury due to
moving parts, electrical shock, burns, high energy levels, and toxic and radiation
emitting substances. Requirements include, but are not limited to, maximum surface
temperature limits, flammability and toxicity requirements to an established standard
acceptable to Boeing, and the safe containment of toxic substances both normal and

non-normal operating conditions.
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4.1.3.6 System Certification

Prior to installation and delivery of an operational fire protection system on an
airplane, even a system installed for an in-service evaluation, the system must be
certified as compliant to all pertinent regulatory requirements. The process for
certifying a new system is typically performed in parallel with the design and
component qualification processes. A certification plan is presented and agreed to
with the FAA. The certification plan defines the certification requirements of a system
and should provide sufficient overall system detail and description so that all
certification requirements can be adequately assessed and agreed to. The
certification plan includes, but is not limited to, a detailed system description and
operation, a functional hazard assessment (FHA), identification and means of
compliance to each applicable FAR, minimum dispatch configuration, certification
documentation, and a schedule. Compliance to the FARs will typically require
qualification of all equipment and components installed in the system and associated
formal documentation, possibly system test demonstrations, FMEAs, numerical safety
analyses (NSA), and flight test demonstrations. Qualification and flight tests typically
require conformity inspections to ensure the test and configuration meet requirements

and the tests are properly conducted.

The design and certification of airplane cargo fire extinguishing systems have a
history (sec. 4.1.4) from which the system design requirements have evolved, are
understood, and are in fair agreement between the industry and the FAA on most
specifics. An inerting system, such as OBIGGS, has not been used on large
commercial airplane cargo compartments, and its effectiveness for controlling a cargo
fire would have to be validated prior to ultimate definition of performance and

certification requirements.

The FAR requires an airplane flight test be conducted to demonstrate extinguishing
agent dissipation in Class C compartments and that minimum concentrations are
maintained throughout the compartment for the required duration in the event of an
actual cargo fire. The system is tested to ensure proper operation and to validate

system performance parameters. The airplane is configured into the worst case
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configuration for maintaining compartment Halon, the test is conducted, and the
airplane cargo fire fighting procedure is followed. Analysis is performed, based on
flight test results, to demonstrate minimum Halon concentrations are also met for all
cargo loading configurations.

Minimum airplane concentration requirements are based on test results conducted by
the industry and the FAA. There is no FAR or advisory material specifying what
minimum Halon concentrations are required to be, except in one option in AD 93-07-
15, Amendment 39-8547, which defines minimum Halon 1301 concentrations for one
of the design options for a main deck Class B cargo compartment.

4.1.3.7 FAR Requirements

Airplanes must meet all applicable FARs prior to being certified for use in service.
Boeing airplanes satisfy requirements of FAR Part 25. Pertinent FAR Part 25 sections
for airplane cargo fire protection systems are included in Part VIII, Appendix | of this
document. A portion of these FARs, 25.851, 25.855, 25.857, and 25.858, elaborate
on specific cargo fire protection requirements. FAR Amendment 25-93 and 121-269
(Part 121 is for air carrier certification and operation of large aircraft) requires Class D
cargo compartments to have an approved smoke detection and fire extinguishing
system installed or convert to a Class C cargo compartment. A Class C cargo
compartment also requires an approved smoke detection and fire extinguishing
system, but doesn't require the specific ventilation limitations a Class D compartment
has in the fire mode.

4.1.3.8 Airworthiness Directives

Airworthiness Directives are issued to correct safety problems or require additional
safety features or designs that were not a requirement during the original
manufacture and Type Certificate of an airplane. They are the primary means by
which the FAA can force a design change on already manufactured and delivered
airplanes. An AD is issued to correct a design or manufacturing problem found in-

service or to require a change to or enhancement to an existing system. One
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noteworthy AD, AD 93-07-15, Amendment 39-8547, required modification of all Main
Deck Class B compartments to one of four options. The options were to

a. Modify the compartment to Class C requirements.
b. Carry cargo only in approved flame penetration resistant containers.

c. Cover cargo with fire containment covers or in fire containment containers and

other improvements.

d. Install a 90-min fire extinguishing system of Halon 1301 providing 5% knockdown

or 3% sustained concentrations.

4.1.3.9 Advisory Circulars

Advisory circulars (AC) provide regulatory guidance in demonstrating compliance with
particular FAR requirements. They are not the only means, but generally provide
procedures and methods for demonstrating compliance that are agreed upon by
industry and regulatory agencies. ACs of particular note for designing cargo fire
extinguishing systems are AC 25.1309-1A and AC 120-42A.

AC 25.1309-1A, Systems Design and Analysis, describes various acceptable means
for showing compliance with the requirements of FAR 25.1309(b), (c), and (d). These
means are intended to provide guidance for the experienced engineering and
operational judgment that must form the basis for compliance findings. They are not
mandatory. Other means may be used if they show compliance with this section of
the FAR. This AC provides guidance on such items as the "Fail-Safe Design
Concept," analysis of failure conditions, qualitative and quantitative assessments, and
FHAs.

AC 120-42A, Extended Range Operation with Two-Engine Airplanes (ETOPS), states
an acceptable means, but not the only means, for obtaining approval under FAR
Section 121.161 for two-engine airplanes to operate over a route that contains a point

farther than 1-hr flying time at the normal one-engine inoperative cruise speed (in still
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air) from an adequate airport. Specific criteria are included for deviation of 75 min,
120 min, or 180 min from an adequate airport. This AC limits airplane range on two-
engine airplanes to diversion time plus a 15-min holding and an approach and
landing.

4.1.4 Historical Development of Cargo Fire Protection Systems

Design of cargo fire protection systems on commercial airplanes is premised on
adequately controlling a fire for continued safe flight and landing. In the 1940s, it was
recognized that cargo compartment fires represented a serious threat to airplane
safety and required timely detection and prompt fire control. Cargo compartment fire
protection requirements, and their classifications, were initially established in the Civil
Air Regulations (CAR) (precursor to the FAR), Part 4b, effective in November 1946.
At first there were only three cargo compartment classifications:

Class A cargo compartments are small cargo/baggage compartments that are readily
visible and accessible by attendants. No fire detection or extinguishing system is
required. Fire control in Class A compartments is accomplished by the crew using

hand-held extinguishers.

Class B compartments are cargo compartments to which the crew has ready access
in-flight. There is a detection system to alert the crew to the condition of the
compartment, but there is no extinguishing system. Fire control in Class B
compartments is accomplished by the crew using hand-held extinguishers.

Class C compartments are cargo compartments that are inaccessible to the crew in-
flight. Both a fire detection system and a built-in fire extinguishing system are
required. Fire control in Class C compartments is accomplished by discharge of the

built-in fire extinguishing system into a compartment with a liner.

In the 1950s, Class D and Class E cargo compartment classifications and their

respective requirements were added to the CAR.
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Class D compartments are small (less than 1,000 ft3) compartments that are
inaccessible to the crew in-flight. Unless the compartment is ventilated, neither a fire
detection nor a fire extinguishing system is required. Fire control in Class D
compartments is accomplished by ventilation control (limiting the compartment
leakage rate), a liner, and limited volume to sustain a fire. Ventilated Class D cargo
compartments require a fire detection system to shut down and control ventilation in

the event of a cargo fire.

Class E compartments are used on airplanes that carry only cargo (freighters) and
require a detection system. Fire control in Class E compartments is accomplished by
shutting off the ventilation airflow to the compartment. Airplanes with Class E
compartments typically depressurize to control a cargo fire.

The Federal Aviation Regulations replaced the CAR effective February 1, 1965. In the
1960s, the FAA and private industry conducted test programs to evaluate the
effectiveness and the design requirements of different extinguishing systems for use
on airplanes. Factory Mutual Research Corporation conducted tests on five promising
fire suppression agents when a normal water supply was not present in a confined
structure. These five agents were, in descending order of relative system ranking that
included cost, effectiveness, reliability, and miscellaneous: Halon 1301 multiple-shot
total flooding, automated water sprinkler system, high-expansion foam, Halon 1301
single-shot total flooding, and a high-pressure water fog. These five systems had
been reduced from an initial list of 31 agents under consideration that included
nitrogen and carbon dioxide inerting.

The FAA conducted tests evaluating the effectiveness of the then current fire
protection capabilities of airplane cargo compartments, which were dependent on
shutting off airflow to the cargo compartment. Tests summarized in FAA report FAA-
ADS-73 concluded that fires in large cargo compartments readily reach damaging
proportions even with immediate airflow shutoff on fire detection. Factory Mutual
Research Corporation continued its research in the late 1960s into the effectiveness
of Halon 1301 on various flammable materials.
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In 1967, "flame resistant" liners were established as the standard for airplane interior
materials design. All cargo and baggage compartment materials were required by
FAR Amendment 25-15 to meet certain self-extinguishing criteria, involving short
flame times and burn lengths after the removal of an ignition source, effective
October 24, 1967.

The 747-100 airplane was designed and certified in 1969 with a double knockdown
Halon 1301 cargo fire extinguishing system, the most effective and efficient
extinguishing agent available, that could be discharged into either lower cargo
compartment. The initial knockdown provided a 5% minimum knockdown
concentration and sustained 3% concentration for 1 hr. After 1 hr, the second fire
extinguishing system bottle was discharged and provided 3% minimum
concentrations for 1 additional hr. The FAA conducted additional tests, as reported in
September 1970 and November 1971, affirming the use of Halon 1301 in airplane
cargo fire extinguishing systems.

In August 1980, a cargo fire on a Lockheed L-1011 resulted in the airplane diverting
and landing, but all lives aboard being lost prior to any evacuation. This airplane had
two nonventilated Class D compartments and one ventilated Class D cargo
compartment. The source of the fire was determined to have originated in the
ventilated Class D cargo compartment, which had functional smoke detectors.

The FAA conducted tests as reported in DOT/FAA/CT-84/21, February 1985, and
reaffirmed the effectiveness of Halon 1301 in controlling airplane cargo fires.

FAR Amendment 25-60 required sidewall and ceiling liners in Class C and D cargo
compartments to be upgraded to meet improved flammability standards (currently
defined in FAR Part 25, Appendix F, Part lll) and Class D compartments were limited
to 1,000 ft* effective June 16, 1986.

In November 1987, a fire ignited in a 747-200 Combi airplane Class B main deck
cargo compartment. The fire was detected, but the crew was unable to control the fire
through the available portable extinguishing bottles. The airplane crashed and all
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passengers and crew were lost. Following the ensuing investigations, the FAA
ultimately released an Airworthiness Directive, AD 93-07-15, Amendment Level 8547,
requiring that one of four cargo fire protection enhancement options be implemented
for main deck Class B cargo compartments. One of those options includes a 90-min
main deck fire extinguishing system, which is now installed on all 747 Combi main
deck Class B compartments.

The FAA conducted tests as reported in DOT/FAA/CT-89/32 on the fire hazards of
aerosol cans in airplane cargo compartments. The conclusion was that the sudden
release of hydrocarbon propellants in aerosol cans during a cargo fire increases the
potential cargo liner damage.

The Civil Aviation Authority (England) contracted Kidde-Graviner Limited to conduct a
series of Class C cargo compartment tests. The results of the tests reaffirmed the 5%
knockdown and the 3% sustained concentration levels for Halon 1301 in airplane
cargo compartments. One conclusion was that minor differences in crew reaction
time had little effect on the ability to control the cargo fire.

The FAA conducted tests as reported in DOT/FAA/AR-96/5, published in June 1996,
on the effectiveness of controlling large Class B cargo compartment fires. In the
report, it was noted that in one of the fire tests, the average concentration in the test
cell was not effective in controlling the fire. The JAA has not accepted compartment
average concentration as an acceptable standard to meet on some model airplanes,
but instead has required each sampled point within the compartment to independently

meet concentration requirements during the test demonstration.

In May 1996, a fire ignited in a Class D compartment on a DC-9 airplane. The
airplane crashed shortly after take-off with loss of all lives on board. The FAA issued
an amendment to FARs 25-93 and 121-269 requiring all Class D compartments to be
upgraded with a smoke detection system and a built-in fire extinguishing system or to
be converted to Class C compartments.
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41.5

Published Industry and FAA Cargo Fire Test Reports and Documents

Factory Mutual Research Corporation conducted tests, as reported on May 14,
1965%, in which it was concluded that Halon 1301 as a fire suppressant system
and the automated sprinkler system were the two most promising system

concepts for fire fighting where a normal water supply is not available.

The FAA conducted tests on characteristics of fire in large cargo aircraft, as

reported in March 19663, in which it was concluded:

1. Fires in large (5,000-ft>) cargo compartments readily reach damaging
proportions even with detection and immediate airflow shutoff.

2. Detection by thermal detection systems is more rapid and reliable than carbon
monoxide or smoke detection systems.

Factory Mutual Research Corporation, in its report of February 21, 1967*
evaluating the fire extinguishing characteristics of Freon FE 1301 on flammable
liquid fires, concluded that FE 1301 concentrations of 3.6% and 3.3% were
required to extinguish CDA-19 alcohol and n-heptane respectively. The report
recommended further tests be conducted.

Factory Mutual Research Corporation conducted additional tests, as reported on
July 28, 1967°, in which it was concluded a volume concentration of 3% Halon
1301 was shown to be effective on surface burning fires such as paper and wood
and could also affect deep-seated fires. A major advantage of Halon 1301 was its
ability in low-concentrations to inhibit high-temperature combustion processes.

Factory Mutual Research Corporation conducted additional tests on Halon 1301,
as reported in October 1968°, that validated 3.6% Halon concentration for
suppressing CDA-19 pan fires and 3.3% for suppressing n-heptane fires in larger

enclosures.
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f. The FAA conducted additional tests on the characteristics of fire in large cargo
aircraft, as reported in September 19707, in which it was concluded:

1. The use of Halon 1301 released at the time of fire detection in a cargo
compartment can prevent the occurrence of flash fire, greatly reduce the

maximum temperatures, and provide significant improvement in fire control.

2. Temperatures and pressures in a large cargo compartment fire may be
expected to be higher than those found in a small compartment fire.

3. Fully loaded cargo compartments can result in more severe fire conditions
than from a small cargo load.

4. Ventilation rates in excess of 75 ft¥/m will not keep flames from recurring in a
large cargo compartment.

5. Fires in a large loaded cargo compartment may be expected to result in a
flash fire shortly after detection and ventilation shutoff.

g. The FAA conducted tests on fire extinguishing methods for new passenger/cargo

aircraft, as reported in November 19718, in which it was concluded:

1. The use of Halon 1301 released at the time of cargo fire detection can
prevent the occurrence of flash fire, greatly reduce maximum temperatures,
and provide effective fire control for at least 2 hr.

2. Halon 1301 volumetric concentrations as little as 3% can effectively control

(5,000-f’t3 compartment volume) cargo fires.

h. The FAA conducted tests, as reported February 1985°, on the suppression and
control of Class C cargo compartments fires, in which is was concluded:
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1. The Halon extinguishing system effectively suppressed the initial flames and
effectively controlled the fire provided that ceiling liner burn-through did not

occur.

2. The smoke detection system did not always give early warning of fire and
subsequently gave false indications of the smoke level.

3. Class C cargo compartments do not effectively control cargo fire after liner
burn-through.

i. DuPont released a technical bulletin in December 1985 that provided an
overview of Halon 1301 effectiveness in total flooding systems, theory of fire

extinguishant, physical properties, toxicity, safety, etc.

j. The FAA conducted tests on Halon extinguisher agent behavior in a ventilated
small aircraft, as reported in June 1986”, in which it was concluded that human
exposure to Halon 1301 discharge of 3.0-lb capacity is safe for use in general
aviation aircraft. Maximum dose calculations were only 30% of recommended

human exposure limits.

k. NFPA 12A, Standard on HALON 1301 Fire Extinguishing Systems, 1987 Edition'?

provides minimum requirements for Halon 1301 fire extinguishing systems.

. The FAA conducted tests on the fire hazards of aerosol cans in aircraft cargo
compartments, as reported in December 1989'%. This report concluded that
release of hydrocarbon propellants in aerosol cans during a cargo fire increases
the damage potential of luggage fires in cargo compartments and can

compromise cargo liner integrity.

m. Kidde Graviner Limited, under contract with the Civil Aviation Authority conducted

tests, as reported in March 199114, in which it was concluded:
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1. A combination of 5% initial knockdown and 3% sustained Halon 1301
concentration can control, but not extinguish, deep-seated fires in (1,000-ft%)
Class C cargo compartments.

2. Increasing the (flight crew) "reaction time" from 1 to 2 min had no significant
effect on the ability of the suppression system to control a fire.

3. There is a build-up of combustible gases and potential for explosion where
these gases reach their lower explosive limit and are ignited by the heat of a
deep-seated fire.

4. Optical flame detectors provided an earlier warning in some cases than a
smoke detector, but in some cases did not alarm at all.

5. Total extinguishment of a fire proved extremely difficult.

6. Use of hand-held extinguishers in a cargo fire should be discouraged.

n. The FAA conducted tests on the performance of improved aerosol cans subjected
to an aircraft fire, as reported in December 199515, in which it was concluded that
venting aerosol cans had less severe effects in a cargo fire than nonventing
aerosol cans.

o. The FAA conducted tests to evaluate large Class B cargo compartment fire

protection, as reported in June 199616, in which it was concluded:

1. A crew member with a handheld extinguisher is ineffective in controlling large
cargo fires.

2. Fiberglass- and KEVLAR-based fire containment covers are effective at

containing fires, even with simulated in-service damage.

3. Fiberglass and aluminum cargo containers can effectively contain test fires.
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4. Total flooding with Halon 1301 can control test fires, though exposure to high-

temperatures may result.

5. One fire test in this report (Test 14) re-ignited between the Halon knockdown
and the metered discharge raising the issue of average versus point

concentration, though this issue was not raised in the report's conclusions.

6. The smoke detection system did not always detect test fires quickly.

p. The FAA conducted tests and reported recent research related to cargo
compartment fire protection in commercial airplanes in July 1998"". Included are
reports the FAA conducted on evaluating HFC-125 (pentaflouroethane) and a
water mist system used on a bulk-loaded cargo fire. More than twice as much
HFC-125 (219 Ib) as Halon 1301 (100 Ib) was required to control a medium-sized,
bulk-loaded simulated cargo compartment fire for 90 min. In a smaller
compartment, 10 to 12 gal of water mist were required to control a similar fire for
90 min.

4.1.6 Nitrogen Cargo Fire Suppression Analysis

Use of nitrogen inerting gas to suppress a cargo fire is dependent on reducing the
volumetric concentration of oxygen below a maximum level that will not sustain
combustion. Such a system has not been demonstrated for airplane cargo
compartment applications and it is not known what maximum oxygen (minimum
nitrogen) level would be required to ensure an airplane cargo fire was adequately

controlled.

Various data support different minimum levels of nitrogen to provide an inerting
environment for different flammable materials, but no study was done specifically to
evaluate airplane cargo compartment inerting requirements for fire suppression. The
U.S. military conducted fuel tank inerting tests and determined the nitrogen inerting
concentration limit was 9% oxygen (91% nitrogen)18. This limit was based on the

threat of small arms fire up to 23-mm high energy incendiary (HEI) rounds. Studies of
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fuel tank inerting suggest that 86 to 90% nitrogen concentrations are required to

prevent arcing ignition' 2% #

. One study indicated 84% nitrogen concentration is
required to prevent hot-surface ignition21. Another study provides data that suggests
82% nitrogen is sufficient to limit the flammability of methane and air mixtures®®. The
FAA conducted tests to evaluate fuel tank inerting requirements for ground-based
fires® and found a range of fire protection from 9% oxygen concentrations up to 18%

oxygen concentrations.

It should be noted that the above referenced studies were accomplished on Class B
fire material, flammable liquid fuels, whereas cargo generally consists of Class A fire
material, such as paper, wood products, and plastic. The International Halon
Replacement Working Group (IHRWG) has tentatively identified four fire scenarios
for a Halon 1301 replacement. It is expected that once formalized, the replacement
agent must meet minimum performance standards equivalent in its effectiveness as

Halon 1301 for controlling the following fire scenarios:
a. Bulk fire load of Class A material.

b. Containerized fire load of Class A material.

c. Surface burning fire with Jet A fuel.

d. Exploding aerosol can fire.

For the purposes of this study, analysis to provide OBIGGS inerting capacity in
airplane cargo compartments was completed at three different nitrogen inerting
levels, 84%, 88%, and 91%, representative of the available study findings for
controlling Class B fires. It is recommended that full-scale lab testing be completed to
validate inerting requirements in an actual airplane OBIGGS system for cargo fire

inerting.

There should be a distinction made between inerting and extinction. Inerting is
creating and maintaining an atmosphere that will not support flame propagation even

under the most severe conditions. Extinction is the total suppression of an already

NASA/CR—2001-210903 85



present flame or explosion front. A continuous inerting system in airplane cargo
compartments is impractical. Live animal carriage and perishable goods are allowed
in cargo compartments and inerting would be counter to minimum ventilation
requirements. A cargo fire suppression system must provide extinction of the open
flames and, in the case of nitrogen, an inerting environment from the point of
extinguishing system discharge adequate to control or suppress any open flames.
The dynamics of nitrogen inerting systems on an active Class A material cargo fire
are unknown to the writer and would have to be validated through extensive tests
before such a system could be approved for commercial airplane applications.

Typical airplane cargo fire suppression systems consist of an initial discharge or
knockdown of suppressant, followed by either additional knockdowns or a metered
system as necessary to maintain adequate fire suppression concentrations for the
required duration. An OBIGGS is likened to the current airplane fire suppression
metering systems in that it needs a knockdown discharge adequate to control a fire
until the metering system is effective in controlling a fire. As such, for the purposes of
this study, it is assumed that there is an initial discharge of suppressant at the same
time the OBIGGS is activated to provide steady-state nitrogen concentrations in the
cargo compartment. This initial or knockdown fire suppressant discharge will take one
of two forms: it will either be nitrogen knockdown or it will be a non-nitrogen fire
suppressant knockdown. This results in two models to reflect the two types of
systems.

4.1.6.1 Nitrogen Knockdown With OBIGGS Inerting

In the nitrogen knockdown model (fig. 4.0-9) a reservoir of compressed nitrogen
would be discharged at the same time that the OBIGGS would be activated to provide
a steady-state nitrogen supply sufficient to control a fire. The nitrogen
knockdown/OBIGGS combination is modeled in figure 4.0-10 and is graphically
represented in figure 4.0-11. Tables 4.0-6 (95% pure nitrogen from OBIGGS) and
4.0-7 (98% pure nitrogen from OBIGGS) tabulate minimum OBIGGS flow rates for
ensuring the indicated maximum O, concentration when integrated with a nitrogen

knockdown system. The model makes the following assumptions:
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a. The cargo compartment nitrogen level at the start is the same as that in the
atmosphere, 79%.

b. Nitrogen concentrations to knock down (extinguish) the flame are the same level
as that required to provide continued control over the fire.

c. Sufficient nitrogen is discharged in a knockdown system to reach minimum

nitrogen inerting concentrations within 1 min.
d. OBIGGS provides either 95% pure nitrogen or 98% pure nitrogen.

e. OBIGGS flow rate provides sufficient nitrogen to account for a compartment
leakage rate of the basic airplane with the Halon system plus the OBIGGS

nitrogen flow rate.

f. Cargo compartment airflow leakage previously demonstrated with Halon systems
are representative of airplanes with an OBIGGS.

It should be noted that the resultant pressure rise and its effect on cargo liners for a
rapid discharge of nitrogen into a cargo compartment that would be necessitated with
a nitrogen (or any other high-volume gas) knockdown system has not been
evaluated. Such effects would be part of the design considerations for application on

an airplane.
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Knockdown Extinguishing Agent Distribution Syst
inguishing Agent Distribution System OBIGGS

Agent - Nitrogen
or Other
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Airplane Cargo Compartment

Figure 4.0-9. OBIGGS Cargo Fire Suppression System Schematic
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Nitrogen Dump

n3, v3
\ Nitrogen Exhaust Leakage
OBIGGS Nitrogen nt, y
niovi ——— g NtV — 1 ™

nit-1), v

Compartment Leakage
n2, v2

n1 = Nitrogen purity from OBIGGS (95% or 98% for this study)

vl = OBIGGS flow rate (sft*/m)

n2 = Nitrogen purity in air (79%)

v2 = Cargo compartment leakage rate from airplane Halon tests (ft3/m)
n3 = Nitrogen purity in nitrogen knockdown (99% for this study)

v3 = Volumetric flow rate from nitrogen knockdown (ft°/m)

nt = Nitrogen concentration in compartment volume at time t

n(t-1) = Nitrogen concentration in compartment volume at (t-1)

V = Compartment volume (ft3)

y = Total compartment exhaust leakage (ft°/m)

t-1 = One time increment

A nitrogen flow balance equation of the OBIGGS model yields:
n1vi(t-1) + n2v2(t-1) + n3v3(t-1) + n(t-1)V = ntV + nty(t-1)

A flow balance of the compartment air and nitrogen flows yields:

y=vl+v2+v3

Substituting:
nt = (t-1)(n1v1 + n2v2 + n3v3) + n(t-1)v
V + (t-1)(v1 + v2 + v3)

Figure 4.0-10. Nitrogen Knockdown With OBIGGS Control Volume Model
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The analysis is completed for both a volumetric-control and a mass-flow-control
model. Typically, airplane cargo fire protection systems requirements have been
defined by volumetric control. Figure 4.0-12 (95% nitrogen from OBIGGS) and
Figure 4.0-13 (98% nitrogen from OBIGGS) provide an overall graphical
assessment of a nitrogen knockdown/OBIGGS volumetric capacity requirements
for installation on the fleet of Boeing airplanes in this study. Depending on
OBIGGS efficiency, as little as 5 sft®m (0.4 Ibm/m) OBIGGS flow rate delivering
98% pure nitrogen on a 737-800 airplane is required if 84% nitrogen is sufficient
to control a fire, or as much as 297 sft®/m (23.2 Ibm/m) OBIGGS flow rate
delivering 95% pure nitrogen is required if 91% nitrogen is required to control a
fire. The 747-400 Combi airplane main deck cargo compartment would require
even greater OBIGGS nitrogen flow rates. These numbers are provided to give a

range of reasonable nitrogen flow rate estimates for the various model airplanes.

NASA/CR—2001-210903 91



Sjuswalinbay wWojsAS uoissaiddns aiiH usboJjiN [|BleAQ ZL-0t 84nbiH

00¢

(IN40S) erey mo|4 usbolN %86 SHDIFO
0S5} 00} 0S

H ¢ ¥ [ O

00¢-2..
00€-292

00¢-2G.

00¥-L¥.

008-LE.

SHHIFO YIMm umopxoouy| usboN

000°k

000

000°¢

000t

000°S

0009

usBboIN %66

(19a4 21gnD) ebseyosiq usbonIN [eniu|

92

NASA/CR—2001-210903



Table 4.0-6. Nitrogen Knockdown and 95% OBIGGS Analysis
Volumetric Flow Rate

84% nitrogen inerting = 88% nitrogen inerting 91% nitrogen
discharge
Nitrogen = OBIGGS Nitrogen = OBIGGS Nitrogen = OBIGGS
Airplane dump metered dump metered dump metered
model (STP ft°) rate (STP ft°) rate (STP ft°) rate
(sft¥/m) (sft>/m) (sft>/m)
737-800 275 6 571 16 872 36
747-400 1427 39 2958 108 4504 252
747- 2971 435 6037 1228 8820 2965
400MD
757-300 371 7 771 18 1177 42
767-300 882 28 1826 79 2777 183
777-300 1788 45 3713 128 5639 297
Mass Flow Rate
84% nitrogen inerting = 88% nitrogen inerting 91% nitrogen
discharge
Nitrogen = OBIGGS Nitrogen = OBIGGS Nitrogen = OBIGGS
Airplane dump metered dump metered dump metered
model (Iom) rate (Iom) rate (Iom) rate
(Ibm/m) (Iom/m) (Iom/m)
737-800 22 47 45 1.3 68 2.8
747-400 112 3.0 231 8.4 352 19.7
747- 232 34 472 96 689 232
400MD
757-300 29 .55 60 1.4 92 3.3
767-300 69 2.2 143 6.2 217 14.3
777-300 140 3.5 290 10 441 23.2

Nitrogen knockdown with OBIGGS metered analysis
95% nitrogen from OBIGGS
99% nitrogen in knockdown

Tables 4.0-6 and 4.0-7 also show the quantity of nitrogen required in the knockdown
to provide adequate suppressant concentration. When compared to Halon 1301,
similar weights of nitrogen are required if 84% minimum nitrogen concentration after
nitrogen knockdown is required to suppress a cargo fire. If 91% minimum nitrogen
concentration is required to suppress a cargo fire, three to four times the weight of

nitrogen is needed. The knockdown analysis may be somewhat conservative in that it
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assumes that the nitrogen concentration throughout the compartment quickly reaches
equilibrium, where in the actual design, it may be viable to optimize the distribution
system to displace the air in the compartment with nitrogen more effectively.
However, the size and shape of the cargo compartment may limit the level of
optimization and the conservative model is deemed appropriate for this study.

Table 4.0-7. Nitrogen Knockdown and 98% OBIGGS Analysis

Volumetric Flow Rate

84% nitrogen inerting = 88% nitrogen inerting 91% nitrogen
discharge
Nitrogen = OBIGGS Nitrogen = OBIGGS Nitrogen = OBIGGS
Airplane dump metered dump metered dump metered
model (STP ft°) rate (STP ft°) rate (STP ft°) rate
(sft¥/m) (sft>/m) (sft>/m)
737-800 275 5 572 11 876 21
747-400 1428 30 2966 76 4540 144
747-400MD 2982 342 6123 860 9214 1638
757-300 371 5 772 13 1183 24
767-300 882 22 1832 55 2903 105
777-300 1786 36 3710 90 5682 170

Mass Flow Rate

84% nitrogen inerting = 88% nitrogen inerting 91% nitrogen
discharge
Airplane Nitrogen =~ OBIGGS Nitrogen = OBIGGS Nitrogen @ OBIGGS
model dump metered dump metered dump metered
(Ibm) rate (Ibm) rate (Ibm) rate
(Ibm/m) (Iom/m) (Iom/m)
737-800 22 4 45 9 68 1.6
747-400 112 2.4 232 5.9 355 11.3
747-400MD 233 26.7 478 67.2 720 128
757-300 29 4 60 1.0 92.4 1.9
767-300 69 1.7 143 4.3 227 8.2
777-300 140 2.8 290 7.0 444 i35S

Nitrogen knockdown with OBIGGS metered analysis
98% nitrogen from OBIGGS
99% nitrogen in knockdown
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4.1.6.2 Hybrid of Non-Nitrogen Knockdown With OBIGGS Inerting

The second model assumes a non-nitrogen knockdown in conjunction with an
OBIGGS. The hybrid model would be similar to the nitrogen knockdown model of
figure 4.0-9, except the nitrogen knockdown reservoir would be a non-nitrogen
knockdown reservoir. The non-nitrogen knockdown is discharged at the same time
the OBIGGS is activated, when a fire is detected. The non-nitrogen
knockdown/OBIGGS hybrid is modeled in figure 4.0-13 and is graphically represented
in figure 4.0-14. Table 4.0-8 (84% nitrogen required fire suppression), table 4.0-9
(88% nitrogen required for fire suppression), and table 4.0-10 (91% nitrogen required
for suppression) tabulate the required OBIGGS flow rates to reach the indicated
minimum nitrogen concentration within the specified time period (10, 20, or 30 min).
This model assumes that the

a. Non-nitrogen knockdown provides adequate fire suppression for a finite period of
time (10, 20, or 30 min depending on the model) before its effectiveness has been
diluted and nitrogen from OBIGGS is required to suppress the cargo fire.

b. The knockdown fire suppression agent works independently of OBIGGS. Stand-
alone minimum concentrations of at least one of the fire suppression agents is

required at all times for adequate fire control.

c. The cargo compartment nitrogen level at the start is the same as that in the
atmosphere, 79%.

d. Adequate nitrogen suppression concentration is reached solely through OBIGGS.
e. OBIGGS provides either 95% pure nitrogen or 98% pure nitrogen.

f. OBIGGS flow rate provides sufficient nitrogen to account for a compartment
leakage rate of the basic airplane with the Halon system plus the OBIGGS
nitrogen flow-rate.
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g. Cargo compartment airflow leakage previously demonstrated with Halon systems
are representative of airplanes with an OBIGGS.

The hybrid system is inherently inefficient. The OBIGGS nitrogen flow rate
asymptotically approaches a concentration greater than that minimally required to
control a fire. A comparison shows the nitrogen flow rate capacity from OBIGGS must
be at least 30% greater for a non-nitrogen knockdown system that provides 30 min of
fire suppression than for a nitrogen knockdown system with OBIGGS. The OBIGGS
capacity must be significantly greater still if the non-nitrogen knockdown is less than
30 min. For the purposes of this study, it was assumed the two fire suppression
agents are independent in the fire suppression capabilities and each must meet
minimum concentrations for a specified time. Whether that is too conservative would

have to be validated in a test program.
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Nitrogen Exhaust Leakage

OBIGGS Nitrogen nty

n,vi ——pm N4V — T
n(t-1), v

Compartment Leakage
n2, v2

n1 = Nitrogen purity from OBIGGS (95% or 98% for this study)

vl = OBIGGS flow rate (sft*/m)

n2 = Nitrogen purity in air (79%)

v2 = Cargo compartment leakage rate from airplane Halon tests (ft3/m)
nt = Nitrogen concentration in compartment volume at time t

n(t-1) = Nitrogen concentration in compartment volume at (t-1)

V = Compartment volume (ft3)

y = Total compartment exhaust leakage (ft°/m)

t-1 = One time increment

A nitrogen flow balance equation of the OBIGGS model yields:
n1vi(t-1) + n2v2(t-1) + n(t-1)V = ntV + nty(t-1)

A flow balance of the compartment air and nitrogen flows yields:

y=vl+Vv2

Substituting:
nt = (t-1)(n1v1 + n2v2) + n(t-1)v
V + (t-1)(v1 + v2)

Figure 4.0-13. OBIGGS Control Volume Model (Non-Nitrogen Knockdown)
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Table 4.0-8. OBIGGS Hybrid and 84% Nitrogen Fire Suppression

Volumetric Flow Rate

10 min 20 min 30 min
95% N2 = 98% No  95% No  98% N2  95% No  98% N»
Airplane OBIGGS ' OBIGGS OBIGGS OBIGGS OBIGGS OBIGG
model (sft¥m) = (sft’'m)  (sft*'m) = (sft’'m) (sft’m) S
(sft¥/m)
737-800 39 32 21 17 15 12
747-400 207 168 113 92 83 67
Lower
747-400 653 526 485 387 448 355
MD
757-300 52 43 28 23 20 16
767-300 130 106 73 59 54 44
777-300 235 209 130 114 95 83
Mass Flow Rate
10 min 20 min 30 min
95% N2 = 98% N2  95% N>  98% N> 95% No  98% N»
Airplane OBIGGS A OBIGGS OBIGGS OBIGGS OBIGGS OBIGG
model (Ibm/m) (Iom/m) (lbm/m) = (lbm/m) (Ibm/m) S
(Iom/m)
737-800 3.0 2.5 1.6 118 1.2 9
747-400 16.2 13.1 8.8 7.2 6.5 5.2
Lower
747-400 51.0 411 37.9 30.2 35 27.7
MD
757-300 4.1 3.4 2.2 1.8 1.6 118
767-300 10.2 8.3 5.7 4.6 4.2 3.4
777-300 18.4 16.3 10.2 8.9 7.4 6.5

Standardized OBIGGS nitrogen flow rates to provide minimum 84% nitrogen

concentrations within specified time assuming 79% nitrogen air initial conditions.
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Table 4.0-9. OBIGGS Hybrid and 88% Nitrogen Fire Suppression
Volumetric Flow Rate
10 min 20 min 30 min
95% No =~ 98% N2  95% N,  98% N2 95% No  98% Na
Airplane OBIGGS OBIGGS OBIGGS OBIGGS OBIGGS OBIGGS
model (sft¥/m) = (sft’m)  (sft*m) | (sft’m) (sft’m) = (sft’/m)
737-800 87 67 47 37 34 26
747-400 464 357 259 198 192 146
Lower
747-400 1585 1179 1278 917 1235 871
MD
757-300 116 90 62 48 45 34
767-300 293 226 167 127 126 95
777-300 528 444 296 245 221 179
Mass Flow Rate
10 min 20 min 30 min
95% No = 98% N2  95% N,  98% No 95% N>  98% N»
Airplane OBIGGS A OBIGGS OBIGGS OBIGGS OBIGGS OBIGGS
Model (Ibm/m) (Iom/m) (lbm/m) ~ (lbm/m) (Ibm/m) = (lbm/m)
737-800 6.8 5.2 3.7 2.9 2.7 2.0
747-400 36.3 27.9 20.2 15.5 15 11.4
Lower
747-400 123.8 92.1 99.8 71.6 96.5 68.0
MD
757-300 9.1 7.0 4.8 3.8 3.5 2.7
767-300 22.9 17.7 13.0 9.9 9.8 7.4
777-300 41.2 34.7 23.1 19.1 17.3 14.0
Standardized OBIGGS nitrogen flow rates to provide minimum 88% nitrogen

concentrations within specified time assuming 79% nitrogen air initial conditions.
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Table 4.0-10. OBIGGS Hybrid and 91% Nitrogen Fire Suppression

Volumetric Flow Rate

10 min 20 min 30 min
95% N2 = 98% No  95% No  98% No 95% N. = 98% N

Airplane OBIGGS A OBIGGS OBIGGS OBIGGS OBIGGS OBIGGS
model (sft¥/m) = (sft’m)  (sft*m) | (sft’m) (sft’m) = (sft’/m)

737-800 149 106 83 58 62 42

747-400 801 565 462 318 355 238

Lower

747-400 3162 2003 2876 1675 2866 1641

MD

757-300 198 141 108 76 79 55

767-300 509 357 301 205 237 157

777-300 913 701 530 392 409 292

Mass Flow Rate
10 min 20 min 30 min
95% N> = 98% N>  95% N>  98% N> 95% No, = 98% N

Airplane OBIGGS A OBIGGS OBIGGS OBIGGS OBIGGS OBIGGS
model (Ibm/m) (Iom/m) (lbm/m) ~ (lbm/m) (Ibm/m) = (lbm/m)

737-800 11.6 8.3 6.5 4.5 4.8 3.3

747-400 62.6 44 A 36.1 24.8 27.7 18.6

Lower

747-400 247 156.5 224.7 130.9 223.9 128.2

MD

757-300 15.5 11.0 8.4 5.9 6.2 4.3

767-300 39.8 27.9 23.5 16.0 18.5 12.3

777-300 71.3 54.8 41.4 30.6 32.0 22.8

Standardized OBIGGS nitrogen flow rates to provide minimum 91% nitrogen
concentrations within specified time assuming 79% nitrogen air initial conditions.
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4.2 Electronic Equipment Bay Fire Protection

The electronic equipment (E/E) bay on Boeing airplanes have smoke detection
systems, but do not have fire extinguishing systems. In the event of an E/E bay
smoke condition, typically overheated equipment, an overboard valve opens and
smoke is exhausted outside the airplane. Equipment installed in the E/E bay, or any
other area on the airplane, must meet flammability requirements for which it is
demonstrated the equipment will not sustain or propagate a fire (sec. 4.1.3.5.7).

Figure 4.0-15. Typical E/E Bay (1)
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Figure 4.0-16. Typical E/E Bay (2)

4.3 Lavatory Extinguishing System Bottles

Airplane lavatories are required by FAR to have an extinguishing bottle in the waste
receptacles. Lavatories are required to have a smoke detector, but are independent
of the fire bottles. Typical fire bottles have a eutectic seal that releases Halon upon
heat build-up within the receptacle. The bottles are not discharged through the smoke
detector or manual action. Each bottle typically contains 100 to 150 g of Halon 1301,
which has a specific volume of 3.08 ft*Ib at 6,000-ft cabin altitude and 60°F. The
capacity of lavatory waste receptacles range from 1 to 2 ft>. The quantity of nitrogen
required to control a lavatory waste receptacle fire is not known. The specific volume
of nitrogen is 16.0 ft3/lb at 6,000-ft cabin altitude and 60°F. An OBIGGS for a lavatory
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waste receptacle would require some sort of receptacle fire detection system that
activates OBIGGS and then a minimum nitrogen flow rate that provides adequate fire
suppression within a limited time period.

4.4 Portable Hand-Held Extinguishers

Airplanes are required by the FARs to have a minimum number of portable fire
extinguishers, some of a specific type and at specific locations. Portable fire
extinguishers on Boeing airplanes typically contain either Halon 1211
(bromochlorodifluoromethane, CBrCIF2) or a water/glycol solution. The minimum
quantity and location of portable fire extinguishers is governed by FAR 25.851(a).
Boeing airplanes typically have excess portable fire extinguishers and are located to
optimize visibility and access. The Halon 1211 portable extinguishers are located
near exits, near crew rests, in the flight deck, and at other convenient locations. The
water/glycol portable extinguishers are typically located near wardrobe closets and
crew rests. Water/glycol extinguishers are not recommended for use on electrical

fires.
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5.0 FUEL SYSTEM, PROPULSION FIRE PROTECTION, AND FUEL TANK INERTING
REQUIREMENTS

5.1 Introduction

The Boeing Company, as well as most other airplane manufacturers, uses Halon
1301 as the extinguishing agent for fire suppression in all of the designated
propulsion fire zones (engine, nacelle, APU). The feasibility of using nitrogen (N>)
provided by an OBIGGS system, for fire suppression (inerting) in fire zones and
centerwing tanks will be addressed. The comparative levels of the safety, functional,
reliability, and maintainability requirements and costs of the current fire protection
systems will be estimated. Any new fire protection system or agent would have to
meet these requirements as a minimum to be feasible and certifiable for installation

on any commercial passenger jet airplane.

There are no current Federal Aviation Regulations requiring fuel tank inerting on
commercial airplanes. The Boeing Company design philosophy has been and will
continue to be to preclude the presence of potential ignition sources from the fuel
tanks. For the purpose of this study, OBIGGS or nitrogen FAA certification
requirements for fuel tank inerting will be assumed and based upon the best
information currently available, which is predominantly from U.S. military combat
aircraft. Additional data, information, and guidance have been taken from the
information and conclusions in the final report of the Aviation Rulemaking Advisory
Committee (ARAC) Fuel Tank Harmonization Working Group23.

Fuel tank inerting has been continually evaluated for military aircraft and vehicles
since World War Il. Some of the inerting methods and materials evaluated have
included inerting fuel tanks with carbon dioxide (CO.), nitrogen gas, Halon,
combustion products including engine exhaust, reticulated foam, and expanded metal
products. A partial summary is shown in table 5.0-1.
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Table 5.0-1. Partial Summary of Fuel Tank Protection Systems on Military Aircraft

OBIGGS
Reticulated LN> Halon |Stored gas| On-demand TALON
Foam N> N> (Noand Oy)
C-130, F- C-5 F-16, AGE, C-17 V-22, F-22, C-17
18, F-15, F-117 F-117, (Study)
P3 Helicopters

The primary impetus behind these military systems and their requirements is to
reduce the loss of aircraft and helicopters to hostile small arms fire, up to 23-mm
caliber. The loss of combat aircraft from hostile munitions that are designed to ignite
fuel tanks is the number one cause of combat losses, and thus extensive measures
for combat aircraft outweigh the increased risks posed by these systems. However,
the military, even in more recent acquisitions has not generally incorporated these

measures in aircraft that are not exposed to hostile munitions.

Combat requirements have led to the development of several of the above mentioned
fuel tank protection methods, including nitrogen inerting using stored gaseous or
liquid nitrogen (LN>), chemical nitrogen generators, and OBIGGS (N2) type systems.

During the 1970s the National Transportation and Safety Board (NTSB) and the FAA
conducted a flight test of a LN, fuel tank inerting system on a DC-9 airplane®. This
flight test demonstrated that an OBIGGS was capable of successfully inerting the fuel
tanks during all phases of the flight profile. At that time OBIGGS technology was not
viable for use on commercial airplanes because the expected reliability did not meet
commercial standards, the technology was considered immature, and an unfavorable

cost-to-benefit ratio due to the high system weight and procurement cost.

5.1.1 Scope

This section will provide the Federal Aviation Requirements and airframe
manufacturer design requirements for current fire protection in fire zones and
flammable leakage zones. The section also presents a discussion of the fire
protection systems that are in current compliance with these requirements. This data

will then become the basis for assessing the feasibility of providing an inerting gas
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(nitrogen) with an OBIGGS. In order to do this, certain assumptions and estimates
must be made in light of a lack of manufacturer and federal requirements for

commercial passenger jet aircraft.

The groundwork for assessing the viability or feasibility of using an OBIGGS for fuel
tank inerting requires a description and written narrative of the fuel system function
and requirements. It is absolutely necessary that any fuel tank inerting system
considered for study or evaluation must not interfere with the existing function,

reliability, and maintainability of the fuel system and its components.

The current requirements for the actual suppression or extinguishing of a fire are
presented, where applicable. There are already detection systems requirements for
the fire suppression systems that are currently installed; for example, in the engine
nacelles and APU bay. Additional detection systems that may be required for
OBIGGS and airplane systems interfaces are presented and discussed. Caution must
be exercised as the implementation of an inert gas system could potentially have an
impact on existing airplane fuel and safety systems.

5.2 Fire Protection Systems: General Requirements

There are a number of existing requirements for protection against fires on the
airplane. In this section, the fire protection requirements for fire zones, flammable
zones, and flammable leakage zones are discussed as identified in the applicable
FARs.

5.2.1 Typical Aircraft Safety Zones

Figure 5.0-1 shows typical aircraft safety zones. The zones include the (1) fire zone,
(2) flammable zone, and (3) flammable leakage zone.
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5.2.2 Fire Zones: Engine Nacelle and APU Bay

A fire zone is defined as an area where fuel and/or flammable vapors and ignition

sources are normally present.

FAR 25.1181 designates the fire zones to be the engine nacelle, APU compartment,
and any compartment containing a fuel-burning heater or other combustion

equipment.

The fire zone fire protection requirements are defined in FARs 25.1181 through
25.1207. The basic requirement is that the fire protection system must be capable of
extinguishing fires from all sources within the fire zone. Engine nacelle fire
extinguishing systems typically provide a “two-shot” application of suppressant and

the APU bay only provides a “one-shot” system.

Compliance with applicable FARs for any system must be thoroughly demonstrated
by full-scale tests with representative worst conditions, by similarity of design of a
currently certified system, or through comprehensive analysis. However, if there is
any change in the configuration of an engine, nacelle, nacelle airflow, strut,
extinguishing agent, and so forth, a full-scale test is the most usual method of
demonstrating that requirements for the type certificate and certification basis have

been met.

The basis for demonstrating or showing compliance to FAR 25.1207 is outlined in
FAA AC 20-100%, in which specific guidelines are established regarding suppression
agent concentration (and how to measure it), location, and duration. If Halon 1301
(CF3Br) is used as the suppressant agent, the minimum agent concentration is 6% by
volume for a minimum of 0.5 sec for all samples, simultaneously. Because all of the
fire protection systems for engine nacelles and APU bays currently use Halon 1301

this is the certification basis for current aircraft.

5.2.3 Flammable Leakage Zone: Fire Protection Requirements

A flammable leakage zone is defined as a location where fuel or fuel vapors may be

present but ignition sources are not usually present.
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FAR 25.863 requires that in a zone where flammable fluids or vapors might potentially
escape from the fuel/fluid system there must be a means to minimize the probability
of ignition of these fluids and vapors. This area is called a flammable leakage zone.
The zones identified as flammable leakage zones are the wing leading and trailing
edges (i.e., the area in front of front spars and behind the rear spars of the wings).

Compliance to this FAR is by passive measures, which include natural ventilation and
drainage to minimize buildup of vapors; proper electrical bonding and grounding;
explosion-proof components; and service history and experience.

524 Flammable Zone: Fuel Tanks

FAR 25.901 (c) states that for each power plant and auxiliary power unit installation, it
must be established that no single failure or malfunction or probable combination of
failures will jeopardize the safe operation of the airplane except that failure of
structural elements need not be considered if the probability of such failure is

extremely remote.

FAR 25.951 requires that each fuel system must be constructed and arranged to
ensure proper fuel flow to the engines and APU under all operating conditions and

cannot result in a flameout of the engine.

FAR 25.981, titled Fuel Tank Temperatures, requires that the manufacturer determine
the highest temperature allowing safe margin below the lowest expected auto ignition
temperature of the fuel in the fuel tanks.

FAR 25.1309 states that any system must be designed to perform the intended
function under any foreseeable operating condition and that the probability for failure
that would prevent continued safe flight and landing be extremely improbable (<1O'9
per flight hr).

The Boeing Company has established its own dispatch reliability and safety of flight
requirements that require system and component reliability factors that could be more
stringent than those required in the FARs. Any system that interfaces with the fuel
system (including the tanks) must not cause nor contribute to any reduction in safety
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or reliability. These considerations would also include the fuel system, any electrical
systems, and the structure.

There are no current requirements for inerting the fuel tanks on commercial airplanes.

The aircraft industry ARAC report notes that the wing tanks operating with Jet A fuel
have demonstrated an acceptable safety record, during the past 40+ years.

The ARAC findings suggest that reducing flammability exposure only in center wing
tanks subject to outside heat sources (i.e., air conditioning packs and equipment)
may benefit and provide a level of safety enhancement.

A study objective may be to reduce the center fuel tank flammability to a level
currently existing in wing fuel tanks. Inerting or timely inerting of the noted tanks to or
below 9% oxygen content will be studied.

525 Conclusions From the Fuel Tank Harmonization Working Group26

During 1998 the FAA tasked ARAC to form a Fuel Tank Harmonization Working
Group (FTHWG) to review the requirements for fuel system safety on commercial
airplanes and to conduct an assessment of feasible technologies that may eliminate
or minimize flammable vapors in the fuel system. Ignition sources were not part of the
scope of the work because ignition sources were to be considered a separate effort.
The conclusions drawn from the ARAC report regarding fuel tank inerting are:

OBIGGS and other nitrogen generating systems would achieve the goal of reducing
the flammability of fuel tanks but would cause the airline industry to incur a cost of
more than $20 billion over the next 10 yr and, in addition, would be difficult (and very
costly) to retrofit in current airplanes. Benefits for safety enhancements were
estimated, based on FAA guidelines, as $2 billion.

Ground-based inerting (i.e., nitrogen from a ground service cart) would also achieve
the flammability goal but potentially cost significantly less than OBIGGS. Further

study was recommended.
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Wing tanks operating with Jet A fuel have demonstrated an acceptable safety record,
during the past 40+ years.

Wing tanks have been identified as a target for the comparable center wing tanks
safety level performance.

The exposure analysis revealed that center wing tanks without heat sources have the
similar magnitude of exposure (level of safety) as the wing tanks.

The ARAC findings suggest that reducing flammability exposure only in center wing
tanks subject to outside heat sources (e.g., air conditioning packs) may benefit and
provide a level of safety enhancement. As a consequence, for the study, the OBIGGS
would inert the center wing tank only and would not be used to inert the wing tanks.

Practical means of achieving cost-effective reduction in flammability exposure of
center wing tanks will be primary considerations of the study.

5.3.  Fire Protection System Description: General

As previously noted in section 5.2.2, the fire extinguishing system for engine nacelles
and APU bays use Halon 1301 as a fire suppression agent. The primary reasons
Halon 1301 is so widely used as a fire suppression agent is the abundance of data
available demonstrating its fire suppression capability, relatively non-toxic, minimum
system weight, and well-established compliance requirements within the FAA and
industry.

5.3.1 Engine Nacelle Description

Typical engine nacelle and APU bay fire detection, overheat detection, and fire
extinguishing systems are shown in figures 5.0-3 through 5.0-21.
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» Overview

* Engine Fire and Overheat Detection and Warning
» Engine Fire Extinguishing

* APU Fire Detection and Warning

¢ APU Fire Extinguishing

» Wheel Well Fire and Duct Leak Detection

Figure 5.0-3. Fire Protection Outline

Overview

» The fire protection system includes detection systems
and extinguishing systems. A number of indicators on
the flight deck assist in fire and overheat detection and
warning.

Figure 5.0-4. Fire Protection Overview (1)
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Flight Master EICAS Aural Discrete | Discrete Fire
Deck Caution Alarm Fire Identification | Extinguishing
Annunciation and warning Operation
Warning
Engine
and Strut|  '°S Yes Yes Yes Yes Manual
Manual/
APU Yes Yes Yes Yes Yes Automatic
Wheel Extend
Well Yes Yes Yes Yes Yes gear
Duct
Leaks Yes Yes Yes No Yes None
Figure 5.0-5. Fire Protection Overview (2)
ENGINE

Each engine has dual-loop overheat and dual-loop fire detectors. Two fire
extinguisher bottles can be directed to either engine.

Figure 5.0-6. Engine Fire and Overheat Detection
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Figure 5.0-7. Engine Fire and Overheat Detection and Warning (1)

» Engine fire and overheat detection is provided by two independent dual-
loop detector systems on each engine. Several temperature limits are

integrated into the system, depending on the sensor location on the
engine.

. The logic that controls the system normally requires both loops to
provide a warning signal before a fire or overheat alarm is triggered. A
single-loop signal is indicated on the engine indication and crew alerting
system (EICAS). The second loop signal, if initiated, causes fire or
overheat alarm activation. A fire is indicated by a fire bell; illumination of
the master warning lights, fire discrete warning light, fire handle and fuel
control switch lights; and a level A warning display on the EICAS.

]

Figure 5.0-8. Engine Fire and Overheat Detection and Warning (2)
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¢ Pressing either master WARNING/CAUTION lightswitch or pulling the fire
switch silences the fire bell and resets the master warning lights.

* An engine overheat is indicated by a caution aural tone and illumination
of the master caution lights. The corresponding engine overheat light
and a caution display on EICAS also illuminate.

¢ The complete engine fire and overheat detection system can be tested
before and during flight by simulating fire and overheat conditions.
Operation of the two switches on the FIRE/OVHT TEST module, located
on the pilots control stand (P8), actuates a simulated fire and overheat
condition. If the element loop and control unit are operating properly, the
alarm devices will be energized. ;

Figure 5.0-9. Engine Fire and Overheat Detection and Warning (3)
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Figure 5.0-10. Engine Fire Extinguishing System (1)
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¢ The engine fire extinguisher discharge switches are incorporated in the
fire switch handles on the control stand (P8). A two-step process arms
and activates the extinguishing system.

« Pulling either fire switch handle does the following:

» Closes the engine fuel supply valves.

Closes the engine bleed valve and isolation valve.

Trips the generator.

Closes the hydraulic supply valve.

Arms the extinguishing system.

Silences the bell and resets the master warning lights.
Closes the thrust reverser isolation valve.

Closes the APU bleed valve (from left fire switch handle only.)

Figure 5.0-11. Engine Fire Extinguishing

» Turning the fire switch handle clockwise or counterclockwise discharges
one fire extinguisher bottle and, if turned the opposite direction,
discharges the second bottle. The bottles are installed in the forward
portion of the aft cargo compartment. The engine bottle discharge light
on the pilots control stand illuminates when the pressure switch o the
fire bottle indicates that the extinguishing agent has been discharged.

s The extinguisher bottle explosive squibs are tested using the test switch
on the right side panel (P61). lllumination of the squib lights indicates
operational squibs. The bottle pressure switch can be tested with a
switch actuator on the bottle.

Figure 5.0-12. Engine Fire Extinguisher
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Figure 5.0-13. APU Fire Detection and Warning (1)

s A dual-loop fire detection system, consisting of upper and lower detector
elements mounted in the APU compartment, provides a fire warning
through the central warning system. An APU fire warning signal initiates
an APU auto shutdown.

» Fire detection and warning electronics cards process the detector
signals that generate warnings.

» APU fire detection indication in the flight deck consists of a red
annunciator light in the APU fire handle, master warning lights, bells, and
EICAS display. A red APU fire light and a horn are also externally
mounted in the APU remote control panel (P62) on the nose landing gear.

« The bell is turned off by pressing the master WARNING/CAUTION switch-
lights or pulling the fire handle.

i

Figure 5.0-14. APU Fire Detection and Warning (2)
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» The complete APU fire detection system can be tested before and during
flight by simulating fire conditions. Operating the ENG/APU/CARGO
switch on the FIRE/OVHT TEST module located on the control stand (P8)
actuates a simulated fire condition. If the element loop or the control unit
is inoperative, the EICAS system will indicate the faulty loop.

Figure 5.0-15. APU Fire Detection and Warning (3)
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Figure 5.0-16. APU Fire Extinguishing (1)
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» The APU fire extinguishing system consists of a single fire bottle located
forward of the firewall bulkhead. The controls for releasing the
extinguishing agent are located on the control stand (P8) and the APU
remote control panel (P62) on the nose landing gear.

» Actuating either the APU fire switch or external fire switch does the
following:

Closes the APU fuel valve.

Closes the APU bleed valve.

Trips the APU generator.

Arms the extinguishing system.

Silences the bell and resets the master warning lights.

Figure 5.0-17. APU Fire Extinguishing (2)

s Turning the APU fire handle (P8) in either direction or pressing the APU
fire extinguisher bottle discharge switch on the lights/APU/interphone
panel (P62) discharges the fire extinguisher bottle into the APU
compartment. Bottle discharge indication appears on the P8 panel.

* The extinguisher bottle squib is tested using the test switch on the right
side panel (P61). lllumination of the squib light indicates a functioning
squib,

Figure 5.0-18. APU Fire Extinguishing (3)
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* The pneumatic duct leak detection system is divided into right and left
zones and is designed to notify the crew of a duct leak. There is no
extinguishing system.

Figure 5.0-19. Wing Duct Leak Detection
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Figure 5.0-20. Wheel Well Fire and Duct Leak Detection (1)
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» The wheel well fire warning is initiated by a single sensor loop mounted
on the ceiling of the main wheel wells.

* Duct leak warning is initiated by dual sensor loops mounted along the
pneumatic ducts.

+ The alarm indications are initiated when the wheel well or duct
temperature sensor reaches a predetermined level. A wheel well fire
activates the fire bell, the master warning lights, the discrete fire light,
and the discrete wheel well fire light. A duct leak turns on the master
caution lights and the discrete duct leak lights on the P5 pneumatic
control panel and sounds the caution aural tone. The EICAS provides
caution and warning messages on overheat and fire conditions. Because
there is no fire extinguishing bottle for the wheel well, the landing gear is
lowered to put out a fire and cool parts such as brakes.

Figure 5.0-21. Wheel Well Fire and Duct Leak Detection (2)

The engine nacelle and APU bay fire protection systems consist of spherical,
pressurized, squib-activated Halon storage bottles, with distribution tubing to each of
the engine nacelles and a separate system for the APU bay. For typical Boeing 7X7
twin-engine model aircraft, the two bottles are mounted in the forward cargo
compartment outside the cargo compartment liner on the right side of the fuselage
lower lobe. An exception to this installation is that on all 737 models the bottles are

mounted on the aft bulkhead in the left wheel well.

Distribution tubing for the engine nacelles is routed from the aft bulkhead and out to
both wings, (either in the wing leading or trailing edge) to the engine struts. From
there the distribution tubes are routed through the struts to various locations in the
engine nacelles. The distribution system is designed to provide two shots

(applications) of Halon to either engine or a single shot to each engine.

On the 747 aircraft the Halon bottles are mounted in each wing leading edge, inboard
of the inboard engines. The distribution tubes are routed to each engine on that wing.
Each 747 system has two bottles capable of providing a single discharge for each
engine or two extinguishant discharges to one engine on each wing. There is no inter-

connection of the distribution tubing or Halon storage bottles between the wings.
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The engine nacelle fire protection system weight of the fire bottles, tubing, and
mounting hardware is shown in table 5.0-2. The weight is determined by where the
bottles are mounted, the size of the nacelle and the distribution system, and the
amount of agent required to meet the certification requirements. The 747 system is
considerably heavier because it requires four bottles (instead of two for the twin
engine airplanes). The mounting hardware in the wing leading edge installations is
heavier than the cargo bay installations. The 747 also requires larger diameter
distribution tubing for all four engines.

Table 5.0-2. Weights for Engine Nacelle Fire Extinguishing Systems

Weight, Ib
Airplane Model 737-NG | 757-200|767-300|777-200|777-300 | 747-400
Bottle installation and agent 25.7 45.0 40.6 81.6 83.9 222.9
Plumbing and Mounting Brackets| 15.2 27.5 37.6 41.8 38.1 68.2
Total] 40.9 72.5 78.2 123.4 | 122.0 | 291.1

5.3.2

APU Bay Description

The fire extinguishing system for the APU is similar to the extinguishing system in the
engine nacelles. One fire bottle is mounted just forward of the APU bulkhead with a
short distribution line that brings Halon 1301 into the APU bay. There is little airflow
through the APU bay, so the fire extinguishing system is capable of flooding the bay
with Halon from a single nozzle. Because of the small volume the APU bay, the fire
bottle can be much smaller than the engine fire bottles. The short length of
distribution tubing in the system weighs much less than the engine nacelle systems,

as shown in table 5.0-3.

Table 5.0-3. Weights for APU Bay Fire Extinguishing Systems

Weight, Ib
Airplane model 737-NG | 757-200|767-300|777-200 | 777-300 | 747-400
Bottle installation and agent 4.9 23.8 24.3 24.3 46.0
Plumbing and mounting brackets | 2.1 2.3 2.2 2.2 4.0
Total| 7.0 30.7 26.1 26.5 26.5 50.0
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An attempt has been made in this report to estimate what the requirements would be

if a decision were made to replace the Halon extinguishant with an equivalent level of

protection using nitrogen. There is not a one-for-one replacement between Halon and

nitrogen.

5.4. Fuel Systems Description

Figures 5.0-22 through 5.0-35 are schematics of a 747 type of fuel system including:

1.

6.

Tank capacities.

Tank arrangement.

Vent system.

Fuel quantity measurement system.
Fueling system.

Fuel feed pumps.

A fuel tank inerting system would interface with all of these fuel subsystems

must be no adverse impact on fuel subsystem performance or reliability.

. There

Altitude: Sea Level to 45,000 ft.
Fuel Type: Jet A and Jet A-1

Freeze Point +5°F Minimum to 130°F
Fuel Tank Capacity: 57,000 Gallons (383,000 Ib.) (approx)
Refueling Rate: 4 nozzles @ 30 PSIG > 1,400 GPM
Engine Fuel Flow: Take off = 26,800 pph (approx)

Cruise = 5,000 to 6,000 pph (approx)

Figure 5.0-22. 747-400 Fuel System Performance
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* Fuel storage tanks are used to store all fuel in vented areas
of wing, wing center section, and horizontal stabilizer

* Fuel storage is divided into 8 separate tanks
* The capacities listed are the total capacities of the 2 tanks

Tank description Capacity (gallons) Capacity (pounds)
Center wing 17,164 114,999
No. 2 and 3 Main* 25,092 168,116
No. 1 and 4 Main* 8,744 58,584
No. 2 and 3 Reserve* 2,644 17,714
HST (optional) 3,300 22,109
Total 56,944 381,522

Figure 5.0-23. 747-400F Fuel Systems
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Figure 5.0-24. 747-400 Fuel Tank Arrangement (1)
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Figure 5.0-25. 747-400 Fuel Tank Arrangement (2)
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Figure 5.0-26. 747-400 Fuel Tank Venting
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Figure 5.0-27. Wing Surge Tank Flame Arrester
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Figure 5.0-28. 747-400 Fuel Vent Float Valves
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Figure 5.0-29. Center and Wing Tank FQIS Components
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Figure 5.0-30. 747-400 Fueling System - General
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Figure 5.0-31. 747-400 Fueling System — CWT and HST (1)

REFUEL VALVE FOR THE TRANSFER
ENTER WING TANK
REFUEL  LINE

REFUEL JETTISON
MANIFOLD

PILOT LINE
SENSING

FORWARD ISOLATION VALVE
FOR THE HQRIZONTAL
STABILIZER (LEFT OR RIGHT)

FLOT F
LOAT VALVES SECONDARY REFUEL VALVE FOR THE
GENTER WING TANK (LEFT OR RIGHT)

Figure 5.0-32. 747-400 Fueling System — CWT and HST (2)
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Figure 5.0-33. 747-400 Fueling System — CWT and HST (3)
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Figure 5.0-34. 747-400 Refueling Valves
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Figure 5.0-35. 747-400 Engine Fuel Feed System

5.5.  Analysis

Figure 5.0-36 shows tank ullage oxygen content versus OBIGGS flow to a tank.

An open or vented tank, with 100% mixing would require approximately 1.5 volumes
of inert OBIGGS volume flow to provide 9.0% oxygen content as noted on
figure 5-36.
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Fuel tank venting, fuel tank cross venting, air evolution from the fuel, and aircraft

climb and descent conditions may increase the oxygen content in the ullage space.

Analysis for following study phases may include the following:

a.

Analysis would consider near empty tanks, partially full, and full fuel tanks.
Future analysis may include limited inerting of center tank.
Analysis would consider FAA and NASA data collected on jet fuel flammability.

Analysis would consider supplemental inerting during fueling. Supplemental
inerting would be provided from a ground source.
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AIRWORTHINESS DIRECTIVES
AD 93-07-15, Amendment 39-8547

Requires Modification of all Main Deck Class B compartments either to Class C; to
carry cargo only in approved flame penetration resistant containers; cover cargo with
fire containment covers or in fire containment containers and other improvements;
or install a 90 minute fire extinguishing system of Halon 1301 providing 5%

knockdown or 3% sustained concentrations.

FAR AMENDMENT
Amendments 25-93 and 121-269

Requires all Class D cargo compartments to be upgraded to Class C.

ADVISORY CIRCULARS
AC 25.1309-1A, Systems Design and Analysis

Purpose. This Advisory Circular (AC) describes various acceptable means for
showing compliance with the requirements of 25.1309(b), (c), and (d) of the Federal
Aviation Regulations (FAR). These means are intended to provide guidance for the
experienced engineering and operational judgment that must form the basis for
compliance findings. They are not mandatory. Other means may be used if they
show compliance with this section of the FAR.

This AC provides guidance on the "Fail-Safe Design Concept", analysis of failure
conditions, qualitative and quantitative assessments, Functional Hazard

Assessments, etc.
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AC 120-42A, Extended Range Operation with Two-Engine Airplanes (ETOPS)

Purpose. This advisory circular (AC) states an acceptable means, but not the only
means, for obtaining approval under FAR Section 121.161 for two-engine airplanes
to operate over a route that contains a point farther than one hour flying time at the
normal one-engine inoperative cruise speed (in still air) from an adequate airport.
Specific criteria are included for deviation of 75 minutes, 120 minutes or 180
minutes from an adequate airport.

This AC limits airplane range on two-engine airplanes to diversion time plus a 15
minute holding and an approach and landing.
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