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EXECUTIVE SUMMARY

Specific heat release rate is the molecular-level fire response of a burning polymer. The Federal
Aviation Administration (FAA) obtains the specific heat release rate of milligram samples by
analyzing the oxygen consumed by complete combustion of the pyrolysis gases during a linear
heating program. Dividing the specific heat release rate (W/g) by the rate of temperature rise
(K/s) gives a material fire parameter with the units (J/g-K) and significance of a heat (release)
capacity. The heat release capacity appears to be a true material property that is rooted in the
chemical structure of the polymer and is calculable from additive molar group contributions.
Hundreds of polymers of known chemical composition have been tested to date, providing over
40 different empirical molar group contributions to the heat release capacity. Measured and
calculated heat release capacities for over 80 polymers agree to within £15%, suggesting a new
capability for predicting flammability from polymer chemical structure.
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INTRODUCTION

The additivity of molar group contributions to the physical and chemical properties of polymers
is the basis of an empirical methodology for relating chemical structure to polymer properties
[1-3]. The early work in this area [4] focused on calculating heats of combustion from the
individual atoms comprising small molecules. However, performing calculations for large
(polymer) molecules based on the interactions of the individual atoms can prove to be very
difficult [2]. A simpler approach to correlating polymer chemical structure with properties is to
group the atomic contributions into characteristic structural elements (e.g., -CHs3), determine the
value of the group contribution to the property of interest parametrically, and add these group
contributions according to their mole fraction in the polymer repeat unit. This method has been
used to relate the chemical structure of polymers to their thermal, chemical, optical, and
mechanical properties with excellent results [1-3]. Of particular interest in the present context is
the ability to predict thermal stability parameters (pyrolysis activation energy, thermal
decomposition temperature, char/fuel fraction) from additivity of polymer molar group
contributions [1].

Prerequisite to any structure-property correlation is the ability to identify and reproducibly
measure the intrinsic property of interest. In the area of polymer flammability, no single material
property has correlated with fire performance, nor does any test measure fire performance
unambiguously because burning rate, ignitability, flammability, and heat release rate are not
intrinsic properties. Rather, they are extrinsic quantities resulting from the reaction of a
macroscopic polymer sample to a severe thermal exposure. Because the sample size in a
flammability or fire test is orders of magnitude larger than the chemical process zone [5-7], heat-
and mass-transfer dominate the fire response. Thus, an intrinsic material property for use by
scientists in designing fire-resistant polymers is not obtainable from standard fire or flammability
tests.

Recently, a material fire parameter [5-7] (the heat release capacity) has been identified that
appears to be a good predictor of the fire response and flammability of polymers. A quantitative
laboratory pyrolysis-combustion method for directly measuring the heat release capacity has
been reported [8-10]. This report presents experimental data which suggests that heat release
capacity is the material property that correlates polymer structure and fire behavior.

THEORY

The solid-state thermochemistry of flaming combustion [5-7] reveals a material fire parameter
that has the units (J/g-K) and significance of a heat (release) capacity,

_hi1-u)E,

The heat release capacity is a combination of thermal stability and combustion properties, each
of which is known to be calculable from additive molar group contributions [1]. The component
material properties are the heat of complete combustion of the pyrolysis gases, 4. (J/g); the
weight fraction of solid residue after pyrolysis or burning, u (g/g); the global activation energy



for the single-step mass loss process, pyrolysis, E, (J/mole); and the temperature at the peak
mass loss rate, 7, (K), in a linear heating program at constant rate, 8 (K/s). The constants in
equation 1 are the natural number e and the gas constant R. Equation 1 shows the heat release
capacity to be a particular function of thermal stability and combustion properties, each of which
is known to be calculable from additive molar group contributions [1]. Consequently, 7. itself is
a material property and should be calculable from the same (or similar) molar groups as the
component properties as long as there are no interactions between the chemical structural units.
From this assumption of group additivity and the postulate that for a polymer repeat unit of
molar mass M, there is a molar heat release capacity { with units of J/mole-K whose functional
form is equation 1 but with the thermal stability and combustion properties written as molar
quantities, H, V, E, and ¥/M in place of A.°, (I-w), E, and T,, respectively. If each chemical
group i in the polymer adds to the component molar properties according to its mole fraction n;
in the repeat unit
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with H;, V; E; Y; and M; the molar heat of combustion, mole fraction of fuel, molar activation
energy, molar thermal decomposition function [1], and molar mass of component i, respectively.
Expanding the summations in equation 2 and retaining only the noninteracting terms for which
i =j=k...(ie., neglecting terms containing products and quotients with mixed indices),
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Equation 3 shows that there is a molar group contribution to the heat release capacity v; that adds
according to its mole fraction in the repeat unit of the polymer. If N;and M, are the number of
moles and molar mass, respectively, of group i in the polymer having repeat unit molar mass M

N; N,
n = <, M= 2 nM = XM,
2N and ’ TN,
then the heat release capacity on a mass basis is
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Equations 2 through 4 provide the physical basis for an additive heat release capacity function,
but the values of the molar contributions of chemical groups must be derived empirically (i.e.,
experimentally). To this end, the heat release capacities of more than 200 polymers with known
chemical structure have been measured using the measurement technique described below and
these experimental values have been used to generate over 40 group contributions [11 and 12].



EXPERIMENTAL
MATERIALS.

Polymer samples were unfilled, natural, or virgin-grade resins obtained from Aldrich Chemical
Company, Scientific Polymer Products, or directly from manufacturers. Oxygen and nitrogen
gases used for calibration and testing were dry, >99.99% purity grades obtained from Matheson
Gas Products.

METHODS.

A pyrolysis-combustion flow calorimeter (PCFC) [8-10] was used for all experiments (see
figure 1).
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FIGURE 1. SCHEMATIC DIAGRAM OF THE PYROLYSIS-COMBUSTION
FLOW CALORIMETER

In this device, a pyrolysis probe (Pyroprobe 2000, CDS Analytical) is used to thermally
decompose milligram-sized samples in flowing nitrogen at a controlled heating rate. The
samples are heated at a constant rate (typically 4.3 K/s) from a starting temperature which is
several degrees below the onset degradation temperature of the polymer to a maximum
temperature of 1200 K (930°C). The 930°C final temperature ensures complete thermal
degradation of organic polymers so that the total capacity for heat release is measured during the
test and equation 1 applies. Flowing nitrogen sweeps the volatile decomposition products from
the constant temperature (heated) pyrolysis chamber, and oxygen is added to obtain a nominal
composition of 4:1, N»:0,, prior to entering a 900°C furnace for 60 seconds to effect complete
nonflaming combustion. The combustion products (carbon dioxide, water, and possibly acid
gases) are then removed from the gas stream using Ascarite™ and Drierite™ scrubbers. The



mass flow rate and oxygen consumption of the scrubbed combustion stream are measured using
a mass flowmeter and zirconia oxygen analyzer (Panametrics Model 350), respectively.

The specific heat release rate Q. in the pyrolysis-combustion flow calorimeter is determined

from oxygen consumption measurements by assuming that 13.1 kJ of heat is released per gram
of diatomic oxygen consumed by combustion [13-16]. Since Q. is equal to the fractional mass

loss rate multiplied by the heat of complete combustion of the pyrolysis products

. . A,
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where E = 13.1 £0.6 kJ/g-O,, A O, is the instantaneous mass consumption rate of oxygen, n1, is
the initial sample mass, h?, is the instantaneous heat of complete combustion of the volatile

pyrolysis products, and dm/dt is the instantaneous mass loss (fuel generation) rate of the sample
during the test. The advantage of synchronized oxygen consumption calorimetry to determine
the specific heat release rate is the ease and speed of the method compared to simultaneous
measurement of the mass loss rate of the solid and the heat of combustion of the pyrolysis gases
[17]. At the temperature of maximum mass loss rate 7, the specific heat release rate has an
analytic form [18, 5-7]
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The rate-independent heat release capacity is obtained from equation 6 by dividing the maximum
specific heat release rate by the constant sample heating rate, 8 (K/s)

L OM e (1-W)E,
ne = T T pm A0 T T e (7)

v

The quantities measured in the test are the specific heat release rate Q. (W/g); the heat release
capacity 1. (J/g-K) calculated from the peak specific heat release rate and the linear heating rate
of the sample; the total heat released by complete combustion of the pyrolysis gases h? (J/ g); and
the residual mass fraction u (g/g) after the test.

RESULTS

Pyrolysis-combustion flow calorimeter data for the specific heat release rate of polyethylene
(PE), polypropylene (PP), polystyrene (PS), an acrylonitrile-butadiene-styrene terpolymer
(ABS), polymethymethacrylate (PMMA), polyethyleneterephthalate (PET), polyetheretherketone
(PEEK), and polybenzimidazole (PBI) are shown in figure 2, horizontally shifted for clarity.
Dividing the maximum specific heat release rate (W/g) measured during the test (peak height in
figure 2) by the constant sample heating rate (8 = 4.3 K/s in these tests) gives the heat release
capacity of the polymer in units of J/g-K for materials which thermally decompose in a single



step. Materials exhibiting multiple heat release peaks are beyond the scope of this report and
will be addressed in the future.
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FIGURE 2. SPECIFIC HEAT RELEASE RATE DATA FOR SEVERAL POLYMERS
MEASURED IN THE MICROSCALE CALORIMETER
(Horizontally shifted for clarity)

Measured heat release capacities for more than 100 polymers with known chemical structure are
shown in table 1. This data has been used to generate the group contributions shown in table 2.
The molar group contributions were obtained by treating the W¥; as adjustable parameters in the
linear system of equations (equation 4) for polymers with known chemical structures and
measured 7. The optimization calculation continued until the sum of the squares of the relative
error between the measured 17, and the value calculated from group contributions was a
minimum. The calculation converged rapidly to the unique ¥; listed in table 2 which were
independent of initial estimates.
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TABLE 2. STRUCTURAL GROUPS AND THEIR MOLAR CONTRIBUTION TO THE
HEAT RELEASE CAPACITY (Molar group contributions derived from a
single polymer are marked with an asterisk (*).)

Structural Contribution Structural Contribution Structural Contribution
Group (kJ/mol-K) Group (kJ/mol-K) Group (kJ/mol-K)
m 118% —H 8.1 —OH -19.8
i N\
% NH
77.0 Y 7.6 —Br 22.0
© i
@) 69.5 —CH,-0— 4.18 —Cc— -22.0
N
30.6 CF, 1.8 23.0%
/C=O
(I:H3 ca_ a 0
—c— 29.5 ¢ 0.1 7@[? 255
CHa RN b
f
<: :> 28.8 N -8.8 —al -34.7
N
| (o) o)
T 283 —s— -10.9% i]@[/é -36.4*
(e} (e}
. | h) Pendant:-39.5
T 26.6 —o0— -11.6 —C—0— | Backbone:-13.7
! G
—CH,4 22.5 —N=i— -13.8 N -43.0%
|
It
19.0 —NH, -13.9% —0—C—0— -49.0
On '-
18.7 —CF, -14.8 —~|°»|— -53.5%
\ N
,CHa 16.7 —c=N 17.6 T%)w/ 66.7
N N o—
n=(
@% 15.1 _'{Oj@[c}_ -18.9% \HNQN 745
o]
/
Ne=c” 0 N
AN 9.7 i -19.2 ’ -76.7
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Figure 3 is a plot of calculated versus measured heat release capacities for over 80 polymers for
which optimized ¥, were determined. The correlation coefficient between measured and
predicted heat release capacities is r = 0.96 and the average relative error is £15%.
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FIGURE 3. CALCULATED VERSUS MEASURED HEAT RELEASE CAPACITIES
FOR 80 PURE POLYMERS

CALCULATION OF HEAT RELEASE CAPACITY.

The following example illustrates the calculation of heat release capacity from molar group
contributions for a diglycidylether of bisphenol-A (BPA epoxy) cured by anionic ring opening
polymerization. This polymer has the repeat unit chemical structure

Jro—cHz_ CHs /)/

CH—CH,- C O—CH,-

. | CH_ .
/{/ CH, CH,-O

The polymer repeat unit is comprised of six basic chemical groups, and the heat release capacity
is calculated from the associated NV, M, and ¥, for these groups, which are listed in table 3.
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TABLE 3. GROUP CONTRIBUTIONSUSED IN THE CALCULATION OF THE HEAT
RELEASE CAPACITY OF BISPHENOL-A EPOXY

'4 N;i M; N W
Chemical Group, i | N | Mi(g/mole) | (kJ/mole-K) (g/mole) (kJ/mole-K)

[
—C= 1 12 28.3 12 28.3

|
—|CH 2 13 26.6 26 53.2

N\

/CHZ 4 14 16.7 56 66.8
—CHs 2 15 22.5 30 45.0
@ 2 76 28.8 152 57.6
—0— 4 16 ~11.6 64 —46.4
Total: 340 204.5

The molar heat release capacity is obtained by summing the group contributions according to
their mole fraction in the repeat unit, then dividing by the molar mass of the repeat unit to give
the heat release capacity on a mass basis in units of J/g-K.

_ w20 2N o054 molek — 6013«
Te =M nM. I NM, 340 g/ mole 9

The predicted value of 601 J/g-K compares favorably with the measured value of 657 J/g-K for
this polymer.

HEAT RELEASE CAPACITY AND FIRE HAZARD.

The primary indicator of the fire hazard of a material is the heat release rate in forced flaming
combustion [19]. Figure 4 is a plot of the average flaming heat release rate (HRR) of 10- by 10-
by 0.64-cm (= 80-g) samples of pure polymer measured in a fire calorimeter at an external heat
flux g_= 50 kW/m? according to standard methods [20-22] versus the measured heat release
capacity. Proportionality is observed between the flaming heat release rate of kilogram-sized
samples and the heat release capacity of milligram-sized samples of the same polymer with slope
1.0 (kg/s)/m*/K, in general agreement with predictions for steady burning [5-7]. Consequently,
7. 1s a reasonable predictor of fire hazard using the physically based empirical correlation in
figure 4.
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FIGURE 4. AVERAGE FLAMING HEAT RELEASE RATE VERSUS HEAT
RELEASE CAPACITY FOR SEVERAL POLYMERS

HEAT RELEASE CAPACITY AND FLAMMABILITY.

Flammability is taken here to mean the tendency of a thin sample of material ignited by a Bunsen
burner to continue burning in the absence of a radiant heat source after removal of the burner.
Self-extinguishing behavior in these tests implies a certain resistance to flame propagation, and
standard methods have been developed to measure this characteristic. These flame tests are
widely used to rank the burning propensity of combustible solids but they do not yield any
material property information. Two common flammability test methods are the Underwriters
Laboratories UL 94 test for upward vertical (V) and horizontal burning (HB) [23] and the critical
oxygen concentration for flame extinguishment or limiting oxygen index (L.O.I.) in downward
burning [24].

In the absence of an external heat flux from a radiant heater or fire, the flame heat flux at the
sample tip must provide all of the thermal energy to degrade the solid polymer surface to gaseous
fuel. If the flame heat flux is constant (UL 94 test) or increases in a known way with oxygen
concentration (L.O.I.), the criterion for self-extinguishing behavior in these tests can be
formulated in terms of a critical heat release capacity by assuming that a minimum heat release
rate (typically 100 kW/m?) is needed to sustain flaming combustion. Such an analysis for the UL
94 test [6] indicates that polymers with 1. < 300 J/g-K do not release heat at a high enough rate
after removal of Bunsen burner to overcome heat losses by the sample and thus the flame cannot
propagate, they self-extinguish. Thus, for pure polymers with 1. <300 J/g-K, self-extinguishing
behavior (UL 94 V rating) is expected. Figure 5 contains UL 94 data [25] which shows that a
transition from burning (HB) to self-extinguishing behavior (V-0) occurs in the vicinity of 1, =
300 J/g-K.
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FIGURE 5. UL-94 RATINGS VERSUS MEASURED HEAT RELEASE
CAPACITIES OF PURE POLYMERS

The criterion for self-extinguishing behavior in the L.O.1. test must take into account the fact that
an increase in the oxygen concentration of the flowing gas stream in the test chamber increases
the temperature (radiant heat flux) of the sample diffusion flame and, therefore, the amount of
thermal energy incident on the polymer. Since the heat release rate of the sample increases with
the flame heat flux, which in turn increases with oxygen concentration, an inverse relationship
between 7. and the limiting oxygen concentration is expected and observed, as shown in the

L.O.I. data [1, 26, and 27] plotted versus 1. in figure 6.
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FIGURE 6. PLOT OF LIMITING OXYGEN INDEX VERSUS MEASURED
HEAT RELEASE CAPACITY
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As shown in figures 5 and 6, self-extinguishing behavior in the UL 94 vertical test occurs at a
lower heat release capacity (1. = 300 £100 J/g-K) than in the L.O.I. test (1. = 550 £100 J/g-K) at
ambient conditions (298 K, 20% O,). The reason for this is that the L.O.I. test is a downward
burning test so there is no buoyancy-driven convective preheating of the polymer by the surface
flame as occurs in the UL 94 upward burning test. Since less thermal energy is deposited in the
L.O.I. sample from the surface flame at ambient conditions than is deposited in the UL 94
specimen after removal of the ignition sources, the heat release rate is lower in the L.O.1. test and
self-extinguishing behavior should (and does) occur at a higher heat release capacity.

CONCLUSION

The heat release capacity is a physically based material property that is a good predictor of the
fire behavior and flammability of pure polymers. The heat release capacity is simply calculated
for pure polymers from their chemical structure using additive molar group contributions which
have been determined empirically with a high level of confidence (+15%). The proposed
methodology for predicting the fire behavior and flammability of polymers from their chemical
structure allows for the molecular-level design of ultra-fire-resistant polymers without the
expense of synthesizing and testing new materials.
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