

Dreaming Collaborating Innovating Exploring Trailblazing

Powerplant & Propulsion Fire Protection Fire Modeling Guidelines

The Tenth Triennial International Aircraft Fire and Cabin Safety Research Conference

Analyzing

Presenter: Jason Damazo, PhD

Jason Damazo ⁺, Philipp Boettcher ⁺, Brad Moravec [‡] [†] Boeing Research and Technology [‡] Boeing Commercial Airplanes Producing October 19, 2022 Producing Leading Creating Researching **Boeing Research & Technology**

Abstract

Computational modeling is an effective way of analyzing aircraft powerplant and propulsion fires. While testing based on the FAA AC 20-135 guidelines has traditionally been used to demonstrate safe operation, reactive flow computational fluid dynamics (CFD) of fires can better assess the thermal threat to the airplane structures during a fire scenario if the analysis is appropriately validated. This presentation will discuss requirements on validation and propose best practices in performing fire CFD analyses.

Reactive flow CFD models and results must be rigorously validated using test data. Some validation data is available from industry studies, but validation is challenging in situations where there is little or no direct test data at the conditions required for certification, such as an inflight engine nacelle fire. Of particular interest are regions that are oxygen limited, like under ventilated fire zones, and realistic modeling of fuel spray fires, including ignition of the fuel spray and the steady state thermal loads.

A thorough methodology for model validation requires that the following aspects are covered: theoretical basis and assumptions, environmental conditions and fire scenario, mathematical and numerical robustness, model uncertainty and accuracy, and model limitations. Finally, the full validation to satisfy regulatory authorities requires: general discussion of the industry guidelines for fire modeling, compartment benchmark tests, subscale tests, model sensitivity, and in-service experience.

An Introduction to Compartment Fires

An Introduction to Compartment Fires

In a compartment fire, heat release may be limited by ventilation (i.e., oxygen availability)

Edwards (2017): POSF 10289 ΔH_c = 43.0 MJ/kg-fuel

An Introduction to Compartment Fires

- Compartment fires have been modeled using engineering fits
 - E.g., Kawagoe (1958) (variable definitions to right)

$$\dot{q} = k_{v} \underline{A_{W}} H^{\frac{1}{2}} \Delta H_{c}$$
Increased ventilation \rightarrow increased
heat release

 For aircraft, compartment fires are relevant in closed volumes with the possibility for an abundance of fuel.

Kawagoe Model

 \dot{q} : Heat release rate k_v : Engineering constant A_W : Ventilation Opening H: Ventilation Height ΔH_c : Heat of combustion

Source for equation for heat release from a pre-flashover compartment fire: Kawagoe (1958)

Environment of Interest

- Unpressurized compartments
 - Auxiliary Power Unit (APU) compartment
 - Engine nacelle compartment
- Today's presentation does not cover engine core compartment fires
 - In these scenarios the fire size is more limited by mixing and residence time of the combustion
 - There are opportunities for future collaborations between aircraft and engine OEMs & FAA

Airplane Fire Zones

Ventilation-Controlled Compartments on Aircraft

Consider an intact engine fan compartment:

- Plenty of available fuel (e.g., high pressure spray of Jet-A)
- Insufficient air to combust all fuel
 - Air supply is restricted by the opening sizes
 - Note: Loss of fan cowl or other extreme damage would change the scenario
- Therefore, the quantity of <u>available oxygen</u> is the key limiting factor that restricts the fire size
 - "Available oxygen" is oxygen that is usable by the fire

The compartments surrounding some engines are Flammable Leakage Zones; today we're specifically considering engines in which the fan case is a Fire Zone.

Modeling Compartment Fires – Qualitative

The qualitative development of a compartment fire included four phases:

- 1. Smoldering
 - Limited heat release
 - If fuel is readily volatized, this will be quick
- 2. Developing Fire
 - Consumes oxygen that is present in the compartment at the onset of the fire

Flashover: Transition from a fuel-controlled fire to a ventilation-controlled fire

- 3. Fully Developed Fire
 - Heat release reaches a maximum
 - Limited by availability of fuel or oxygen
- 4. Decay

More information in Alarifi, Phylaktou and Andrews (2016), and many other sources.

Compartment Fire Phases

Tiered Model Approach

- 1. Engineering/Analytical Fits
 - Quick/low cost
 - Limited accuracy
 - Provides basis for higher fidelity solutions
- 2. Detailed FEM/CFD simulation
 - Higher cost
 - Increased accuracy
 - Complicated models require extensive validation

Greater Scenario Detail Higher Fidelity Results

How to Model Compartment Fires

Model Validation Steps

Big Picture: How to Validate Compartment Fire Models

Guiding Principles

- Benchmark: The accuracy of all models must be assessed with experimental data
- Subsystem Validation: Testing all scenarios which are desired to be modeled is not possible → Validate sub-models to create a tiered validation process
- Model Accuracy Assessment: No model is perfect → Determine if model accuracy is adequate
- Use of Modeling Best Practices: Use of industry standards and publically validated techniques
 - ASTM E1355 Standard Guide for Evaluating the Predictive Capability of Deterministic Fire Models
 - Sandia Report On the Integration of Technology Readiness Levels at Sandia National Laboratories

Compartment Fire Analysis

Model Validation: Substantiation that a computerized model, within its domain of applicability, possesses a satisfactory range of accuracy consistent with the intended application of the model.

Validation in Scientific Computing. (2010)

Benchmark Component Models

Model Component Validation

- 1. Identify physical phenomena of interest and modeling tools
- 2. Determine relevant input conditions for worst-case fire
- 3. Perform benchmark validation of component models

After individual component models are implemented and validated, we proceed to validating the complete model Requires engineering judgement to know which phenomena will affect the results. Example physical phenomena discussed on next slide

Good understanding of the complete failure scenario is essential in evaluating the worstcase condition

Validating individual component models gives confidence that the assembled component model will be accurate

Model Component Validation: (1) Identify Physical Phenomena

- For each phenomena, multiple modeling methods are available
- Which modeling tools are used is less important than validating the model accuracy by benchmarking against empirical data

Phenomena to Model			
Fluid Flow			
Flow Turbulence			
Chemistry Reaction and Species Transport			
Radiation			
Buoyancy Effect			
Fuel Spray			
Flame Extinction			

Note: List is not meant to be exhaustive for all possible compartment fires

Model Component Validation: (2) Determine Input Conditions

- Conditions selected correspond to the fire scenario to be modeled
 - E.g., a worst-case fire
- Understanding the failure conditions is essential in determining the appropriate fire scenario

Input data	Purpose			
Flow field geometry	Digitized compartment geometry data for defining the CFD solution domain and for mesh generation			
Computational mesh	Boundary-fitted unstructured computational cells for the three-dimensional fan compartment flow field			
Thermodynamic properties	Fluids Mixtures - air, liquid fuel, gaseous fuel species			
Material Properties	Surface materials, internal parts, insulation			
Heat transfer	Wall surfaces, reacting gas mixture for convective,			
properties	conductive, and radiative heat transfer			
Flight conditions	Flight speed, altitude, and ambient temperature			
Flow boundary	Mass flow rates of incoming fuel and air, temperatures			
conditions	and pressures, concentrations of gaseous species,			
	flow turbulence quantities			
Ignition conditions	Location and intensity of thermal energy source to			
	ignite fuel/air mixture			

Example Input Conditions

Model Items	Data and		
Flight Phase	Takeoff	Wind-Milling	
Flight Mach Number and Altitude	M = 0.388 a		
Air Flow Rate (Ibm/sec)	"medium"	"low"	
Fuel Flow Rate (gph)	"high"	"medium"	
Crew Response Time	Delayed // Immediate		Crew Response must be considered in addition to
Fire Type	Spray Droplet Fire	Evaporating Fuel Vapor Fire on Wetted Surface	physical effects in modeling fire damage
Fire Location	Worst Case Fire Size	Fire Near ignition Source	
Fire Extent	Local // V		

Model Component Validation (3) Benchmark Example #1 – Subsonic Flow

Modeled Process: Two-equation realizable k-ε turbulence model using a subsonic pipe flow through sudden area expansion.

Empirical Data Contained In: Driver and Seegmiller. Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow. AIAA Journal, 23 (2). (1985)

Damazo, 10/19/2022 | 19

Model Component Validation (3) Benchmark Example #2 – Discrete Ordinate Radiation Heat Transfer

Modeled Process: Discrete ordinate radiation heat transfer model for the wall heat transfer with and without internal radiation heat transfer.

Empirical Data Contained In: Raithby and Chiu. A Finite-Volume Method for Predicting Radiant Heat Transfer in Enclosures with Participating Media. Transactions of the ASME, Vol. 112. (1990)

Model Component Validation (3) Benchmark Example #3 – Non-Premixed Combustion

Modeled Process: Species transport model with volumetric reaction based on the finite-rate/eddydissipation reaction mechanism for the non-premixed gas combustion of hydrocarbon fuel.

Empirical Data Contained In: Bechtel, et al. *Atmospheric Pressure Premixed Hydrocarbon-Air Flames: Theory and Experiment*. Combustion and Flame, 42: 197-213. (1981)

Subsystem Validation

Complete System

Full System Sensitivity Analysis Average Compartment Temperature

Closing Thoughts

Key Takeaways

- Compartment fires that are large and diffused may make conventional fire testing, via use of the standard burner flame, inappropriate.
- Instead, analytically predicting a "foreseeable" fire using computational fluid dynamics (CFD) is an appropriate choice provided the CFD model can be adequately validated.
- A hierarchy of tests from benchmark to the full-scale system can be used to validate the CFD fire model for its intended application.
- Once the fire model has been validated, structural damage can be determined through the used of thermal and finite element models.

Boeing Research & Technology

Effect of Hydrogen on Fires

- Simplified chemistry (easier to model)
- Higher Explosion Risk
 - Detonation risk
 - MIE ~ 0.02 mJ
 - High flame temperature
- Wide Flammability Range 4-75% (Jet-A: 0.7-5%)
- Different (maybe lower) Fire Risk
 - No pool fire
 - Low volumetric density
 - Radiative heating localized heat transfer (welding torch)

Battery Fires

- Battery vent gases
 - Hydrogen, CO, CO2
- Thermal Runaway