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Computations: Overall Goals

• Identify the detailed flow physics in the current and modified FAA 
NexGen burner systematically using high-fidelity LES computations
– cold flow without fuel spray
– cold flow with fuel spray
– “hot flow” with vaporizing fuel spray
– reacting flow

• Establish a reference database 
developed using high-fidelity LES 
simulations for the above conditions

Objectives of this presentation
• Cold flow computations without fuel spray in current geometry 

– identify the detailed flow physics
– compare results with experimental measurements 

• Flowfield analysis with fuel sprays
– identify the effect of fuel spray on flow dynamics

Kamin & Khare/UC2* geometry dimensions source - https://www.fire.tc.faa.gov/pdf/materials/NexGenPlans_4_2016.pdf



Department of Aerospace Engineering

Approach: Large Eddy Simulation (LES)
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Salient features of the in-house LES framework:
• Compressible finite volume solver
• Multi-block structured grid based solver with Message Passing Interface (MPI) 

for inter-process communication
• LES with dynamic Smagorinsky model for sub-grid scale modeling
• Up to fourth order accurate in space and third order in time
• Scalar or matrix artificial dissipation to assure numerical stability
• All Mach number with preconditioning schemes for steady and unsteady flows

Kamin & Khare/UC3
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Favre-filtered conservation equations for gas-phase flowfield

- Subgrid-scale (sgs) turbulence interaction

LES: Gas Phase Formulation

- Chemical reaction source and thermophysical properties & constitutive laws 
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Li, H. G., Khare, P., Sung, H. G., & Yang, V. (2016). A large-eddy-simulation study of combustion dynamics of bluff-body stabilized flames. CST, 188(6), 924-952.
Kamin, M., & Khare, P. (2022). The Effect of Weber Number on Spray and Vaporization Characteristics of Liquid Jets Injected in Air Crossflow. ASME JFE, 144(6), 061108.
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Spray Dynamics
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Basset-Boussinesq-Oseen (BBO) equation

Spray breakup models:

• K-H wave model for primary 
atomization
• Taylor Analogy Breakup (TAB) 
model for secondary atomization

Mass and Heat Transfer

LES: Dispersed Phase Formulation

Khare, P., Wang, S., & Yang, V. (2015). Modeling of finite-size droplets and particles in multiphase flows. Chinese Journal of Aeronautics, 28(4), 974-982.
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Cold Flow: FAA Burner Geometry
inlet airflow @ 3.86m/s

Inlet air temperature : 283 K 
Pumped air pressure : 5.15 bar
Inlet air density: 1.2474 kg/m3

Mass flow rate : 0.0384 kg/s
Equivalent inflow velocity : 3.86 m/s
Reynolds number: 30623

Ochs, R. I. (2013). Design and Analysis of the Federal Aviation Administration Next Generation Fire Test Burner, Ph.D Thesis, Rutgers University.

Note: the experiment was conducted the 
burner cone. A difference in some flow 
features can be expected as a result.

air flow direction

Case 0: geometry for code validation

wall boundary condition applied on all solid surfaces

Case 1: NexGen geometry
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Blocking & Grid Generation

Kamin & Khare/UC7

• Block structured grid with only hexahedral elements.
• Multi-block grid for massively parallel computing

• Smallest grid size based on y+ = 5  ≈  0.14 mm close to walls. 
• Present grid has extra refinement at the injector center due to the O-grid 

configuration.
• Grid size approximately 0.65 mm elsewhere
• For reference, Taylor microscale is 0.5 mm and the Kolmogorov scale is 

0.017 mm

Validation case (Case 0) Burner cone case (Case 1)
Total  grid points : 122.2 million
Total number of grid blocks: 4664
Smallest grid size: 0.04 mm

Total grid points: 193 million
Total number of grid blocks: 7028
Smallest grid size: 0.04 mm

Grid metrics
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Case 0: model validation

Kamin & Khare/UC8
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Grid Snapshots

Kamin & Khare/UC9

O-grid configuration at the 
center of the injector surface 
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Inlet Velocity Profile

• Asymmetry in the inflow profile within the draft tube
• The asymmetry is therefore accounted for, and a velocity profile is 

recreated to match the experimental profile.

Inlet velocity profile reported in the 
experiments Inlet velocity profile reconstructed 

for simulation

Kamin & Khare/UC10

Ochs, R. I. (2013). Design and Analysis of the Federal Aviation 
Administration Next Generation Fire Test Burner, Ph.D Thesis, 
Rutgers University.
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x/D = 0.1 x/D = 0.1 

Mean Velocity Magnitude

x/D = 0.1 

x/D = 0.5 

x/D = 0.75 

Kamin & Khare/UC11

x/D = 1.75 x/D = 1.75

stator turbulator
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Case 1: cold flow dynamics of NexGen burner

Kamin & Khare/UC12



Department of Aerospace Engineering

Mean Velocity in Spanwise Planes

z/D = 0.08 (out of plane) z/D = 0.16 (out of plane)

z/D = –0.16 (into the plane) z/D = -0.08 (into the plane)

z/D = 0 (mid-plane)

Kamin & Khare/UC13
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Mean Cross-Sectional Velocities

x/D = 0.3 x/D = 0.7

x/D = -0.37 x/D = -0.1

Kamin & Khare/UC14

x/D = 0

x/D = 0.7

x/D = 0.3

x/D = -0.1
x/D = -0.37
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Mean, Azimuthal and rms Velocity

station 4
x/D = 0.7

station 3
x/D = 0.3

station 1
x/D = -0.37

station 2
x/D = -0.1
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x/D = 0.3 downstream of the stator exit

x/D = 0.5 downstream of the turbulator exit

Turbulence Spectrum

turbulent shear production ' '
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Case 2: cold flow dynamics with fuel spray
for NexGen burner

Kamin & Khare/UC17
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NexGen Burner with Fuel Spray

18 Kamin & Khare/UC18

fuel injector

air flow direction

Liquid jet: Jet A
Liquid jet pressure: 100 psi
Liquid temperature: 298 K 
Liquid density: 840 kg/m3

Mass flow rate:  2.5 Gph
SMD (exp.): 40 m

12

• Injected spray closely resembles the 
experimental spray cone characteristics 
with an SMD of 40 m

• Primary and secondary atomization not 
modeled

• Spray injected in the hollow cone defined 
by half angles of 20o and 40o 

• Dilute spray assumption
• Finite size formulation to model four way 

coupling
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Mean Velocity in Spanwise Planes
(without spray)

z/D = 0.08 (out of plane) z/D = 0.16 (out of plane)

z/D = –0.16 (into the plane) z/D = -0.08 (into the plane)

z/D = 0 (mid-plane)

Kamin & Khare/UC21
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Mean Velocity in Spanwise Planes
(with spray)

z/D = 0.08 (out of plane) z/D = 0.16 (out of plane)

z/D = –0.16 (into the plane) z/D = -0.08 (into the plane)

z/D = 0 (mid-plane)

Kamin & Khare/UC22
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Recall: Data Extraction Planes
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Quantitative Comparison
(with and without spray)

without spray

with spray

• Recirculation zones near the walls for case with spray
• Larger RMS velocity (stations 3,4) -- enhanced turbulence due to flow-droplet interaction
• Slight drop in peak azimuthal velocity near the walls
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Conclusions

• Cold flow computations without fuel spray in current geometry 
• identify the detailed flow physics
• compare results with experimental measurements 

• Identified the effect of fuel spray on flow dynamics
• flow dynamics in the far field significantly different 

• Next steps
• Identify the effect of vaporizing fuel spray on flow dynamics
• Identify the reacting flow dynamics
• Compare and contrast the effect of changes in geometry on flow and 

combustion physics
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