

Cardiac Sensitization Toxicity Testing and Implications for CF₃I Risk Assessment as a Halon 1301 Replacement

Britt Weldon, PhD Boeing Toxicology

Overview

- CF₃I and Halon 1301 replacement
- Cardiac sensitization
- Standard Cardiac Sensitization Toxicity Test
- History of the development of the cardiac sensitization toxicity test
- Key toxicology concepts
- Derivation of Exposure Limits from cardiac sensitization toxicity test data
- Implication of test findings to human health risk assessment of CF₃I as a Halon 1301 replacement

Trifluoroiodomethane (CF₃I)

Boeing is evaluating trifluoroiodomethane (CF_3I) as a potential Halon 1301 replacement

Trifluoroiodomethane (CF3I)	
F I F	
Properties	
Chemical formula	CF ₃ I
Molar mass	195.91 g/mol
Appearance	Colorless odorless gas
Density	2.5485 g/cm ³ at -78.5 °C
	2.3608 g/cm ³ at -32.5 °C
Melting point	-110 °C (-166 °F; 163 K)
Boiling point	-22.5 °C (-8.5 °F; 250.7 K)
Solubility in water	Slightly
Vapor pressure	541 kPa

Wikipedia: CF3I

Alternatives Assessment for Halon Replacement

Challenges in balancing:

- Performance
- Design compatibility
- Health and safety
 - Environmental effects
 - Weight/efficiency
 - Availability and cost
 - Material compatibility
 - Regulatory
 - Many more factors...

CF₃I and Cardiac Sensitization

- CF₃I has been studied as a Halon 1301 replacement for over 20 years
- The primary health effect of concern for inhalation of CF₃I is cardiac sensitization
 - Primary health effect of other halocarbons, including Halon 1301
 - Most frequently cited exposure limits for CF₃I are based on cardiac sensitization

What is cardiac sensitization?

Cardiac Sensitization and the Heart

- Cardiac refers to the heart
- Heart's primary function is to pump blood around the body
- Operates on specialized electrical signaling within heart for proper pump function
- Disruption of electrical signaling can cause heart to not pump correctly
- Heart rhythm problems (<u>arrhythmias</u>) occur when the electrical signals that coordinate the heart's beats don't work properly
- Non-functioning pump (heart) means blood can't move around body and provide oxygen

Cardiac Sensitization

- Cardiac sensitization is an increased sensitivity of the heart to catecholamines (e.g., *epinephrine—aka adrenaline*)
 - Epinephrine can alter heart signaling– increase heart rate, strengthen contractions, etc.
- When the heart is sensitized to epinephrine, the amount of epinephrine needed to cause cardiac arrhythmias is lowered
- Cardiac sensitization may result in arrhythmias
 which can lead to death
- Cardiac sensitization often occurs quickly and is temporary

History of Cardiac Sensitization and Cardiac Sensitization Test

- Cardiac sensitization has been known to occur from inhalation of some hydrocarbons and halocarbons since the early 1900s
 - Dose at which cardiac sensitization occurs varies by chemical
- Recreational CFC propellant abuse in 1960s and 1970s—sniffing to get high resulted in cardiac sensitization
- A Cardiac Sensitization Toxicity Test was designed in 1970s to screen and rank the potential for chemicals to cause cardiac sensitization
 - Designed to elicit cardiac sensitization effect and to rank chemical potency
 - NOT designed to represent real-world exposures to chemicals, either through abuse or occupational exposure
 - "Standard Cardiac Sensitization Test"

Standard Cardiac Sensitization Test

- Toxicity test to determine whether a chemical can cause cardiac sensitization and determine level (concentration) at which it occurs
- Beagle dogs exposed to the test chemical (e.g., CF₃I) at various concentrations
- Cardiac sensitization is indicated by observation of cardiac arrhythmias

Standard Cardiac Sensitization Test Protocol

* Test is stopped if any signs of cardiac sensitization or adverse effects at any point

Copyright © 2022 Boeing. All rights reserved.

Cardiac Sensitization Test Goal

- Determine whether a chemical can cause cardiac sensitization and determine level (concentration) at which it occurs
 - Determine a NOAEL (No Observed Adverse Effect Level)
 - Determine a LOAEL (Lowest Observed Adverse Effect Level)
- Derive an Exposure Limit for humans

A few key toxicology concepts...

Copyright © 2022 Boeing. All rights reserved.

NOAEL and LOAEL

NOAEL: No Observed Adverse Effect Level

The highest dose in a toxicology study at which <u>no</u> statistically significant adverse effects are observed

LOAEL: Lowest Observed Adverse Effect Level

The lowest dose in a toxicology study at which statistically significant adverse effects <u>are</u> observed

NOAEL= 10 ppm LOAEL= 100 ppm

Exposure Limits

Exposure Limits

Levels at which adverse effects are not expected in humans

• Typically NOAELs are divided by *uncertainty factors* to determine Exposure Limit

Uncertainty Factors (UFs):

- <u>Interspecies uncertainty</u>: Accounts for differences between animals in tox study and humans
- Intraspecies uncertainty: Accounts for variability among humans
- <u>Sensitive populations</u>: Accounts for especially sensitive humans such as asthmatics or pregnant women
- Not all UFs used for every Exposure Limit
- Default UF is 10, unless other data exist that show otherwise
 - E.g., data that show humans are 3x more sensitive to a certain chemical than animals would use an UF of 3 instead of 10

Standard Cardiac Sensitization Test

- Toxicity test to determine whether a chemical can cause cardiac sensitization and determine level (concentration) at which it occurs
- Designed to elicit the cardiac sensitization effect and rank potency
 - Uses injected epinephrine
- NOT designed to represent real-world exposures to these chemicals, either through abuse or occupational exposure

Application of the Standard Cardiac Sensitization Test

- The Standard Cardiac Sensitization Test uses an injected dose (<u>exogenous</u>) epinephrine to elicit cardiac sensitization effect
- The amount of exogenous epinephrine used in this test is 10x greater than the amount of epinephrine that could be generated naturally in the body by fright or exercise (<u>endogenous</u>)
- Cardiac sensitization occurs at lower concentrations with exogenous epinephrine
 - Less chemical needed to elicit the effect
 - Test using exogenous epinephrine will show effect at lower doses (lower NOAEL)
- Related to history of development of the Standard Cardiac Sensitization Test goal of screening/ranking chemicals
- Using exogenous epinephrine-based Standard Cardiac Sensitization Tests of chemicals don't directly translate to "real world" scenarios or risks to humans

*<u>Exogenous</u>- from a source external to the body (e.g, injected) *<u>Endogenous</u>- produced naturally within the body

Determining an Exposure Limit for CF₃I using the Standard Cardiac Sensitization Test

Exposure Limit for CF₃I

- CF₃I has been shown to cause cardiac sensitization
- Need a CF₃I Exposure Limit for humans for safety
- Standard Cardiac Sensitization Test performed for CF₃I (Dodd & Vinegar, 1998)
- Exposure Limit currently referenced for CF₃I in Fire Protection Systems is the NOAEL from the Standard Cardiac Sensitization Test (0.2%)

Current CF₃I Exposure Limit

Cardiac Sensitization Test with Endogenous Epinephrine

- Alternative version of the Cardiac Sensitization Test uses <u>endogenous</u> epinephrine (naturally produced)
 - Using fright or exercise for epinephrine challenge
- Higher doses of chemical needed to cause cardiac sensitization with endogenous epinephrine challenge (higher NOAEL)
- Endogenous epinephrine studies show 2-20x higher NOAEL for some chemicals
- Better represent "real world" scenarios

Would a CF₃I cardiac sensitization test with endogenous epinephrine result in a different, more representative human exposure limit?

Comparison of Exposure Limits by Test Type

Summary and Conclusions

- Cardiac sensitization is the primary health effect from inhalation of CF₃I
- Cardiac sensitization can cause heart arrhythmias
- Current Exposure Limit for CF₃I (0.2%) is based on Standard Cardiac Sensitization Test which is not designed to represent "real world" exposure scenarios
 - Exogenous epinephrine- 10x more than natural amount
- Exposure Limit for CF₃I is not adjusted for uncertainty to account for 10x more epi
- Test using endogenous epinephrine better represent "real world" scenarios
- A CF₃I cardiac sensitization test using endogenous epinephrine would likely yield a similar Exposure Limit because of adjustment for uncertainty
- Existing CF₃I Exposure Limit of 0.2% can be applied for human health risk assessment for Halon 1301 replacement

