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Turbulent diffusion combustion

Pool Fires

c
o e
.; t
= =
v o ]
c (o]
o -—
O L

» Buoyancy controlled
> Low strain

> Low velocity fuel

*Video is from https://www.youtube.com/watch?v=vDgBnjpKh1A and https://www.youtube.com/watch?v=0kzOMY31HIU



Obijectives of this work

> Has larger size of the flame region
» Used highly simplified chemical mechanisms
» Used reduced order turbulence and combustion

models
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Models’

accuracy

Highly simplified or
reduced-order models
cannot capture detailed

Use high order model to
get accurate prediction of

fire extinction limit
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Transported PDF
modeling of pool fires

Pool Fires
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Fire Dynamics Simulator (FDS)

FDS (Fire Dynamics Simulator) is a free and open-source software tool provided by the National
Institute of Standards and Technology (NIST) of the United States Department of Commerce.

FDS is a large-eddy simulation (LES) code for low-speed flows, emphasizing smoke and heat
transport from fires.

Videos is from https://www.youtube.com/watch?v=gg2Xhcsoh-w
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Transported PDF model

* PDF represents Probability Density Function

* Transported PDF model represents the turbulent reacting flow by
using Joint PDFs of fluid properties

« Advantages:
* Does not assume a particular mode of combustion
* Chemical reaction terms are in a closed form
* Turbulent fluctuations of all species can be represented
« Applicable to RANS and LES

Q
Pool Fires

c

o e
.5 t
) )
) C
c (o)
[o) -—
O £




Transported PDF model

A joint pdf transport equation for the velocity and the reactive scalars
can be derived *
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local change and convection of the probability density function in physical space
source terms due to chemical reaction and it appears in the closed form
spatial flux of the PDF due to residual velocity

molecular mixing in the composition space due to the conditional scalar dissipation

* Pope, S. B. (1985). PDF methods for turbulent reactive flows. Progress in energy and combustion science, 11(2), 119-192.



Mixing models implemented in PDF

Popular models used in this work
 Interaction by Exchange with the Mean (IEM) model
* Modified Curl (MCurl) model
* Euclidean Minimum Spanning Tree (EMST) model

VA !

A

Interaction with the mean Randomly pairwise mixing Interaction with neighboring
S W+h(w<‘>¢<‘>*+w“)¢“>* ) ¢(i>,tj particle in composition space
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* Villermaux and Devillon, 1972 * Janicka et al., 1979 * Subramaniam and Pope, 1998



Mixing parameters implemented in PDF
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The effects of the mixing parameter C¢ and three different mixing models will be
examined.

10
* Pope, S. B. (1985). PDF methods for turbulent reactive flows. Progress in energy and combustion science, 11(2), 119-192.



HPDF 01

Suitable to solve problems
need to consider detailed

chemical reactions

HPDF

FDS

Different molecular diffusivities for
different species can be
considered

Coupled

Take advantages from these two
models
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FDS HPDF

Can provide information about mesh grids, Only equal diffusivity is assumed
velocity fields, and transport properties for
transported PDF model
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UMD line burner

* J.P. White, Measurement and simulation of suppression effects in a buoyant
turbulent line fire, Ph.D. thesis, University of Maryland, College Park, 2016.
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Coupled model simulation setup
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Coupled model simulation results
C, =3.0 with EMST model
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* Experimental data get from J. P. White, E. D. Link, A. C. Trouve, P. B. Sunderland, A. W. Marshall, J. A. Sheffel, M. L. Corn, M. B. Colket, M. Chaos, H. Z. Yu, Radiative
emissions measurements from a buoyant, turbulent line flame under oxidizer-dilution quenching conditions, Fire Safety Journal 76 (2015) pp. 74-84.



Coupled model simulation results

*  White, J. P. (2016). Measurement and simulation of suppression
effects in a buoyant turbulent line fire (Doctoral dissertation).
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Investigation of fire extinction limits prediction
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Investigation of fire extinction limits prediction
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Flame regime identification by using flame index
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Flame regime identification by using flame index
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Flame regime identification by using flame index
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Conclusions

Discovered the method that combines the NIST Fire Dynamics
Simulator (FDS) code of LES and our in-house PDF code, HPDF

The EMST model can yield burning flames without difficulty and
perfectly match the measured combustion efficiency

The IEM model and Modified Curl model need a high value of C; to

Buoyancy-controlled pool fires F=f==p{ yield burning and constantly underpredict the combustion efficiency
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Conclusion
PDF Model

The premixed combustion regimes are enriched in the pool fire's root,
— which could be the main reason behind the mixing models’
performance differences
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Fire extinction limit is very sensitive to the different mixing models
and mixing parameters. That suggests the importance of mixing
modeling in fire simulations.
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