

Progress in Modeling Cup Burner Flame Extinction by Sodium Bicarbonate Powder in FDS

Randall McDermott^a, Jason Floyd^b, Paul Papas^c, Changmin Cao^d ^aNational Institute of Standards and Technology, Gaithersburg, Maryland, USA ^bUL Research Institutes, Fire Safety Research Institute, Columbia, Maryland, USA ^cRaytheon Technologies Research Center, East Hartford, Connecticut, USA ^dCollins Aerospace Ireland, Cork, Ireland

> FAA Fire & Cabin Safety Atlantic City, New Jersey, October 17-20, 2022

Outline

- Background and motivation
- NaHCO₃ decomposition
- FDS model formulation
- Results
- Conclusions

Background and Motivation

D. Ingerson. Full-scale Demonstration Testing with a Solid Aerosol Fire Extinguishing Agent. FAA Nov 2012

Background and Motivation

"A comparison of agents showed that on average, NaHCO3 was three times more effective than CF3Br on a mass basis and six times more effective than N2 in extinguishing flames burning the various fuels."

A. Hamins, Flame Suppression Effectiveness: Coflowing Non-premixed Flames, in: W. L. Grosshandler, R. G. Gann, W. M. Pitts (Eds.), Evaluation of Alternative In-Flight Fire Suppressants for Full-Scale Testing in Simulated Aircraft Engine Nacelles and Dry Bays, NIST SP 861, chap. 4.3, Gaithersburg, Maryland, 377–400, 1994.

Previous Work

- A. Hamins, Flame Suppression Effectiveness: Coflowing Non-premixed Flames, in: W. L. Grosshandler, R. G. Gann, W. M. Pitts (Eds.), Evaluation of Alternative In-Flight Fire Suppressants for Full-Scale Testing in Simulated Aircraft Engine Nacelles and Dry Bays, NIST SP 861, chap. 4.3, Gaithersburg, Maryland, 377–400, 1994.
- V. I. Babushok, K. L. McNesby, A. W. Miziolek, R. R. Skaggs, Modeling of synergistic effects in flame inhibition by 2-H heptafluoropropane blended with sodium bicarbonate, Combust. Flame 133 (2003) 201–205.
- K. Kuang, X. Huang, G. Liao, A comparison between superfine magnesium hydroxide powders and commercial dry powders on fire suppression effectiveness, Process Saf. Environ. 86 (2008) 182–188.
- A. Tejada-Ochoa, C. Carreno-Gallardo, J. E. Ledezma-Sillas, C. Prieto-Gomez, N. R. Flores-Holguin, F. C. Robles-Hernandez, J. M. Herrera-Ramirez, Theoretical and experimental study of different chemical routes to synthesize crystalline sodium metasilicate from silica-rich sand, Revista Mexicana de Ingenieria Quimica 18 (2) (2019) 581–588.
- P. K. Heda, D. Dollimore, K. S. Alexander, D. Chen, E. Law, P. Bicknell, A method of assessing solid state reactivity illustrated by thermal decomposition experiments on sodium bicarbonate, Thermochim. Acta 255 (1995) 255–272.
- D. Bakirtzis, M. A. Delichatsios, S. Liodakis, W. Ahmed, Fire retardency impact of sodium bicarbonate on ligno-cellulosic materials, Thermochim. Acta 486 (2009) 11–19.
- V. M. Zamansky, P. M. Maly, M. Sheldon, W. R. Seeker, B. A. Folsom, Second Generation Advanced Reburning for High Efficiency NOx Control, Phase 1, Final Report, Energy and Environmental Research Corp., Sponsored by U.S. Department of Energy under Contract No. DE-AC22-95PC95251, 1997.
- H. Shilling, B. Z. Dlugogorski, E. M. Kennedy, Extinction of Diffusion Flames by Ultrafine Water Mist Doped with Metal Chlorides, in: Proceedings of the Sixth Australasian Heat and Mass Transfer Conference, 275–282, 1998.
- J. Grigg, A full-scale cup burner for the testing of gaseous and low volatility agents, in: Proceedings of the Halon Options Technical Working Conference, 2000.
- F. Takahashi, G. T. Linteris, V. R. Katta, Further studies of cup-burner flame extinguishment, in: Proceedings of the 16th Annual Halon Options Technical Working Conference, 2006.
- H. K. Chelliah, P. C. Wanigarathne, A. M. Lentati, R. H. Krauss, G. S. Fallon. Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counterflow flames. Combust. Flame 134 (2003) 261–272.
- O. Dounia, O. Vermorel, T. Poinsot, Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles, Combust. Flame 193 (2018) 313–326.

NaHCO₃ Decomposition Kinetics

Reaction	Temp [°C]	$E_a \; [\rm kJ/mol]$	$A \ [1/s]$
NaHCO ₃ (s) $\rightarrow \frac{1}{2}$ Na ₂ CO ₃ (s) $+ \frac{1}{2}$ CO ₂ $+ \frac{1}{2}$ H ₂ O	98.4 - 168	105.8	$1.1 imes 10^{11}$
$Na_2CO_3 (s) \rightarrow Na_2O (s) + CO_2$	550 - 900	273.3	$9.5 imes 10^{10}$
${ m Na_2O}~({ m s}) + { m H_2O} ightarrow 2{ m NaOH}$	900 - 1200	401.6	$3.4 imes 10^{12}$

- TGA at 10 K/min
- Mass loss on heating process of NaHCO₃ is divided into three stages.
- The mass loss in first and second stages are validated with available literature data of pure NaHCO₃ at low temperature of 98 168 °C and BC powder as well at NaHCO₃ and SiO₂ mixture at temperature of 550 900 °C.
- At high temperature, calculations of equilibrium concentrations demonstrate that the main product above 974 to 1127 °C is sodium hydroxide [Zamansky, 1997], homogeneous reaction Na₂O + H₂O => 2NaOH is defined in temperature range of 900 - 1200 °C.
- Third step is not well understood. (We will return to this.)

NaHCO3 Decomposition Thermodynamics

 $^{*}\beta$ and lpha phases would differ by the phase change energy

Simplified Full Particle Decomposition

"The residence time in the cup burner flames used here is approximately an order of magnitude larger than in the low-strain-rate counterflow flames [used by Trees and Seshadri], suggesting that both [2 to 6 μ m and 3 to 8 μ m] **particle fractions completely vaporized** in the cup burner flame." -- A. Hamins (1998)

This observation will be useful for later analysis.

FDS Model Formulation

low-Mach, 2D axisymmetric, DNS or "LES" ٠

- generalized lumped species
- conservative, finite-volume, second-order
- TVD scalar transport (CHARM) •
- modified Deardorff eddy-viscosity, algebraic k sgs (minimal) ٠
- constant Sc t and Pr t (0.5) ٠
- gray gas radiation
- predicted radiant emission ٠
- JANAF + NASA thermodynamic properties ٠
- basic EDC (or EDM) combustion model ٠
- specified threshold (AIT) ignition model •
- thermal extinction model based on critical flame temperature ٠
- solid particle thermal decomposition (new for moving particles) •

Solid particle decomposition verification

NIST

Energy budget verification test

1500 °C initial gas temperature
20 C
4 mm x 4 mm
4 μm particle
no radiation

Thermal Extinction Model

 $Fuel + Air \longrightarrow Products$

$$\tilde{\phi} \equiv \min\left(1, \frac{sZ_F^0}{Z_A^0}\right) = \frac{Z_A^0 - Z_A}{Z_A^0}$$

 $(1-\tilde{\phi})(Z_A^0+Z_P^0)$

Excess Air and Products removed from stoichiometric pocket of reactants

$$Z_F^0 h_F(T) + \tilde{\phi} Z_A^0 h_A(T) + \tilde{\phi} Z_P^0 h_P(T) < Z_F h_F(T_{CFT}) + \left[Z_P - (1 - \tilde{\phi}) Z_P^0 \right] h_P(T_{CFT})$$

Defines an extinction event

Propane-Air PSR Computations

NIST

- Zero-dimensional, steady state, constant pressure reactor
- Detailed Propane/Na chemical kinetics
- Na species (NaHCO₃, Na, NaOH, (NaOH)₂, NaO, NaH, Na₂O₂, Na₂O, NaO₂)

- Temperature decreases with decreased residence time
- Reaction does not occur below critical residence time (extinction)

Added agent = 1:1 NaOH/CO₂ mixture

Validation Cases

- Gaseous agents (FDS validation guide)
- Free burning heptane cup
- Heptane with Water Mist (Shilling)
- Propane with NaHCO₃ (Hamins)
- Heptane with NaHCO₃ (Hamins)

The simulated cup burner size (D= 0.028 m) is in laminar flame region

NIST

CFT taken from STANJAN calculations with stoich fuel and air diluted with MEC of gaseous agent.

Shilling et al. (1998) n-heptane with water mist NIST

• default radiation parameters

Injection of MEC of CO2 and NaOH

Adjustment of NaOH Specific Heat

NIST

Calculated flame temperatures and agent behavior	of
near-extinction heptane flames	

TABLE 2

NaOH Cp=10 kJ/kg/K achieves extinction at 1800 °C

Agent	Agent Volume Percent	<i>T</i> (K)	% Physical
None	0	2275	_
N ₂	32 ± 3	1856 ± 52	100
$\overline{CF_3Br}$	3.1 ± 0.3	2210 ± 7	12 ± 3
NaHCO ₃	2.3 ± 0.7	2054 ± 68	47 ± 16
$(2-6 \mu m)$			
NaHCO ₃	2.1 ± 0.7	(2072 ± 72)	42 ± 17
(3–8 µm)			*

from A. Hamins (1998)

LES with flame heat transfer model

NIST

&COMB SPEC_CHEM_ID='NaOH', SPEC_CHEM_CP_FAC=1000/ Slice Part temp temp С С 1800.0 1100.0 1622.0 992.0 1444.0 884.0 1266.0 776.0 1088.0 668.0 910.0 560.0 732.0 452.0 554.0 344.0 376.0 236.0 198.0 128.0 20.0 20.0 Time: 10.74

Basically, no effect. Flame extinguishes with CFT near adiabatic flame temperature.

DNS (dx=0.2 mm)

Slice Part X_NaOH temp mol/mol C *10^-3 1100.0 1.0 0.9 990.0

NIST

Time: 1.0

DNS temperature time history for particles

NIST

no time shift

DNS 1 step fast at 1100 °C, CFT=1447 °C

NIST

DNS 1 step fast, ramp CFT

Time: 0.997

Conclusions

- We have proposed a simple modification of the FDS thermal extinction model--adjustment of the agent specific heat---to mimic the effect of chemistry from gaseous NaOH in sodium bicarbonate suppression.
- We have shown proof of concept by assuming full particle decomposition and injecting the corresponding MEC of the NaOH agent as a gas.
- The kinetics of the final step do not appear to be a significant limitation. The larger problem lies in generating sufficient NaOH.
- The final particle decomposition step occurs at around 1100 °C. The particle decomposition is endothermic and cools the flame, making numerical modeling of the final particle decomposition step challenging.
- Attempts to cool the flame below the NaOH decomposition temperature (1100 °C) have been unsuccessful.