Modeling Detailed Turbulence-Chemistry Interactions in Flames and Fires using the One-Dimensional Turbulence Model

David O. Lignell

Brigham Young University

10th Triennial International Aircraft Fire and Cabin Safety Research Conference

October 17-20, 2022

Acknowledgements

- This work was supported in part by Sandia National Laboratories Advanced Simulation and Computing Physics and Engineering Models program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
- This material is based in part upon work supported in part by the National Science Foundation under Grant No. CBET-1403403.
- This material is based in part upon work funded by the USDA Forest Service Rocky Mountain Research Station

Motivation and Goals

- Turbulent combustion is a notoriously difficult problem.
- There are no universal approaches
- DNS
 - Resolves all scales: cost scales with Re³
 - Limited Re, limited geometries (normally)
 - Cost overhead: limits parametric investigations (etc.)
- LES
 - Available for complex geometries.
 - Captures large scales, but models fine scales.
 - Models are not regime independent
 - Premixed, nonpremixed, partially premixed, non-flamelet, auto-igniting, …
- ODT

BYI

- Limited to BL flows
- Relatively low cost
 - Resolves fine scales \rightarrow can be used as a surrogate DNS

Simulations The *partial* truth "*fully*" revealed

ODT

- ODT is a stochastic model for turbulent flows.
 - 1-D unsteady diffusion/reaction equations for evolved scalars.
 - Punctuated by a stochastic advection process.
 - Resolves all scales (in 1D)
- Often small scales are harder model than large scales
 - Physical coordinate versus state space.
 - Complex diffusive, reacting, flow structure interactions.
 - Limit phenomena (extinction/reignition); differential diffusion
- LES: Captures large scale flow, models fine-scale advection $u \cdot \nabla$ via diffusion (v_e).
- ODT: Captures fine scales directly, models large scale advection $u \cdot \nabla$.

ODT Areas

Standalone ODT

Boundary-layer like problems: Jets, channels, walls, mixing layers

3D Formulations

Grids/Lattices of ODT lines ODTLES, AME, LBMS, LEM3D, etc.

ODT Data Lookup tables, PCA training sets

OUNG

BYU

VO

ODT Model Overview

- Solves unsteady flow equations in 1D
- Notional line of sight
- Flows with a dominant shear direction
 - Boundary-layer flows:
 - Jets
 - Wakes
 - Mixing Layers
 - Wall flows
- 2 Concurrent Processes:

Diffusive Advancement

- Solve 1D unsteady flow equations:
 - Mass, Momentum, Species, Energy, Soot
- Implementation
 - Cylindrical formulation
 - $c = 1, 2, 3 \rightarrow planar, cylindrical, spherical$
- F.V. Lagrangian formulation
 - Velocities are not advecting, rather are evolved scalars for stochastic eddy model
 - Cells expand and contract
- Adaptive mesh
- Thermochemistry, transport using Cantera.
- Available to collaborators

Mass

$$\rho\Delta(x^c) = 0$$

Momentum

$$\begin{aligned} \frac{\partial u_k}{\partial t} &= -\frac{c}{\rho \Delta(x^c)} (\tau_{k,e} x_e^{c-1} - \tau_{k,w} x_w^{c-1}) + S_{u,k} \\ \tau_k &= -\mu \frac{du_k}{dx} \\ S_{u,k} &= \frac{dP}{dy_k} + \frac{g_k(\rho - \rho_\infty)}{\rho} \\ \frac{\partial h}{\partial t} &= -\frac{c}{\rho \Delta(x^c)} (q_e x_e^{c-1} - q_w x_w^{c-1}) + Q_{rad} \\ q &= -\lambda \frac{dT}{dx} + \sum_k h_k j_k \end{aligned}$$

Species

$$\frac{\partial Y_k}{\partial t} = -\frac{c}{\rho\Delta(x^c)}(j_{k,e}x_e^{c-1} - j_{k,w}^{c-1}) + \frac{\dot{m}_k^{\prime\prime\prime}}{\rho}$$
$$j_k = -\frac{\rho Y_k D_k}{X_k}\frac{dX_k}{dx}$$

Soot

$$\frac{\partial M_k/\rho}{\partial t} = -\frac{c}{\rho\Delta(x^c)} (f_{k,e} x_e^{c-1} - f_{k,w}^{c-1}) + \frac{S_{s,k}}{\rho}$$
$$f_k = -0.554\nu \frac{\nabla T}{T} M_k$$

Diffusive Advancement

 $f_k = -0.554\nu \frac{\sqrt{1}}{m} M_k$

- Solve 1D uns
 - Mass, Mor
- New code
 - Cylindrica
 - c = 1, 2, 3
 spherical
- F.V. Lagrang
 - Velocities
 evolved s
 - Cells expa
- Adaptive met
- Thermochem Cantera.
- Available to a

C++, git, bitbucket

Spatial Formulation

- Evolve 1D steady state equations in streamwise coordinate.
- Parabolic boundary layer equations
- Local residence time depends on local velocity
- Equations are similar but divided by local velocity
- Conserve mass flux rather than mass $\frac{\partial \phi}{\partial t} = -\frac{c}{\rho \Delta(x^c)} (j_{\phi,e} x_e^{c-1} - j_{\phi,w}^{c-1}) + \frac{S_{\phi}}{\rho}$ $\frac{\partial \phi}{\partial \mathbf{y}} = -\frac{c}{\rho \mathbf{v} \Delta(x^c)} (j_{\phi,e} x_e^{c-1} - j_{\phi,w}^{c-1}) + \frac{S_{\phi}}{\rho \mathbf{v}}$

 $(\tau_{k,w}x_w^{c-1}) + S_{u,k}$ $(\rho - \rho_{\infty})$ $w x_w^{c-1}) + Q_{rad}$ $h_k j_k$ $-j_{k,w}^{c-1}) + \frac{\dot{m}_{k}^{\prime\prime\prime}}{\rho}$ $^{-1} - f_{k,w}^{a-1}) + \frac{S_{s,k}}{o}$

Stochastic Advection

- Turbulent advection via stochastic eddy events
- Re-map domain consistent with turbulent scaling laws
- Triplet Map
 - 3 copies of profiles; compress spatially 3x; mirror center copy
 - Captures compressive strain, rotational folding effects
 - Local
 - Continuous
 - Conservative of all quantities

Mixture Fraction 9.0 8.0 8.0 8.0

0.2

Stochastic Advection

Eddy Sampling Procedure

• An eddy rate $\lambda(x_0, I)$ is defined at each location x_0 for each eddy size *I*.

$$\lambda = \frac{C}{\tau l^2} \qquad E = \frac{1}{2}\rho V\left(\frac{l}{\tau}\right)^2 \quad \rightarrow \frac{1}{\tau} = \sqrt{\frac{2}{\rho V l^2} (E_{kin} - ZE_{vp})}$$

- E_{kin} is a measure of the local kinetic energy on the line.

1D Diffusion/

Rxn Eqns

- ZEvp is a viscous penalty
- C, Z are adjustable parameters
- The rate of all eddies is

$$\Lambda = \iint \lambda(x_0, l) dx_0 dl$$

- An Eddy PDF is $P(x_0,l) = \lambda(x_0,l)/\Lambda$
- Eddies could be sampled from P as a Poisson process with mean rate Λ , but this is not efficient.
- Instead, P is modeled as Q=f(x₀)g(I) and a thinning process combined with the rejection method is used.

Stochastic Advection

Cylindrical ODT Examples

Pipe Flow

DNS:

Khoury et al., Flow Turbulence Combust (2013) 91:475-495 Chin et al., Int. J. Heat Fluid Flow (2014) 45:33-40

Cylindrical ODT Examples

 $r/(y - y_0)$

FUNDED BYU 1875 1875 1875

Cylindrical ODT Examples

DLR-A Jet Flame

Velocity

Mixture Fraction

Temperature

Wall Flame Configuration

- Spatial Formulation
- Ethylene fuel injected through porous wall
- Detailed, 1-step, and tabulated chemistry
- Soot
- Radiation

ODT Wall Fire—Single Realization

Mean Temperature Profiles

Soot Formation—Planar Jet

- Temporal jet
- C₂H₄/N₂ surrounded by counterflowing oxidizer
 - ξ_{st}=0.25
- Gas Chemistry
 - 19 species (+10 QSS) 167 rxns
- Soot model
 - 4 step: nucleation, growth, oxidation, coagulation. (Leung et al. 1991)
 - Transport 3 mass moments
 - Lognormal distribution

H (mm)	1.8	L_x/H	16	$ au_{jet}$	0.022
$\Delta U \ (m/s)$	82	L_y/H	11	τ_{run}/τ_{jet}	50
Re_{jet}	3700	L_z/H	6	# Cells (millions)	228
$u'/\Delta U$ (init)	4%	$\Delta x \ (\mu m)$	30	Sim. Cost (million cphu)	1.5
H/L_{11} (init)	3	$\delta_{\xi} \ (\mathrm{mm})$	0.8		

Qualitative Jet Results: DNS

Temperature

BYU

Soot

Jet Evolution

Line-of-sight

Temperature and Y_{soot}

Joint Soot PDFs

 $\tilde{P}(\xi, \rho Y_s)$

Joint Soot PDFs

A-priori Soot Rates ("global")

$$\begin{split} \tilde{R}_{Ys}(\vec{\eta},\vec{M}) &= \iint R_{Ys}(\vec{\eta},\vec{M})\tilde{P}(\vec{\eta},\vec{M})d\vec{\eta}d\vec{M} \\ \tilde{R}_{Ys}(\vec{\eta},\vec{M}) &\approx \iint R_{Ys}(\vec{\eta},\vec{M})\tilde{P}(\vec{\eta})P(\vec{M})d\vec{\eta}d\vec{M} \\ \tilde{R}_{Ys}(\vec{\eta},\vec{M}) &\approx \iint R_{Ys}(\vec{\eta},\vec{M})P(\vec{\eta})\delta(\vec{M}-\widetilde{\vec{M}})d\vec{\eta}d\vec{M} \end{split}$$

Flame Extinction and Reignition

- Compare ODT/DNS
- Vary Damkohler number

<u>Case 1</u> <u>Case 2</u> <u>Case 3</u> $Da = \chi_q \cdot \tau_j = 0.023, \ 0.017, \ 0.011$

- Adjust fuel and oxidizer compositions
- Weaker flames extinguish more readily: (40, 70, 99%)
- Constant Re = 5120

H (mm)	0.96	L_x/H	12	$u'/\Delta U$ (init)	5%
ΔU (m/s)	196	L_y/H	19	H/L_{11} (init)	3
Re_{jet}	5120	L_z/H	8	$ au_{jet} \ (ms)$	0.0049
H_{ξ} (mm)	1.5	$\Delta x \ (\mu m)$	17	$ au_{run}/ au_{jet}$	140
δ_u (mm)	0.19	δ_{ξ} (mm)	0.74	Mean timestep (ns)	5

Flame Evolution

Case 3

Degree of Extinction, Reignition

- Reignition Modes:
 - Autoignition (not active)
 - Edge Flames (ODT cannot capture)
 - Flame Folding (ODT does capture)
- Case 3 reignites as a premixed flame.

Extinction and Reignition

- ODT captures flame extinction as shown by stoichiometric temperature profile.
- Conditional profiles agree very well at peak extinction.
- Reignition is underpredicted
 - ODT captures flame folding, but not edge flames.
 - ODT has less "sample" per realization, and realizations are independent.
 - Can't account for low reignition here
 - Discouraging given the level of mixing detail retained.

ΒΥι

Stoichiometric mean Temperature

Conditional mean Temperature

Conclusions

- ODT has been successfully applied to a number of combustion problems.
 - Captures many key aspects of turbulent flows.
- Generally good agreement with DNS validation case.
- Captures fine-scale phenomena not readily available outside of DNS directly.
- A-priori studies quantify key modeling assumptions.
- Computationally affordable.
- Active work extending the model to 3D simulations

