

Tenth Triennial International Aircraft Fire and Cabin Safety Research Conference October 17-20, 2022, Atlantic City, NJ, USA

Benchmark Evaluation of Radiation Models in Simulations of Compartment Fires

Yu Jeong Kim^a, Arnaud Trouvé^a, Georgios Maragkos^b, Bart Merci^b

^a Department of Fire Protection Engineering, University of Maryland, College Park, MD, USA ^b Department of Structural Engineering and Building Materials, Ghent University, Belgium

Work sponsored by Underwriters Laboratories. High-Performance Computing Cluster provided by the University of Maryland

Research Objectives

- General objective: to evaluate the performance of current modeling capabilities in the simulation of compartment fires using Fire Dynamics Simulator (FDS).
- Specific objectives: to identify best modeling options to simulate radiation heat transfer, flame extinction, soot production, and fuel production due to pyrolysis.
 - Pyrolysis model (production of fuel in burning furniture)
 - Combustion model (flame extinction due to under-ventilation)
 - Thermal radiation (gas and soot radiation)
- Evaluation of the different thermal radiation modeling options in FDS.

Experiments

- Compartment fire dynamics experiments (https://fireinvestigation.fsri.org/fire_dynamics/index.html)
- A series of experiments performed by UL's Fire Safety Research Institute in both free burn and compartment configurations with natural gas burners and upholstered furnishing.

A compartment of $(3.66 \times 3.66 \times 2.44)$ -m3 size A single door of (2×0.9) -m2 size

Simulations of Gas-burner Experiments

- Burner diameter (D) = **0.6 m**
- Radiative fraction (χ_r) = 0.23
- Fuel: Natural gas (92.2% CH₄, 5.8% C₂H₆, 1.3% N₂, and 0.7% CO₂)
- Heat release rate, \dot{Q} = 100, 500, 1000 kW
- Plume temperature and Z-velocity (Bi-Directional Probe, thermocouple: Inconel, diameter of 1.6 mm)
- Total and radiative heat fluxes (Heat flux gauges and radiometers, gauges temperature of 14 °C and gauge emissivity of 0.95)

UNIVERSITY OF

Simulations of Gas-burner Experiments

- FDS version 6.7.7.
- Large eddy simulation (LES): Turbulence (Deardorff) and combustion (EDC)
- Computational domain = 5 m x 5 m x 5 m
- OPEN BC at XMIN, XMAX, YMIN, YMAX, ZMAX
- Fuel: Natural gas (calculated heat of combustion of 47,800 kJ/kg)
- To identify best modeling options and practices in the baseline version of FDS
 - Grid resolution (0.1 m, 0.05 m, 0.025 m)
 - Angular resolution (NUMBER_RADIATION ANGLES, N_{Ω} from 104 up to 1200)
 - Radiation models (Default gray gas, WSGG, Wide band, optically • thin)

UNIVERSITY OF

MARYLA

Spatial Resolution Criterion

- Cross-section side length, D = 0.6 m
- Mean flame height (Heskestad plume): $L_f = 0.235 \dot{Q}^{\frac{2}{5}} - 1.02D$

2

• Characteristic fire diameter:

$$D^* = \left(\frac{\dot{Q}}{\rho_{\infty}c_p T_{\infty}\sqrt{g}}\right)^{\frac{2}{5}}$$

- A-priori criterion of $D^*/\Delta \ge 15$
- Physical scale criterion of $D/\Delta \ge 10$, $L_f/\Delta_z \ge 10$

Ż	<i>D</i> *	D*/0.1	D*/0.05	D*/0.025
(kW)	(m)	(-)	(-)	(-)
100	0.39	3.9	7.8	15.6
500	0.73	7.3	14.6	29.2
1000	0.97	9.7	19.4	38.8

D	D/0.1	D/0.05	D/0.025
(m)	(-)	(-)	(-)
0.6	6	12	24

Ż	L_f	<i>L_f</i> /0.1	L _f /0.05	<i>L_f</i> /0.025
(kW)	(m)	(-)	(-)	(-)
100	0.87	8.7	17.4	34.8
500	2.21	22.1	44.2	88.4
1000	3.11	31.1	62.2	124.4

• $\Delta \leq 0.05$ m is required in general and finer grid sizes are required for smaller \dot{Q}_{+}

• Δ = 0.1 m, 0.05 m, or 0.025 m

Name	Grid structure	Grid size, ⊿ (m)	Total number of grid cells
10 cm	Uniform	0.1	125,000
5+10 cm	Hybrid	0.05 + 0.1	440,000
5 cm	Uniform	0.05	1,000,000
2.5+5 cm-1	Hybrid	0.025 + 0.05 + 0.1	720,000
2.5+5 cm-2	Hybrid	0.025 + 0.05 + 0.1	1,805,000

• \dot{Q} = 500 kW

• $\dot{Q} = 500 \, kW$

• Grid size of **0.05 m** shows convergence.

• $\dot{Q} = 500 \, kW$

*Empirical correlations of plume region: temperature and velocity from G. Heskestad, Engineering relations for fire plumes, Fire Saf. J. 7 (1984) 25-32.

 The predictions are in good agreement with empirical correlations, while it is significantly overpredicted of experimental data.

Radiation Modeling

- \dot{Q} = 500 kW, Grid size (Δ) = 0.05 m, N_{Ω} = 104 (default) and N_{Ω} = 304 for selected models. •
- The band specific Radiative Transport Equation (RTE) for a non-scattering gas:

$$s \cdot \nabla I_n(x, s) = E_n(x) - a_n(x)$$
 $n = 1, \dots, N$ $E_n(x)$: Emission source term

$$E_n(x) = \kappa_n(x) \left(F_n \frac{\sigma T(x)^4}{\pi} \right) \qquad a_n(x) = \kappa_n(x) I_n(x,s)$$

m.

 $\kappa_n(x)$: Mean absorption coefficient for the band *n*.

 $I_n(x, s)$: The intensity integrated over the band *n*.

Wide band model	calculated $E_n(x)$ in both flame and plume regions	
WSGG model	Prescribed χ_r , Prescribed $E_n(x)$ in flame region ($\chi_r \dot{q}^{\prime\prime\prime} > 10$) Calculated $E_n(x)$ in the plume region	
DNS default , FDS option 4 calculated $E_n(x)$ in both flame and plume region		
LES default , FDS option 3	Prescribed χ_r , Prescribed $E_n(x)$ in flame region ($\chi_r \dot{q}^{\prime\prime\prime} > 10$) Calculated $E_n(x)$ in the plume region Correction of $E_n(x)$ in flame region ($\chi_r \dot{q}^{\prime\prime\prime} > 10$)	
FDS option 2 (Optically Thin model)	Prescribed χ_r , Prescribed $E_n(x)$ $a_n(x) = 0$ Correction of $E_n(x)$ in flaming region ($\chi_r \dot{q}^{\prime\prime\prime} > 10$)	

11

- LES default, FDS option 3 (Gray gas model, prescribed χ_r) shows the reasonable prediction.
- There is no effect of increased angular resolution on radiative fraction.

Radiation Modeling

- Total heat flux gauges
- H = distance from the burner center

- Increased number radiation angles (NRA) improves the prediction of total heat fluxes.
- LES default (FDS option 3) shows the better prediction. Simulated heat fluxes are within 13%-28% of measurements with increased angular resolution (24.5%-68% with default angular resolution).

Angular Resolution

- Grid size = 0.1 m
- LES default, FDS option 3 (Gray gas model, prescribed χ_r)
- Solid angles from 104 (default 100) to 1200 are used.
- The estimation of required total number of angles:
 - Solid angle, $\Delta \Omega$
 - Flame surface $(dS) \sim D(m) \times L_f(m)$
 - Distance between the burner center and a gauge ~ H (m)
 - NUMBER_RADIATION_ANGLES (NRA): N_{Ω}

ò	N_{Ω}	N_{Ω}
	for radiometer 1	for radiometer 2
	(H = 0.8 m)	(H = 2.3 m)
100	154	1273
500	61	501
1000	43	356

Total number of angles:

$$N_{\Omega} = \sum_{i=1}^{N_{\theta}} N_{\phi}(\theta_i) \qquad \Delta\Omega_{FDS} = \frac{4\pi}{N_{\Omega}} \qquad \Delta\Omega \sim \frac{dS}{H^2}$$

 $\Delta \Omega \geq 10 \Delta \Omega_{FDS}$

Required NUMBER_RADIATION_ANGLES:

$$N_{\Omega} \geq 40\pi H^2/dS$$

UNIVERSITY OF MARYLAND **Angular Resolution** $\dot{Q} = 100 \, kW$ $\dot{Q} = 1000 \, kW$ $\dot{Q} = 500 \, kW$ RHF1 ----RHF2 -----Total or Radiative Heat Flux (kW/m²) Total or Radiative Heat Flux (kW/m²) Total or Radiative Heat Flux (kW/m^2) 1.5 0.5 NUMBER RADIATION ANGLES (NRA) NUMBER RADIATION ANGLES (NRA) NUMBER RADIATION ANGLES (NRA)

The estimation of required N_{Ω}

Ż (kW)	N _Ω for radiometer 1 (H = 0.8 m)	N _Ω for radiometer 2 (H = 2.3 m)
100	154	1273
500	61	501
1000	43	356

FDS converged N_{Ω} (~ 10 % variation)

Ż (kW)	N_{Ω} for radiometer 1 (H = 0.8 m)	N_{Ω} for radiometer 2 (H = 2.3 m)
100	104	416
500	104	304
1000	104	304

Angular Resolution

- $\dot{Q} = 500 \, kW$, FDS converged $N_{\Omega} = 104$ for radiometer 1, $N_{\Omega} = 304$ for radiometer 2.
- Integrated Intensities, $U(x) = \int_{4\pi} I(x, \Omega) d\Omega$, as a function of N_{Ω}

Integrated intensity indicates that radiometer 2 needs N_{Ω} = 416 rather than 304.

UNIVERSITY OF MARYLAND

YZ-Plane

Verification Examples

- FDS version 6.7.9
- plate_view_factor_cart.fds
- 3D cartesian, Parallel plates, grid size of 0.05 m
- Radiation source: Square (2 m x 2 m) and rectangle plates (2 m x 1 m)
- Surface temperature is at 1000 °C and an emissivity of 1.0.
- Heat flux at the surface: 148.98 kW/m²
- NUMBER_RADIATION_ANGLES (NRA) from 30 to 1600
- Changing the distance, H (m), from the hot plate.
- Computed view factor (F_{d1-2}), radiative heat flux, integrated intensity using MATLAB
- Comparison between MATLAB solutions and FDS predictions
- Objective: to validate acceptable number radiation angles with the present of ray effects.

Integrated Intensity, U: FDS vs. MATLAB

- L1: the absolute difference between the FDS prediction and the MATLAB solutions.
- L2: the squared difference between the FDS prediction and the MATLAB solutions.

• 2-D analysis of the error indicates that NRA \geq 250 shows convergence.

Integrated Intensity, U: FDS vs. MATLAB

- L1: the absolute difference between the FDS prediction and the MATLAB solutions.
- L2: the squared difference between the FDS prediction and the MATLAB solutions.

FDS does not converge to the exact solution.

Integrated Intensity: FDS vs. MATLAB

23

Absolute Error from MATLAB Solutions

24

Integrated Intensity, U, using FDS vs. MATLAB

- L1: the absolute difference between the FDS prediction and the MATLAB solutions.
- L2: the squared difference between the FDS prediction and the MATLAB solutions.

2-D analysis of the error indicates that NRA ≥ 250 shows convergence.

Relative Error from MATLAB Solutions

Integrated Intensity, U: FDS vs. MATLAB

- L1: the absolute difference between the FDS prediction and the MATLAB solutions.
- L2: the squared difference between the FDS prediction and the MATLAB solutions.

Relative error of H = 0.5 m and 1.0 m ~ 10%, while others are larger than 10%

Conclusions

Evaluation of the different thermal radiation modeling options in FDS.

- Five different radiation modeling options were evaluated. LES default model (FDS option 3) gave the best predictions.
- NUMBER_RADIATION_ANGLES (NRA) need to be adapted according to objectives of simulation project.
- Simulated heat fluxes are within 13%-28% of measurements with increased angular resolution (24.5%-68% with default angular resolution).
- For integrated intensity, FDS does not converge to exact solution and there is a residual modeling error at high values of NRA.

Thank you

Work sponsored by Underwriters Laboratories. High-Performance Computing Cluster provided by the University of Maryland