

ENVIRONMENTALLY-BENIGN FLAME RETARDANT COATINGS FOR POLYMERS

Jaime C. Grunlan

(Presented by Natalie Vest)

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING, DEPARTMENT OF MECHANICAL ENGINEERING, & DEPARTMENT OF CHEMISTRY TEXAS A&M UNIVERSITY

10th Triennial International Aircraft Fire and Cabin Safety Research Conference – Atlantic City, NJ – 18 October 2022

Polymer NanoComposites (PNC) Lab (<u>http://nanocomposites.tamu.edu</u>)

Scientific Pillars:

Polyelectrolyte complexation / assembly

*****Polymer-nanoparticle interactions

*****Water-based processing

*****Renewable chemistry

Nature Rev. Mater. 2020 ACS Mater. Lett. 2020 ACS AMI 2018 J. Mater. Sci. 2017 Adv. Mater. Interf. 2015 Advanced Materials 2011 ACS Nano 2009 Adv. Mater. Interf. 2019 Macro. Rapid Comm. 2017 Green Materials 2016 Macromolecules 2015 Langmuir 2015 Macro. Rapid Comm. 2015 ACS Macro Lett. 2014 Adv. Electronic Mater. 2019 Advanced Materials 2018 Nano Energy 2016 Adv. Energy Mater. 2016 Advanced Materials 2015 ACS Nano 2010 Nano Letters 2008

Copyright © 2022 by Jaime C. Grunlan

Polymer NanoComposites (PNC) Lab (<u>http://nanocomposites.tamu.edu</u>)

This activity is supported by: and Security Programme

Acknowledgements

Collaborators:

Sandra Bischof (Univ. Zagreb) Serge Bourbigot (Univ. Lille) Federico Carosio (Pol. Torino) Steve Eichhorn (Bristol) Sabysachi Gaan (Empa) Igor Jordanov (N. Macedonia) Alex Morgan (UDRI) Maja Radetic (Serbia) Mohammad Naraghi (TAMU) Oren Regev (Ben Gurion U.) Patrick Shamberger (TAMU) Lars Wagberg (KTH) Xin Wang (USTC) Anthony Yuen (UNSW)

X Psalm 19:1-6

3

INDUSTRIAL SPONSORS

Polymer NanoComposites (PNC) Lab (<u>http://nanocomposites.tamu.edu</u>)

Copyright © 2022 by Jaime C. Grunlan

Presentation Outline

- **Overview of polyelectrolyte complexes** (PEC) in water
- **EX** Heat shielding from layer-by-layer nanobrick wall coatings

Polymer NanoComposites (PNC) Lab (<u>http://nanocomposites.tamu.edu</u>)

Review of flame retardant surface treatments

nature reviews materials

 of flame retardant nanocoatings
d using layer-by-layer assembly of trolytes

t Facts

1. Holder, Ryan J. Smith & Jaime Ilan

Is Science ournal of Materials

Volume 52 • Number 22 November 2017

Journal of Materials Science

2:12923-12959 -017-1390-1

Copyright © 2022 by

Polyelectrolyte Complexes

Coulombic interactions cause polyelectrolyte complexation (PEC)

- Entropic driving force through expulsion of small counter ions and water
- PEC form along a spectrum from insoluble complex to soluble solution

Zhang, Y., et al. *ACS Cent. Sci.* **2018**, *4*, 638. Wang, Q., et al. *Macromolecules*, **2014**, *47*, 3108. Chiang, H.-C.; Grunlan, J. C.; et al. *Macromol. Rapid Comm.* **2021**, *42*, 2000540.

Flame Retardant PEC

Polyethylenimine (PEI)

Sodium hexametaphosphate (PSP)

- Chemistry helps to form insulating char
- pH affects PEI degree of protonation
- Polyelectrolytes flocculate at pH ≤ 8, but mutually suspended above pH 9

M. Haile, C. Fincher, S. Fomete, J. C. Grunlan, *Polym. Degrad. Stab.* 2015, 114, 60–64. J. C. Grunlan, "Aqueous Polyelectrolyte Complex as One Pot Nanocoating Solution to Impart Antiflammable Behavior to Various Substrates," U.S. Patent 9,840,629. Copyright © 2022 by Jaime C. Grunlan

PEC Coating of Cotton Fabric

M. Haile, C. Fincher, S. Fomete, J. C. Grunlan, Polym. Degrad. Stab. 2015, 114, 60-64.

J. C. Grunlan, "Aqueous Polyelectrolyte Complex as One Pot Nanocoating Solution to Impart Antiflammable Behavior to Various Substrates," U.S. Patent 9,840,629.

Flame Testing of Cotton

Uncoated control

Untreated PEC coating

PEC coating treated by pH 2 buffer

M. Haile, C. Fincher, S. Fomete, J. C. Grunlan, Polym. Degrad. Stab. 2015, 114, 60-64.

J. C. Grunlan, "Aqueous Polyelectrolyte Complex as One Pot Nanocoating Solution to Impart Antiflammable Behavior to Various Substrates," U.S. Patent 9,840,629.

Microscopy of Coated Cotton

M. Haile, C. Fincher, S. Fomete, J. C. Grunlan, Polym. Degrad. Stab. 2015, 114, 60-64.

J. C. Grunlan, "Aqueous Polyelectrolyte Complex as One Pot Nanocoating Solution to Impart Antiflammable Behavior to Various Substrates," U.S. Patent 9,840,629.

PEC for Nylon-Cotton

- Nylon-cotton (NYCO) fabric particularly challenging substrate
- Phosphate acts to catalyze the charring of cellulose
- Melamine polyphosphate can add further FR protection

M. Leistner, M. Haile, S. Rohmer, A. Abu-Odeh, J. Grunlan, *Polym Degrad Stab*, **2016**, *122*, 1-7. Copyright © 2022 by Jaime C. Grunlan

Flammability of NYCO

M. Leistner, M. Haile, S. Rohmer, A. Abu-Odeh, J. Grunlan, *Polym Degrad Stab*, **2016**, *122*, 1-7. J. C. Grunlan, "Aqueous Polyelectrolyte Complex as One Pot Nanocoating Solution to Impart Antiflammable Behavior to Various Substrates," U.S. Patent 9,840,629. Copyright © 2022 by Jaime C. Grunlan

12

Flammability of NYCO

PEC: 7 wt% PEI + 14 wt% APP

M. Leistner, M. Haile, S. Rohmer, A. Abu-Odeh, J. Grunlan, *Polym Degrad Stab*, **2016**, *122*, 1-7. J. C. Grunlan, "Aqueous Polyelectrolyte Complex as One Pot Nanocoating Solution to Impart Antiflammable Behavior to Various Substrates," U.S. Patent 9,840,629.

Melamine for Char-Improvement

Melamine addition creates strong, dense char that acts as heat shield and barrier to oxygen and volatiles.

M. Leistner, M. Haile, S. Rohmer, A. Abu-Odeh, J. Grunlan, Polym Degrad Stab, 2016, 122, 1-7.

J. C. Grunlan, "Aqueous Polyelectrolyte Complex as One Pot Nanocoating Solution to Impart Antiflammable Behavior to Various Substrates," U.S. Patent 9,840,629.

Heat Release of NYCO

PCFC (aka MCC) not able to detect char density or cooling effects.

M. Leistner, M. Haile, S. Rohmer, A. Abu-Odeh, J. Grunlan, *Polym Degrad Stab*, **2016**, *122*, 1-7. J. C. Grunlan, "Aqueous Polyelectrolyte Complex as One Pot Nanocoating Solution to Impart Antiflammable Behavior to Various Substrates," U.S. Patent 9,840,629. Copyright © 2022 by Jaime C. Grunlan

Heat Sink during Pyrolysis

	VFT	THR (by PCFC)	Energy balance* (260 – 500°C)
no coating	burned off	19.1 kJ/g	+ 340 J/g
PEC	burned off	13.6 kJ/g	+ 70 J/g
PEC + Mel ^{2%}	self-extinguishing	13.7 kJ/g	- 60 J/g

* measured by DSC in N_2 at a heating rate of 10 K/min

DSC reveals a change in the energy balance during pyrolysis that reveals melamine addition making a more endothermic situation.

M. Leistner, M. Haile, S. Rohmer, A. Abu-Odeh, J. Grunlan, Polym Degrad Stab, 2016, 122, 1-7.

J. C. Grunlan, "Aqueous Polyelectrolyte Complex as One Pot Nanocoating Solution to Impart Antiflammable Behavior to Various Substrates," U.S. Patent 9,840,629.

Additive Manufacturing

- Fused Filament Fabrication
 - Filaments are flammable thermoplastics
 - Causes fires, limits part applications

s counterproductive for filaments

retardant not localized to surface of part

3D printer blamed for fire inside Cain Building on Texas A&M campus

Firefighters say a 3D printer started a fire inside a classroom Wednesday afternoon inside the James J. Cain Building on the Texas A&M campus. https://kbtx.com

C. B. Sweeney, B. A. Lackey, M. J. Pospisil, T. C. Achee, V. K. Hicks, A. G. Moran, B. R. Teipel, M. A. Saed, M. J. Green, Sci. Adv. 2017, 3, e1700262.

- Polyvinylamine (PVA)
 - BASF Lupamin 9095
 - Estimated M \sim 205 kDa
- Sodium hexametaphosphate (PSP) $- M_n \sim 3 \text{ kDa (estimated)}$
- Polylactic acid (PLA)
 - 3D Solutech filament
 - Most common 3D printing filament

T. J. Kolibaba, C.-C. Shih, S. Lazar, B. L. Tai, J. C. Grunlan, ACS Materials Letters **2020**, *2*, 15. Copyright © 2022 by Jaime C. Grunlan

Flame Retardant Filament

PEC Production and Processing

- Mix PVA & PSP
 - Separate solutions each pH 7, 0.25 M

- Dried overnight at 120 °C
- Resultant PEC can be extruded
 - Plasticize with DI water, extrude at 90 °C
- Intrinsically flame retardant

T. J. Kolibaba, C.-C. Shih, S. Lazar, B. L. Tai, J. C. Grunlan, ACS Materials Letters 2020, 2, 15. Copyright © 2022 by Jaime C. Grunlan

3D Printing

- Filament
 - 25% PEC, 75% PLA
 - Mixed in microcompounder/extruder
 - Plasticized with DI water prior to extrusion
 - Printed at 200 °C, 3000 mm/min
 - Identical to 'normal' parameters for PLA

T. J. Kolibaba, C.-C. Shih, S. Lazar, B. L. Tai, J. C. Grunlan, ACS Materials Letters 2020, 2, 15. Copyright © 2022 by Jaime C. Grunlan

Printed Part Flame Retardancy

Microscale Combustion Calorimetry

Sample	Char Yield (wt%)	pkHRR (W/g)	pkHRR Temp (°C)	THR (kJ/g)
PLA	0.8 ± 0.2	530 ± 40	392 ± 5	16.8 ± 0.1
PLA-PEC	13.6 ± 0.3	309 ± 3	391	13.6 ± 0.1
Change	+1600%	-42%	-	-19%

• Open flame test

T. J. Kolibaba, C.-C. Shih, S. Lazar, B. L. Tai, J. C. Grunlan, *ACS Materials Letters* **2020**, *2*, 15. Copyright © 2022 by Jaime C. Grunlan

Nanobrick Wall Thermal Shielding Coating

Deposition of Aqueous Heat Shielding System

Protection of Polystyrene Plate

3.2 mm Polystyrene Plate

Polystyrene Plate with 8 BL Clay/Polymer Coating (4 mm thick)

Guin, Grunlan et al. *Advanced Materials Interfaces* **2015**, *2*, 1500214. Copyright © 2022 by Jaime C. Grunlan

Early Demonstration of Shielding CFRP

- Carbon Fiber Reinforced Polymer
 - 6 BL: 0.1% CH + 50 mM THAM (pH 6) / 1% VMT (pH 10)
 - Dip rinses in 50 mM THAM (pH 6) / pH 10 water
 - Torch test 120 s test with butane blowtorch (2.5 cm away, ~2.5 cm flame)
 - Plate approx. 7.6 x 10 x 0.16 cm³

CFRP	% Mass Loss	Backside* Temp (°C)	
Uncoated	4.8	353	
Coated	2.0	257	

*Backside temp is maximum temperature achieved by a thermocouple in contact with the backside of the substrate during the test

Tensile Testing with Torch Exposure

SEM of Torched Composites

Uncoated

Coated (coating removed)

Post-Burn FTIR of Composites

Epoxy matrix preserved after 1-minute exposure to 1400 °C flame.

Maintaining Strength at High Temperature

Composite feels lower temperature and maintains strength for longer time upon flame exposure.

Coated Composites Do Not Oxidize in Flame

Sample	Atomic	Ratio (%)	O/C ratio (%)
Sample	С	0	\mathbf{O} / \mathbf{C} fallo (%)
Pre-burn uncoated	89.56	10.55	12
Post-burn uncoated	81.80	11.98	15
Post-burn coated*	89.15	10.27	12
*Coating was removed			

Post-flame XPS analysis suggests the coated composites did not oxidize.

Materials for Halloysite-Based FR Treatment

- Branched Polyethylenimine (BPEI)
 - 0.1 wt% in water
 - Purchased from Sigma Aldrich
- Poly(acrylic acid) (PAA)
 - 0.1 wt% in water
 - Purchased from Sigma Aldrich
- Halloysite (HNT)
 - 0.5% in BPEI and PAA solutions, unaltered pH
 - Ultrasonication to achieve stable suspensions
 - Applied Minerals Inc.

Coating Deposition and Growth

Linear growth observed: 3 BL ~200 nm and 5 BL ~600 nm.

Conformal Coating of Open-Celled Foam

5 BL BPEI/PAA

Uniform coating with HNT nanotube bundles observed in SEM and AFM.

Heat and Smoke Release Behavior

Halloysite reduces flammability

- pkHRR 61% reduction
- TSR 60% at 5 bilayers
- Prevents melt pool formation

Coating	Weight Gain	HNT	pkHRR	THR	TSR	
	[%]	[%]	[kWm ⁻²]	[MJm ⁻²]	$[m^2m^{-2}]$	
Uncoated	N/A	N/A	634 ± 31	18.4 ± 0.1	178 ± 7	
5 BL PEI/PAA	10.6 ± 0.5	N/A	621 ± 11	20.2 ± 0.3	217 ± 4	
3 BL HNT	26.2 ± 0.6	91	244 ± 2	18.1 ± 0.2	93 ± 8	
5 BL HNT	34.2 ± 0.5	86	243 ± 2	18.8 ± 0.2	71 ± 7	

Open Flame Testing of 5 BL Coated Foam

5BL BPEI-HNT/PAA-HNT 5x Speed

Self-Extinguishing Polyurethane Foam

- Completely polymeric intumescent nanocoating
- CH and PSP both at pH 6
- PSP promotes dehydration of CH to form protective char layer

M.-J. Chen, S. Lazar, T. J. Kolibaba, R. Shen, Y. Quan, Q. Wang, H.-C. Chiang, B. Palen, J. C. Grunlan, *Appl. Mater. Interfaces* 2020, *12*, 41930. Copyright © 2022 by Jaime C. Grunlan

Direct Torch Flame on Foam

Uncoated Polyurethane Foam

6 BL CH/PSP

M.-J. Chen, S. Lazar, T. J. Kolibaba, R. Shen, Y. Quan, Q. Wang, H.-C. Chiang, B. Palen, J. C. Grunlan, *Appl. Mater. Interfaces* 2020, *12*, 41930. Copyright © 2022 by Jaime C. Grunlan

Self-Extinguishes and Maintains Form w/o Clay

Uncoated

6 BL CH/PSP

Post-burn 6 BL CH/PSP cross-section

This clay-free nanocoating exhibits self extinguishing behavior after being exposed to a 1400°C direct flame for 10 s, while preserving structure of the foam.

M.-J. Chen, S. Lazar, T. J. Kolibaba, R. Shen, Y. Quan, Q. Wang, H.-C. Chiang, B. Palen, J. C. Grunlan, *Appl. Mater. Interfaces* 2020, *12*, 41930. Copyright © 2022 by Jaime C. Grunlan

Conclusions

- **Notice and Series Provide an Opportunity to <u>quickly deposit "LbL-like"</u> <u>films</u>**
- Effective flame-retardant coatings deposited in <u>1 or 2 steps from water-based solution</u>
- EX LbL films with <u>few bilayers can yield tremendous properties</u>

Polymer NanoComposites (PNC) Lab (http://nanocomposites.tamu.edu)

Questions?

- Polyelectrolyte with pH-dependent charge
 - Example: polyethylenimine

- High pK_a Low pH = High Charge
- Solution pH can serve as a stimulus to form a PEC on demand

Layer-by-Layer Assembly

Ambient Processing 🌾 Tunable Properties 🌾 Nanoscale Control

Bertrand, P., Jonas, A., Laschewsky, A., Legras. R. *Macromol. Rapid Comm.* **2000**, *21*, 319. *Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials*, 2nd Ed., Decher, G., Schlenoff, J. B., Eds., Wiley: New York **2012**. Ariga, K., Yamauchi, Y., Rydzek, G., Ji, Q. M., Yonamine, Y., Wu, K. C. W. Hill, J. P. *Chemistry Letters* **2014**, *43*, 36. Copyright © 2022 by Jaime C. Grunlan

Post-Burn CFRP Composites

Coated

All images are following one minute exposure to butane torch flame.

Uncoated

Copyright © 2022 by Jaime C. Grunlan

Coated (coating removed)

