Designing Polymeric Hydrocarbons for Low Flammability Materials

10th Triennial International Aircraft Fire and Cabin Safety Research Conference October 18, 2022

Todd Emrick, **Elizabeth Stubbs**, Chien-Han Chen, and **Krishnamurthy Munusamy** Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003

Flammability considerations: from materials to analysis

Heat Release Capacity (HRC) Measurements on Synthetic Polymers

Lyon, Walters, Safronava and co-workers Federal Aviation Administration

Fire Growth Capacity (FGC) Measurements on Synthetic Polymers

Lyon J. App. Poly. Sci. 2004; Safronava 30th BCC 2019

FGC and Bench Scale Tests (UL 94 Vertical and 14 CFR 25)

Lyon, Safronava, Crowley, and Walters, Polymer Degradation and Stability, 2021

Ongoing Progress in Organic and Polymeric Flame Retardants

Our objective: develop inherently non-flammable polymers without halogen, phosphorous, or inorganic additives

Deoxybenzoin as a Precursor to Non-flammable Polymers

Objective: Demonstrate the Versatile Chemistry of Deoxybenzoi

Hypothesized char-forming mechanism

Van der Waals et al. J. Mol Catal. A 1998

Polymer, 2016, 84, 59e64; Macromolecules 2017, 50, 3772-3778; Macromol. Mater. Eng. 2021, 306, 2000567

Presentation outline

New Synthetic Routes to Deoxybenzoin as Key Component of Non-flammable Polymers and Additives

I. High-yield syntheses of deoxybenzoin monomers and cross-linked polymer networks

II. Alkynyl-functionalized deoxybenzoins: preparation and use in step-growth polymerization reactions

Bis-propargyl deoxybenzoin (BPD)

Precursor to low heat-release oligomers and polymers

I. Deoxybenzoins for Integration into Epoxy Networks

Bis-allyl BEDB (BA-BEDB)

Bis-epoxy deoxybenzoin (BEDB)

Bis-epoxy deoxybenzoin (BEDB) simple synthesis \rightarrow excellent properties

BEDB-epoxy: self-extinguishes

Macromolecular Materials and Engineering, 2020

Deoxybenzoin Doubles Char Yield and Halves Heat Release

Heat release capacity (HRC) and total heat release (THR) from pyrolysis combustion flow calorimetry

	mermai properues and nammability of the resins cured with mixed anilles.										
	Formulation ^a		Thermal property		Flammabilit	Flammability		THR: heat of combustion of pyrolysis gas		\$	
r			$T_{g}(^{\circ}C)^{l}$	b Residue ^c (%	%) HRC (J/(gK))) THR (kJ/g)	HRC: n	naximum heat	release rate divided	Ł	
	EBPA/4,4'-	-DDS	198	12	513 ± 10	25.3 ± 0.2	b	by the heating	rate		
Bis-phenol A	EBPA/4,4'-	-DDS _{0.8} 4,4'-DDM _{0.2}	196	14	454 ± 30	24.9 ± 0.4					
resins	EBPA/4,4'-	-DDS _{0.5} 4,4'-DDM _{0.5}	185	15	577 ± 28	25.4 ± 0.2					
	EBPA/4,4'-	-DDS _{0.2} 4,4′-DDNI _{0.8}	1/8	16	693 ± 21	26.2 ± 0.4			0		
Ļ	BFDR/4,4	-DDN -DDS	179	30	737 ± 24 420 ± 14	20.8 ± 0.4 172 ± 0.2		\sim			
	BEDB/4.4'	$-DDS_{0.8} 4.4' - DDM_{0.2}$	180	33	342 ± 4	17.2 ± 0.2 17.5 ± 0.5	0			$\checkmark 0$	
Deoxybenzoin	BEDB/4,4									\sim	
resins	BEDB/4,4 BEDB/4,4 ^a Subsc ^b T _g s w ^c Char min).	Formulation		Thermal p	property	operty		Heat release EDB			
				$T_{\rm g}~(^{\circ}{ m C})^{ m a}$	$T_{\rm di} (^{\circ} C)^{\rm b}$	Residue ^c	(%) H	RC(J/(gK))			
		EBPA/4,4'-DDS	5	198	385	12	5	513 ± 10			
		BEDB/4,4'-DDS	5	181	377	30	42	20 ± 14			
	_	ETBBA/4,4′-DE	DS	213	304	23	4	43 ± 11			
	Lap	EBPA/4,4′-DDN	N	179	372	16	7	37 ± 24			
	ASTN	BEDB/4,4'-DDI	M	145	354	35	4	39±7			
		ETBBA/4,4′-DE	DM	192	274	24	3	08 ± 14			
		EBPA/ <i>m</i> -PDA		176	367	14	7	61 ± 23			
		BEDB/ <i>m</i> -PDA		144	340	29	3	91 ± 40			
		ETBBA/m-PDA		177	263	23	2	38 ± 3	Polymer	2009	

Thermal properties and flammability of the resins cured with mixed amines.

Impact of Small Weight Percent Additives on Deoxybenzoin Networks

Macromolecular Materials and Engineering www.mme-journal.d

Combining Mechanical Fortification and Ultralow Flammability in Epoxy Networks

Chinmay Saraf, Elizabeth Stubbs, Weiguo Hu,* Todd Emrick,* and Alan J. Lesser*

Multifunctional organophosphorus additives present opportunities to engineer epoxy networks with both enhanced mechanical properties and ultralow flammability. This paper describes a systematic investigation of the effect of dimethyl methylphosphonate (DMMP) on the mechanical and heat release properties of both conventional and inherently low flammability epoxy resins. The findings demonstrate that integration of DMMP into epoxy networks produces materials with outstanding flame retardance and increased stiff. matrix. While halogens, especially aromatic bromides, effectively reduce the heat release of epoxies by acting as gas phase flame retardants,^[6] the resultant release of corrosive and toxic gas introduces health and safety concerns.^[7] In addition, environmental legislation concerning the manufacture of halogenated molecules complicates their continued

ness. Thermogravimetric analysis of DMMI

1100	Phosphorus concentration [wt%]	DGEBA-based formulations [J g ⁻¹ K ⁻¹]	BEDB-based formulations [J g ⁻¹ K ⁻¹]	 measurements based networks
BPA-based net	0	384	194	
	0.5	351	76	
	1.0	311	65	
	1.5	286	56	
Macromolecular Materials & Engine	2.0	273	56	_

BA-BEDB:

Multifunctional and Orthogonal Crosslinking Mechanisms

Multistage Curing: Thiol-ene and Epoxy-amine

16

High-char Network and Impact of Deoxybenzoin Weight Percent

Low Heat Release Polymer Networks

Large heat release decline with increasing BA-BEDB content

Indications of BHDB as a Bio-friendly Alternative to BPA

When exposed to estrogen or BPA, male Japanese Medaka fish express the egg yolk precursor protein vitellogenin II (vtg II) in the liver. (normally expressed only in female fish)

In vivo estrogenic bio-activity assay

- Male Medaka fish exposed to monomers at 2 μ M or 17 μ M for 72 hours
- Using quantitative PCR, fish liver probed for expression of vtg II

BHDB, and the bis-phenol triazoles (BPTs), appear to be non-estrogenic

Bis-propargyl Deoxybenzoin (BPD)

 \mathbb{R}^1

-continued

юн

(II)

(III)

 (19) United States
 (12) Patent Application Publication Mir et al.
 (10) Pub. No.: US 2017/0101361 A1 (43) Pub. Date: Apr. 13, 2017

HO

- (54) UNSATURATED DEOXYBENZOIN COMPOUNDS AND POLYMERS PREPARED THEREFROM
- (71) Applicant: The University of Massachusetts, Boston, MA (US)
- Inventors: Aabid A. Mir, Amherst, MA (US);
 Todd Emrick, South Deerfield, MA (US); Umesh Choudhary, Shrewsbury, MA (US)
- (21) Appl. No.: 15/286,768
- (22) Filed: Oct. 6, 2016

Related U.S. Application Data

(60) Provisional application No. 62/238,186, filed on Oct. 7, 2015.

 \mathbb{R}^1

 \mathbf{R}^3

BPD

Multigram synthesis in high yield and purity Opportunities for azide-alkyne

& thiol-yne click reactions

Publication Classification

Polymers Built from Bisphenol Triazole (BPT)

Thermally Induced Structural Transformation of Bisphenol-1,2,3triazole Polymers: Smart, Self-Extinguishing Materials** Angewandte Beom-Young Ryu and Todd Emrick* Chemie Table 1: Heat release capacity (HRC), total heat release (THR), and charring properties of BPT-containing polymers and commercial highperformance materials. Polymer HRC THR Char Entry [%]^[b] $[Jg^{-1}K^{-1}]$ $[k] g^{-1}$ **BPA** polyarylate 456 ± 13 17.7 ± 0.5 26 4-BPT/BPA (50/50) 95 ± 4 12.0 ± 0.5 38 2 6.8 ± 0.3 3 4-BPT 46 ± 5 47 102 ± 5 11.3 ± 0.4 3-BPT/BPA (50/50) 44 4 5 3-BPT 23 ± 3 4.6 ± 0.2 56 Kevlar^[a] 363 ± 2 8.8 ± 0.5 38 6 Nomex^[a] 99 ± 0.5 6.6 ± 0.2 43 Kapton^[a] 4.0 14 66 8

[a] Data taken from the references.^[11] [b] Data obtained from TGA at $850 \degree$ C in nitrogen (heating rate $10\degree$ C min⁻¹).

Scheme 2. Synthetic procedures for BPT polymers. bpy = bipyridine, Bz = benzoyl, DCM = dichloromethane, 4-BPT = 1,4-bis(4-hydroxyphenyl)-1,2,3-triazole, 3-BPT = 1,4-bis(3-hydroxyphenyl)-1,2,3-triazole.

Beom-Young Ryu and Todd Emrick, Angew. Chem. Int. Ed. 2010, 49, 9644–9647

Bis-propargyl Deoxybenzoin (BPD)

Presentation outline

New Synthetic Routes to Deoxybenzoin as Key Component of Non-flammable Polymers and Additives

I. High-yield syntheses of deoxybenzoin monomers and cross-linked polymer networks

II. Alkynyl-functionalized deoxybenzoins: preparation and use in step-growth polymerization reactions

Bis-propargyl deoxybenzoin (BPD)

Precursor to low heat-release oligomers and polymers

Designing Polymeric Hydrocarbons for Low Flammability Materials

10th Triennial International Aircraft Fire and Cabin Safety Research Conference October 18, 2022

Todd Emrick, **Elizabeth Stubbs**, Chien-Han Chen, and **Krishnamurthy Munusamy** Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003

