

1/26/2023

Experimental Measurements of Full-scale Fire Growth for Fire Model Validation

Tenth Triennial International Aircraft Fire and Cabin Safety Research Conference Atlantic City, New Jersey, USA

M. Heck, I. Leventon, M. Bundy, K. McGrattan, R. Davis

October 18, 2022

Disclaimer

Some of the data in this presentation has not been through the NIST review process and should be considered experimental / draft results. However, the data has been analyzed by subject matter experts within the research team and is believed to be scientifically sound and consistent with the integrity expected of NIST research.

Overview

- Background
- Experimental Design
- Results
- Further Work

Background – Big Picture

The NIST Fire Research Division is currently developing the experimental and computational analysis tools needed to enable quantitative prediction of material flammability behavior; e.g. ignition, steady burning, fire growth.

Background – Material Flammability

- Current assessment of a material's flammability:

- Classifies a material's reaction to fire
- Cannot be taken out of context
- Full-scale testing:
 - Too expensive
 - Too many possible combinations of materials, configurations, ignition sources
- Computation Fluid Dynamics (CFD) has the potential to predict large-scale burning behavior
 - There is a knowledge gap in flame spread physics
 - Coupling of condensed-phase and gas-phase processes

Background – Flame Spread

- Positive feedback loop
 - Pyrolysis
 - Heat transport
 - Thermal degradation
 - Combustion
 - Heat feedback
- Flame-to-surface heat flux is the driving component of fire growth

1/26/2023

engineering aboratory

Background – Flame Spread

- Material Properties

- Degradation Kinetics (A, ε , v)
- Heat of Reaction (h_i)
- Heat Capacity (c_p)
- Heat of Combustion (ΔH_c)
- Thermal Conductivity (k)
- Absorption Coefficient (α)
- Emissivity (ε)

-Key Parameters

- Mass Loss (*m*")
- Heat Flux (\dot{q} ")

1/26/2023

Experimental Design – Variety of Materials

-18 combustible solids:

- Natural and synthetic polymers
- Copolymers
- Fiberglass-reinforced composite materials
- Porous polymer foams
- Electrical cables
- -Charring, sooting, dripping
- —Same material; varying thickness, density

engineering aboratory

1/26/2023

Height: 0.30 m

Burner Characterization

2.44 m 2.44 m 2.44 m Propane Burner Dimensions Length: 0.61 m Width: 0.30 m

Burner Characterization

Results – Burning Behavior

1/26/2023

11

Results – Variety of Materials – HRR

12

Results – Radiation At A Distance

1/26/2023

13

Results – Heat Flux Data – Sample Case

Results – Heat Flux Data – Sample Case

PMMA_R1

PMMA_R3 PMMA_R5

1000

800

15

Results – Heat Flux Data – Sample Case

16

Heat Release Rate, \dot{Q} [kW]

1/26/2023

HRR, \dot{Q} [kW]

Heat Flux, \dot{q} " $[kW/m^2]$

engineering aboratory

Results – Flame Heat Flux Profile - PMMA

18 1/26/2023

Results – Flame Heat Flux Spatial Profile – ABS

Doing this for all materials provides a comprehensive data set for validation

1/26/2023

19

Results – Fraction of Heat Flux Attributed to Radiation

20

1/26/2023

engineering

Radiation fraction of total heat flux to walls $q_{rad}(\%) = \frac{q_{rad}}{q_{total}}$

Results – Fraction of Heat Flux Attributed to Radiation

engineering

Radiation fraction of total heat flux to walls $q_{rad}(\%) = \frac{q_{rad}}{q_{total}}$

Results – Fraction of Heat Flux Attributed to Radiation

First ever direct measurements of $q_{rad}(\%) = \frac{q_{rad}}{q_{total}}$

For multiple: fuels, HRR, locations

Results - Summary

- Comprehensive set of validation data for computational fluid dynamics (CFD) simulations of large-scale fire growth due to flame spread over the surface of combustible solids
 - Fire Size
 - Time resolved & Peak HRR
 - Total Heat Released
 - Fire Growth Rate
 - Heat of Combustion

- Heat Transfer
 - Spatially resolved flame heat feedback profiles
 - Flame to wall heat transfer mechanism
 - Radiation heat transfer at a distance
- Species Yields
 - Y_{CO}, Y_{CO2}, Y_{soot}

23

Further Work

NIST Technote, The Impact of Material Composition on Ignitability and Fire Growth

FDS Validation Guide

Fire Calorimetry Database: <u>https://www.nist.gov/el/fcd</u> Material Flammability Database: <u>https://flammability.el.nist.gov/</u> MaCFP-3 Workshop (DOI: <u>https://doi.org/10.18434/mds2-2812</u>)

24

Acknowledgements

Nuclear Regulatory Commission (NRC)

- This work was supported by the Office of Nuclear Regulatory Research (RES) of the US Nuclear Regulatory Commission (US NRC)
- Directed by: Mark Henry Salley
- Support from: Kenneth Hamburger, Nicholas Melly, Gabriel Taylor, and David Stroup

- National Fire Research Laboratory (NFRL)

- This facility is directed by Matt Bundy
- Apparatus construction and maintenance: Marco Fernandez
- Technical support: Matthew Bundy, Anthony Chakalis, Artur Chernovsky, Philip Deardorff, and Laurean DeLauter

Thank you – Questions?

engineering

ator

Burner Characterization

• Non-uniform flaming

29

Interpretation of Measurement Results

Disclaimer

Some of the data in this presentation has not been through the NIST review process and should be considered experimental / draft results. However, the data has been analyzed by subject matter experts within the research team and is believed to be scientifically sound and consistent with the integrity expected of NIST research.

30 1/26/2023

Bench Scale

