Automated Characterization of Heat Capacities and Heats of Gasification of Flammable Materials

October 18, 2022

Morgan C. Bruns St. Mary's University (USA)

Isaac T. Leventon

National Institute of

Standards and Technology (USA)

ST.MARY'S

Predicting Fire Growth

- To engineer safer:
 - Buildings
 - Products
 - Materials
- Accurate predictions require condensed phase pyrolysis models

Condensed Phase Challenges

- Physics
 - Multiphase
 - Mechanical deformation
- Numerics
 - Gas phase coupling
 - Multiscale
 - Moving boundary
- Materials
 - Many parameters
 - Many materials

How Many Parameters?

$$\begin{aligned} \frac{\partial \rho_i}{\partial t} &= \dot{m}_i^{\prime\prime\prime}, \quad i = 1, \dots N\\ \rho c \frac{\partial T}{\partial T} &= \nabla \cdot (k \nabla T) + \dot{q}^{\prime\prime\prime}\\ \dot{m}_i^{\prime\prime\prime} &= -A_i \rho_i \exp\left(-\frac{E_i}{RT}\right), \quad i = 1, \dots, N\\ \rho c &= \sum_{i=1}^N \rho_i c_i\\ k &= f\left(\rho_1, \dots, \rho_N, k_1, \dots, k_N\right)\\ \dot{q}^{\prime\prime\prime} &= -\sum_{i=1}^N \Delta h_i \dot{m}_i^{\prime\prime\prime}\\ \rho_i \left(t = 0\right) &= \rho_{0,i}, \quad i = 1, \dots, N \end{aligned}$$

Neglecting

- Radiation
- Mass transport
- Charring
- Temperature
 dependence

At least ~6N material property parameters need to be quantified

How many materials?

- NFIRS categorizes 38 distinct "types" of solid materials "First Ignited"
- These "types" are extremely broad categories such as "Plastic", "Rubber", and "Plywood"
- For example, Lyon and Janssens (2005) contains data on 50 common plastics
- Additional diversity due to processing variability, additives, blends, ageing, etc.

On the order of 10³ distinct materials relevant to fire growth predictions

Material Property Database

Critical components

- 1. Standard data formatting
- 2. Standard metadata
- 3. Calibration tools
- 4. Web-based user interface

Quality of **calibration tools** is ultimately determined in **model validation**—do the parameters predict fire growth?

Global Approach

Calibration Method Requirements

- 1. Parameters predict data \rightarrow Accurate
- 2. Values agree with physics \rightarrow Realistic
- 3. Fast parameter evaluation \rightarrow Efficient
- 4. Can handle complex behavior \rightarrow Robust
- 5. Values do not vary \rightarrow **Stable**

How to be Realistic

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

~John von Neumann

- Appropriate physical models
- Experiments that isolate physical
- Update models and data as necessary!

Why be **realistic**? Confidence in vastly different scenarios

How to be **Consistent**

For a given material, the method should always produce the similar parameters

- Solve well-posed problems
- Avoid free parameters
- Don not use random numbers

Parameter Value

Analysis of TGA Data

How should we estimate pyrolysis kinetic parameters from raw TGA data?

Pyrolysis Model: Independent First-Order Reactions

Reactant
$$\xrightarrow{k} \nu$$
Char + $(1 - \nu)$ Gas
 $k = \left(\frac{A}{\beta}\right) \exp\left(-\frac{E}{RT}\right)$
 $m' \equiv \frac{\mathrm{d}m}{\mathrm{d}T} = -(1 - \nu) \, km, \quad m(T_0) = m_0$

Appropriateness to be determined by ability to predict fire growth.

TGA Validation Summary

25 materials:

list of all current TGA test series tga tests = ['ABS Expt TGA N2 10K', 'BigBerry-Leaf_Expt_TGA_N2_10K', 'BigBerry-Stem_Expt_TGA_N2_10K', 'Chamise-Leaf_Expt_TGA_N2_10K', 'Chamise-Stem_Expt_TGA_N2_10K', 'Chaparral-Leaf Expt TGA N2 10K', 'Chaparral-Stem_Expt_TGA_N2_10K', 'DesertCeanothus-Leaf Expt TGA N2 10K', 'DesertCeanothus-Stem Expt TGA N2 10K', 'DouglasFir-Leaf_Expt_TGA_N2_10K', 'HDPE Expt TGA N2 10K', 'HIPS_Expt_TGA_N2_10K', 'Kydex_Expt_TGA_N2_10K', 'LodgepolePine-Leaf_Expt_TGA_N2_10K', 'LodgepolePine-Stem_Expt_TGA_N2_10K', 'MaCFP_PMMA_Expt_TGA_N2_10K', 'PolyIso1 Expt TGA N2 10K', 'PolyIso2 Expt_TGA_N2_10K', 'PolyIso05_Expt_TGA_N2_10K', 'POMGF Expt TGA N2 10K', 'XPSgreen_Expt_TGA_N2_10K', 'XPSpink Expt TGA N2 10K'

Analysis of MCC Data

How should we estimate individual reaction heats of combustion $(\Delta h_{c,i})$ from raw MCC data?

MCC Validation

12 materials:

list of all current MC test series
mcc_tests = [
 'BigBerry-Leaf_Expt_MCC_N2_10K',
 'BigBerry-Stem_Expt_MCC_N2_10K',
 'Chamise-Leaf_Expt_MCC_N2_10K',
 'Chaparral-Leaf_Expt_MCC_N2_10K',
 'Chaparral-Stem_Expt_MCC_N2_10K',
 'DesertCeanothus-Leaf_Expt_MCC_N2_10K',
 'DesertCeanothus-Stem_Expt_MCC_N2_10K',
 'DouglasFir-Leaf_Expt_MCC_N2_10K',
 'LodgepolePine-Leaf_Expt_MCC_N2_10K',
 'LodgepolePine-Stem_Expt_MCC_N2_10K',
 'MaCFP_PMMA_Expt_MCC_N2_60K',

FACT: Flammability data Automated Calibration Tools

••• • <	> () 🔒 gith	hub.com	Ċ			
Search or jum	p to / Pull re	quests Issues Marketplace Explore				¢ +• ∰•	
A mcb1/fact Pri	ivate				⊙ Unwatch 3 ▼	1 ☆ Star 0 -	
<> Code • Issue	es 🖞 Pull requests 🕑 Actio	ns 🗄 Projects 🕕 Security 🗠 Insig	ghts 🕸 Setting	s			
P mast	ter - 🦻 1 branch 🛇 0 tags		Go to file	Add file - Code -	About	礅	
🚳 mc	b1 mcb1: logic to handle difference	in no. of peaks	a54ad15 17 ho	urs ago 🔞 35 commits	Flammability data Automated Tools	d Calibration	
Exp	periment	MCC Data, adjust temperature units for Veg. F	Fuel MCC data	3 days ago	Readme		
Fits	5	initial commit		7 months ago	邳 MIT license		
🖿 Mat	terials	Put back accidentally deleted material metada	ata files	3 days ago	 3 watching 		
🖿 Scr	ripts	mcb1: logic to handle difference in no. of peak	ks	17 hours ago	약 1 fork		
🗋 .git	ignore	initial commit		7 months ago	Releases		
	ENSE	initial commit		7 months ago			
🗋 REA	ADME.md	initial commit		7 months ago	No releases published Create a new release		
READM	E.md			P	Packages		
FA	CT				No packages published Publish your first package		
Flam	Flammability data Automated Calibration Tools						
1 Anui	its of tools and data in summart of	f prodictivo firo modelina			Contributors 3		

Example: Polyisocyanurate Board Insulation

Replicate TGA Data Files:

(base) Scripts \$ python average_tga_series.py PolyIso2_Expt_TGA_N2_10K

Reading data from:

PolyIso2_Expt_TGA_N2_10K_r7.csv PolyIso2_Expt_TGA_N2_10K_r6.csv PolyIso2_Expt_TGA_N2_10K_r4.csv PolyIso2_Expt_TGA_N2_10K_r5.csv PolyIso2_Expt_TGA_N2_10K_r2.csv PolyIso2_Expt_TGA_N2_10K_r3.csv PolyIso2_Expt_TGA_N2_10K_r8.csv

Number of data sets in series = 7

Example: Lodgepole Pine Stems

fact/Materials/metadata/LodgepolePine-Stem.json

Replicate MCC Data Files:

Pyrolysis Kinetics from TGA

Average MCC Data

🔲 🔢 Material Flammability 🛛 🗙 🕂

Material Flammability Database

This database contains data from the Materials database. The data is organized by material and the kinetic parameters is available for download in the form of a csv file.

Material		
Chamise-Stem	× *	
ABS	i	
BigBerry-Leaf		
BigBerry-Stem		
Chamise-Leaf		
Chamise-Stem		
Chaparral-Leaf Acquired		Ŧ
Description	Thin (<0.75 mm) flat slices of small branches picked from a series of randomly selected individual Desert Chamise plant	s
Categories	Vegetatio	n

TGA	MCC	
Chamise-Stem_Expt_TGA_N2_1 × *	Chamise-Stem_Expt_MCC_N2_1 × •	
Kinetic Params		

Name	Units	Values
Pre-exponential Factor	1/s	2.732E+07, 7.219E+10, 1.474E+01
Activation Energy	kJ/mol	1.008E+05, 1.507E+05, 5.022E+04
Normalized Mass of Reaction	-	1.409E-01, 2.608E-01, 2.915E-01
Heat of Combustion	J/g	1.145E+04, 9.040E+03, 1.823E+03

Not syncing 🔊

Ē

Analysis of DSC Data

How should we estimate component specific heat capacities $(c_{p,i})$ and heats of gasification (Δh_i) from raw DSC data?

Modeling DSC

Assumptions:

- No spatial variations in temperature and composition
- No work

Normalized Model

Divide energy equation by initial mass, m_0

$$\mu c_p \frac{dT}{dt} = q - q_r$$

where

$$\mu \equiv m/m_0$$
$$q \equiv Q/m_0$$
$$q_r \equiv Q_r/m_0$$

Material and Reaction Models

- Consistent with TGA analysis
- Mass information from pyrolysis kinetics
- 2N_r + 1 unknown material properties

Char Specific Reactant
Heat Specific Heat
$$N_r$$

 $\mu c_p = \mu_c c_{p,c} + \sum_{i=1}^{N_r} \mu_i c_{p,i}$
 $q_r = \sum_{i=1}^{N_r} \Delta h_i \left(-\frac{d\mu_i}{dt}\right)$
Heats of
Gasification

Linear Problem—Heat Flow

Integral Heat Flow Form

Hypothesis: total heat absorbed by material is more important for predicting flame spread

Linear Problem—Total Heat Flow

- $N_{\rm d}$ equations for $2N_{\rm r} + 1$ unknowns
- Linear least-squares problem is wellposed* → unique solution exists

DSC: Single Reaction Verification

- Markers: simulated data using assumed specific heats and heats of gasification
- Lines: fits using calibrated parameters

DSC: Two Reaction Verification

Validation: HIPS

Based on 7 replicate DSC experiments at 10 K/min

Property	Calibrated Value	Stoliarov and Walters (2008)
Specific Heat Capacity (J/g-K)	1.61	2.0
Heat of Gasification (J/g)	818	1000

Validation: POMGF

Based on 7 replicate DSC experiments at 10 K/min

Property	Calibrated Value	Stoliarov, Lyon, and Linteris (2012)
Specific Heat Capacity (J/g-K)	2.27	1.88
Heat of Gasification (J/g)	1720	1570

DSC Validation Cases

11 materials:

list of all current DSC test series dsc_tests = ['ABS_Expt_DSC_N2_10K', 'HDPE Expt DSC N2 10K', 'HIPS Expt DSC N2 10K'. 'Kydex Expt DSC N2 10K', 'MaCFP PMMA Expt DSC N2 10K', 'PolyIso1 Expt 10K'. Ν2 'PolvIso2 Expt 'PolyIso05 Expt DSC 10K'. 'POMGF Expt DSC N2 10K', 'XPSgreen_Expt_DSC_N2_10K', 'XPSpink_Expt_DSC_N2_10K'

Next Steps

- Phase changes: get both kinetics and enthalpy changes from DSC
- Negative specific heats:
 - Improve pyrolysis kinetics, or
 - Get more data
- Consider non-constant specific heats

HDPE Calibration:

Summary

- **Predicting** fire growth requires material properties
- To obtain material properties:
 - Small-scale tests (TGA, MCC, DSC, etc.)
 - Calibration algorithms
- A new calibration algorithm is presented for obtaining specific heat capacities and heats of gasification from DSC data
- Algorithm performs well with simulated data and DSC for several thermoplastics
- Future work is needed to
 - Characterize phase change energetics
 - Eliminate negative specific heat capacities (not realistic)
 - Allow for temperature dependent specific heat capacities

TGA Calibration Method

- Based on iterative analysis of reaction peaks
- Peaks found from conditions on derivatives of data
- Two free parameters:
 - 1. Tolerance on what counts as a peak
 - 2. Critical peak width for smoothing

Characteristic temperature and mass changes:

$$\Delta T \equiv \frac{m_{\rm p}}{-m_{\rm p}'}$$
$$\Delta m \equiv m_0 \left(1 - \nu\right)$$

Analysis of peak condition yields:

$$E = \frac{RT_{\rm p}^2}{\Delta T}$$
$$A = \frac{\beta}{\Delta T} \exp\left(\frac{T_{\rm p}}{\Delta T}\right)$$

Some Details

- Smoothed data derivatives are found using Savitzky-Golay filter
- 2. "Small" mass loss rate peaks are neglected
- 3. Algorithm corrects for overlapping reactions
- 4. Mass changes corrected to conserve mass

TGA Fit Verification

- 1. Assume kinetic parameters
- 2. Generate simulated TGA data
- 3. Use algorithm to find assumed parameters

Purpose:

- 1. Check implementation
- 2. Test validity of approximate solution

Single Reaction Verification

Single Reaction Verification

ΔT = 10 K:

Kinetic Parameter	Specified Value	Calibrated Value
<i>T</i> _p (K)	650	649.4
ΔT (K)	10	9.99
ξ	0.01538	0.01539
$\ln[A(s^{-1})]$	60.91	60.90
E (kJ/kmol)	351.3×10^{3}	350×10^{3}

ΔT = 20 K:

Kinetic Parameter	Specified Value	Calibrated Value
<i>T</i> _p (K)	650	649.4
ΔT (K)	20	19.07
ξ	0.03077	0.02935
$\ln[A(s^{-1})]$	27.71	29.34
E (kJ/kmol)	175.6×10^{3}	184.1×10^{3}

ΔT = 40 K:

Kinetic Parameter	Specified Value	Calibrated Value
<i>T</i> _p (K)	650	649.4
ΔT (K)	40	36.
ξ	0.06154	0.05563
$\ln[A(s^{-1})]$	10.77	12.59
E (kJ/kmol)	87.8×10^{3}	97.1×10 ³

Decreasing ΔT Increasing accuracy

Two Reactions Verification

Closer fit for more separated reactions

Validation

Purpose:

1. Test algorithm with real TGA data

Test Materials:

- 1. Nylon 6,6
- 2. Flexible polyurethane (PU) foam
- Polyvinyl Chloride (PVC)

Procedure:

- In nitrogen
- Samples: 3-5.5 mg
- Isothermal heating for 20-30 min
- Dynamic heating at 10 K/min

Validation: Nylon 6,6

Kinetic Parameter	Reaction 1
<i>T</i> _p (K)	716.3
ΔT (K)	22.11
Δm	0.9754
ξ	0.03087
$\ln[A(s^{-1})]$	27.50
E (kJ/kmol)	192.9×10 ³

Validation: Polyurethane Foam

Kinetic Parameter	Reaction 1	Reaction 2
<i>Т</i> р (К)	562.7	648.5
ΔT (K)	14.50	13.69
Δm	0.2511	0.7280
ξ	0.02577	0.02112
$\ln[A(s^{-1})]$	34.34	42.95
E (kJ/kmol)	181.5×10^{3}	255.3×10^{3}

Validation: PVC

Kinetic Parameter	Reaction 1	Reaction 2	Reaction 3
<i>Т</i> р (К)	568.5	731.7	588.1
ΔT (K)	12.15	22.39	9.62
Δm	0.4200	0.2238	0.1999
ξ	0.02138	0.03060	0.01636
$\ln[A(s^{-1})]$	42.49	27.78	57.06
E (kJ/kmol)	221.1×10 ³	198.8×10^{3}	298.8×10 ³

Multiple Reactions

$$\dot{Q}(T) = \sum_{i=1}^{N_{\rm r}} \dot{m}_i(T) \Delta h_i$$
1) Linear System: $N_{\rm r}$ equations, $N_{\rm r}$ unknowns

$$\sum_{i=1}^{N_{\rm r}} \dot{m}_i(T_{{\rm p},j}) \Delta h_i = \dot{Q}(T_{{\rm p},j}), \ j = 1, \dots, N_{\rm r}$$

2) Multiple Linear Regression: N_{d} data points $\sum_{i=1}^{N_{r}} \dot{m}_{i} (T_{k}) \Delta h_{i} = \dot{Q} (T_{k}), \ k = 1, \dots, N_{d} > N_{r}$

MCC Fit Verification

- 1. Assume kinetic parameters and heats of combustion
- 2. Generate TGA data
- 3. Use TGA fit algorithm to find kinetic parameters
- 4. Use TGA predictions and MCC data to find heats of combustion

Purpose:

- 1. Check implementation
- 2. Test validity of approximate solution

MCC: Single Reaction Verification

Solid: Simulated Data Dash: Total HRR/mass Dash-Dot: Peak Match Dot: Simple Average • TGA Data – 10 K/min

–
$$T_{\rm p}$$
 = 650 K

MCC Data – 60 K/min

$$-\Delta h = 30 \text{ kJ/g}$$

MCC: Single Reaction Verification

Scenario	Δh (kJ/g) (Total HR/mass)	Method 1: Peak Ratio Δh (kJ/g)	Method 2: Simple Average Δh (kJ/g)
ΔΤ = 10 Κ	30.026	30.792	30.849
ΔΤ = 20 Κ	29.997	28.731	29.556
ΔΤ = 40 Κ	29.997	26.949	28.291

- Total HR/mass not applicable to multiple reaction
- Method 2 performs better than Method 1

MCC: Two Reactions Verification

MCC: Two Reactions Verification

		-∆h ₁ (kJ/g)	-Δh ₂ (kJ/g)	-Δh _{total} (kJ/g)
Specified Value		15	45	21
ΔΤ = 10 Κ	Simple Integration			20.998
	Linear Regression	14.854	44.085	21.021
ΔΤ = 20 Κ	Simple Integration			20.998
	Linear Regression	14.953	43.973	21.061
ΔΤ = 40 K	Simple Integration			20.998
	Linear Regression	15.415	42.304	21.501

- Accuracy decreases with "broader" reactions
- Future work: correct individual reaction values to force match of total value