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eVTOL crashworthiness
Focus of presented studies

Conventional structural crash design (baseline approach)

▪ Utilizing the given eVTOL structure,

considering main energy absorption in

− Landing gear

− Airframe (subfloor)

− Seats 

Performance-based

▪ Integrated safety approach

▪ Real-world crash safety

− Multi-terrain 

− Multi-axial 
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Vehicle sketch taken and modified from EASA MOC-2-SC-VTOL document

Focus of 

presented studies



Approach
Conceptual and preliminary design studies on eVTOL crashworthiness

UAM crashworthiness requirements

▪ Understand new missions and novel vehicles 

▪ Derive crashworthiness requirements

Conceptual design study*)

▪ Identify trends dependent on different eVTOL configurations

▪ Crashworthy design as baseline (static sizing not available)

Preliminary design study

▪ Identify design trends for one selected eVTOL configuration

▪ Static sizing as baseline

*) Further results of the conceptual design study were presented at the NASA/FAA eVTOL Crashworthiness Workshop, 13 April 2021. (https://nari.arc.nasa.gov/crashworthiness)
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UAM crashworthiness requirements
New missions

Flight operations over metropolitan areas

▪ UAM operations primarily expected at large metropolises

▪ Large metropolis typical characteristics

− Located at waters

− Recreational areas

− Streets and parking sites

− High buildings, urban canyons

− Obstacles such as masts and power lines

− Congested areas

Crashworthiness requirements

▪ Different flyover terrain: multi-terrain crashworthiness 

(hard surface, soft soil, water)

▪ Wind turbulences and gusts, as well as accidently contact 

with obstacles: Off-axis impact conditions 

▪ Congested areas: Safety for people on the ground
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[1] Pictures taken and modified from Google Maps; [2] Pictures taken and modified from Uber



UAM crashworthiness requirements
New vehicles

Novel vehicle configurations

▪ Non-traditional mass distribution 

− Power units & batteries positioning

− Batteries (mass items) behind the cabin

▪ Non-traditional vehicle design characteristics

− Engine beams

▪ LIFT+CRUISE configuration 

− Capability to operate wing-lifted emergency landing

➔ Crash kinematics under real-world crash 

impact conditions partly not evident.

Crashworthiness requirements

▪ Consider combined horizontal/ vertical impact conditions 

− to understand the vehicle crash performance under 

real-world crash impact conditions

− to identify potential safety issues 
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[1] JD Littell: „Crash Tests of Three Cessna 172 Aircraft at NASA Langley Research Center’s Landing and Impact Research Facility”, NASA/TM–2015-218987, 2015. [2] Model taken and modified from Uber eCRM-003_v6



UAM crashworthiness requirements
Requirements (defined for this study)

Impact conditions (derived from missions & vehicles discussion)

▪ Vertical impact speed: 

− Up to vz = 8 m/s

− Showing reasonable crash performance up to vz = 10 m/s

▪ Horizontal impact speed:

− vx = 25 m/s (assumption: 1.2 x vstall)

− Showing reasonable crash performance up to vx = 40 m/s

▪ Off-axis impact conditions:

− Pitch angle: +/- 10°

− Roll angle: +/- 10°

− Yaw angle: +/- 10°

▪ Multi-terrain

− Hard surface (µ = 0.4)

− Soft soil plowing approximation (µ = 0.8, hard surface)
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Crashworthiness criteria

• Key crashworthiness parameters

− Mass retention

− Occupant loads

− Survivable volume

− Egress path

• Secondary crashworthiness parameters

− Multi-terrain crashworthiness

− Battery safety

− Safety for people on the ground

− Etc.

[1]

[1] Uber: “eVTOL Vehicle Requirements and Missions”, Uber Elevate, 2018. 

“Dead man‘s curve” versus DEP redundancy:

8 m/s vertical impact speed may not cover worst case crash conditions 

considering complete power failure during transition at approx. 40-50 ft AGL.

Sufficient DEP redundancy is assumed in this study.



UAM crashworthiness requirements
Load cases
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Load cases

▪ Energy absorption (EA) management →

▪ Off-axis robustness (vertical impact) →

▪ Off-axis robustness (combined x/z-impact) →

▪ Multi-terrain (soft soil plowing: µ = 0.8) →

Goals

▪ Identification of trends

− Energy absorption management

− Risk assessment of unfavorable vehicle crash 

performance

Load 

case*)

[-]

vz

[m/s]

vx

[m/s]

Roll

[°]

Pitch

[°]

Yaw

[°]

Payload

[%]

A 4 0 0 0 0 50

B 4 0 0 0 0 100

C 8 0 0 0 0 50

D 8 0 0 0 0 100

E 10 0 0 0 0 100

F 8 0 -10 0 0 100

G 8 0 0 10 0 100

H 8 0 0 -10 0 100

I **) 8 25 / 40 0 0 0 100

J 8 25 / 40 -10 0 0 100

K 8 25 / 40 0 10 0 100

L 8 25 / 40 0 0 -10 100

M**) 8 25 / 40 -10 10 -10 100
*) All load cases with friction coefficient µ = 0.4.
**) Load cases additionally simulated with friction coefficient µ = 0.8.













**)

Reference Load Case



Conceptual design study
▪ Identify trends dependent on different eVTOL configurations

▪ Crashworthy design as baseline (static sizing not available)
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Conceptual design study
Vehicle configurations (Lift+Cruise) 

Constants

▪ 4 PAX (4 x 77.7 kg + 4 x 22.3 kg luggage)

▪ MTOM ≈ 1870 kg

▪ 8 power units (8 x 50 kg) & batteries (400 kg)

▪ Similar structural design 

− With individual adaptations, e.g. main frames

▪ Engine beams

Parameters

▪ Wing configuration → different EA management

▪ Empennage configuration
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Mid-wing

Selected configurations 

for results presentation

High-wing Low-wing



Conceptual design study
Energy absorption management
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Mid-wingHigh-wing Low-wing

 Landing gear oleo damper

 Landing gear crash absorber

 Sub-floor structure

 Stroking seat

 Landing gear oleo damper

 Landing gear crash absorber

 Sub-floor structure

 Stroking seat

 Landing gear oleo damper

 Engine beam absorber

 Landing gear crash absorber

 Sub-floor structure (limited: wing box)

 Stroking seat

Crashworthy design as baseline



Conceptual design study
Modeling & simulation approach
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Motivation

▪ Conceptual design phase: Identification of trends!

▪ Computational efficiency vs. reasonable accuracy

Modeling

▪ Structure: Hybrid macro/FE (FE: beam & shell elements)

▪ Seats & Occupants: Dynamic Response Index (DRI) model

− Seat absorber: Macro element F-d input characteristics

− Seat cushion: Macro element F-d input characteristics

− Occupant: DRI model 

− Output

• Seat absorber stroke

• Seat cushion deformation

• Injury criterion: DRI

Simulation

▪ Model size (approx.): 40,000 nodes, 37,000 elements

▪ CPU time: 26 min (elapsed time) on 4 core processors (LS-Dyna)

▪ Optimization runs for sensitivity analysis and direct optimization (LS-Opt)

Power units

Battery modules

Floor

Seat absorber &

structure

Seat cushion

Lumbar

Upper body 

mass

Lower body 

mass

Seat masses



Conceptual design study
Results
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Accelerations loads experienced by the occupants (Dynamic Response Index (az))

▪ High wing / Mid wing

− vz = 4 m/s: EA by landing gear (oleo strut & absorber)

− vz = 8 m/s: Further EA by sub-floor structure and seat absorber

− vz = 10 m/s: Full utilization of EA capacity

▪ Low wing

− vz = 4 m/s: EA by landing gear oleo strut AND by engine beams (stiff response → high DRI)

− vz = 8 m/s: Further EA by engine beams and seat absorber

− vz = 10 m/s: Full utilization of EA capacity. Seat absorber capacity exceeded → high DRI values

Load 

case

vz

[m/s]

vx

[m/s]

Roll

[°]

Pitch

[°]

Yaw

[°]

Payload

[%]

B 4 0 0 0 0 100

D 8 0 0 0 0 100

E 10 0 0 0 0 100

Low wing may limit available crush distance in the subfloor.

Critical w.r.t. impact conditions beyond the design load case.



Conceptual design study
Results
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Maintenance of survivable volume (Main frame axial force)

▪ High wing

− vz = 4/8/10 m/s: High frame loads due to overhead mass 

(wing equipped with engine beams: batteries & power units)

▪ Low wing/ Mid wing

− vz = 4/8/10 m/s: Low frame loads due to the absence of overhead masses

▪ Low wing: 

− Pitch moment due to crash kinematics affects frame loads (front vs. rear main frame)

Load 

case

vz

[m/s]

vx

[m/s]

Roll

[°]

Pitch

[°]

Yaw

[°]

Payload

[%]

B 4 0 0 0 0 100

D 8 0 0 0 0 100

E 10 0 0 0 0 100

High-wing results in risk of cabin 

collapse and loss of survivable volume!



Load 

case

vz

[m/s]

vx

[m/s]

Roll

[°]

Pitch

[°]

Yaw

[°]

Payload

[%]

D 8 0 0 0 0 100

F 8 0 -10 0 0 100

G 8 0 0 10 0 100

Conceptual design study
Results
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Retention of items of mass (Power unit acceleration (az))

▪ High wing / Mid wing

− Roll = -10°: Wing tip ground impact → Load limiters not designed 

for ground impact → high acceleration loads

▪ Low wing

− Roll = -10°: Severe second impact with local impact speed > 

nominal impact speed → load limiter capacity exceeded → high 

acceleration loads

Second impact

First impact

Wing tip

ground impact

Roll = -10° Pitch = 10°On-axis

Wing tip

ground impact

Roll = -10° Pitch = 10°On-axis Roll = -10° Pitch = 10°On-axis

Sampling frequency: 10,000 Hz; Butterworth filter frequency: 60 Hz; Plot of positive z-accelerations

Design must consider effects caused by off-axis impact conditions!



Preliminary design study
▪ Identify design trends for one selected eVTOL configuration

▪ Static sizing as baseline
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Preliminary design study
Selected vehicle configuration (Lift+Cruise) 

Generic design

▪ Several design assumptions (inspired by CityAirbus NextGen)

Characteristics

▪ 4 PAX (4 x 77.7 kg + 4 x 22.3 kg luggage)

▪ 8 power units & one battery module

▪ MTOM ≈ 2 tons

Crashworthiness features

▪ High-wing with cabin in front of the wing

− No overhead mass items

− Safe emergency egress path

▪ Crashworthy energy storage installation in a stiff surrounding 

framework of main frames, wing box and subfloor structure

▪ Forward subfloor and diagonal cabin frame designed to prevent

cabin crushing under horizontal crash loads

▪ Large masses (energy storage) in the rear fuselage may prevent earth plowing / rollover
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From conceptual design study:
▪ Prevent overhead masses

▪ Prevent stiff wing box below cabin

▪ Integrate battery in a safe position



Preliminary design study
Energy absorption management

Approach for preliminary crash sizing

▪ Use static sizing as baseline (now available)

▪ With crashworthy design input from conceptual design phase

▪ Subfloor structure as main design parameter

− Individual adjustments for rear (energy storage) 

and forward (cabin) subfloor

Energy absorption management

▪ Skid landing gear

− Conventional design, sized for hard landing

(limited energy absorption capacity)

▪ Crushable subfloor

− Surrogate design for preliminary sizing, 

later to be replaced by final design*)

▪ Stroking seats

− 130 mm @ 10-12 kN
17 *) eVTOL subfloor structure designed for multi-terrain and off-axis crashworthiness as well as 

crashworthy battery integration will be part of future publications



Preliminary design study
Modeling & simulation approach
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Motivation

▪ Preliminary design phase: First design & sizing available!

▪ Reasonable accuracy for preliminary crash sizing

Modeling

▪ Structure: FE (primarily shell elements)

▪ Seats & Occupants: Seat structure & ATD model

▪ Seat absorber: Macro element F-d input characteristics

▪ Seat cushion: *MAT_LOW_DENSITY_FOAM (*MAT_057)

▪ Occupant: LSTC Hybrid III 50th percentile FAST ATD

▪ Restraints: 4 point harness

▪ Output

− Seat absorber stroke

− Seat cushion deformation

− Injury criterion: Lumbar load (automotive ATD!)

Simulation

▪ Model size (approx.): 375,000 nodes, 346,000 elements

▪ CPU time: 21-35 h (elapsed time) on 16 core processors (LS-Dyna)
CS27.562 30g acceleration pulse



Preliminary design study
Results
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Reference load case ‘D’ (vz = 8 m/s, vx = 0 m/s, on-axis, rigid surface) 

▪ Crash cascade as expected

▪ Landing gear: Limited EA capacity due to conventional hard landing design

▪ Subfloor: Symmetric crushing

▪ Seat stroke: Approx. 110 mm

▪ Acceptable injury risk beyond reference load case 

Wing break

Presented

load case

Pax A

Pax B

Pax C

Pax D

Significant potential for energy 

absorption improvements by 

crashworthy LG or active systems!



Robustness load case ‘M’ (vz = 8 m/s, vx = 25 m/s, off-axis, soft soil surrogate: µ = 0.8)

Severe (real-world) crash conditions for crashworthiness assessment beyond design load cases 

▪ Crash cascade significantly differs from reference load case observations

▪ Parallel activation and crushing of skid LG, subfloor structure and seat absorbers

▪ Subfloor: Asymmetric crushing & 150% energy absorption compared to reference LC

▪ Reasonable injury risk partly beyond limits

Preliminary design study
Results
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Presented

load case

Crash cascade significantly differs 

from reference load case observations!



Preliminary design study
Results
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Robustness load case ‘M’ (vz = 8 m/s, vx = 25 m/s, off-axis, soft soil surrogate: µ = 0.8)

Severe (real-world) crash conditions for crashworthiness assessment beyond design load cases 

▪ Extreme load case for high-wing configuration w.r.t. risk of rollover

▪ High horizontal impact speed: vx = 40 m/s

▪ High friction coefficient to introduce extreme horizontal loads (soft soil surrogate)

▪ Assessment: eVTOL design characteristics are effective against risk of rollover

▪ Negative wing-sweep + engine beams

▪ Heavy battery masses in the rear fuselage

F

FF



Outcomes

Conceptual design
▪ Non-traditional eVTOL vehicles & missions might require the consideration of a larger range of impact conditions

− to identify potential unfavorable vehicle crash performance

− to develop proper design solutions already in the conceptual design

▪ Simulation studies in the early design process can be useful to identify trends for reasonable crashworthiness

− beyond the design load cases 

− under complex crash impact conditions

Preliminary design
▪ Consideration of robustness load cases (real-world impact conditions) showed significant influence on energy 

absorption management and crash cascade

− multi-axial: combined horizontal-vertical impact speeds and off-axis (roll, pitch, yaw)

− multi-terrain: effect of high horizontal loads due to earth plowing
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Outlook
Next steps: Detailed design solutions

eVTOL subfloor demonstrator (design & testing)

▪ Multi-terrain crashworthiness (rigid surface, soft soil, water)

▪ Off-axis robustness

▪ Combined horizontal/vertical impact conditions

Crashworthy battery integration

▪ Assessment of battery integration concepts 

− With respect to mechanical overloading (acceleration, deformation, intrusion)

▪ Development of design solutions

− Prevent versus allow mechanical overloading (contained leakage and/or fire)

▪ Methods for efficient simulation of battery behavior (thermal runaway)
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Thank you for your attention!
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