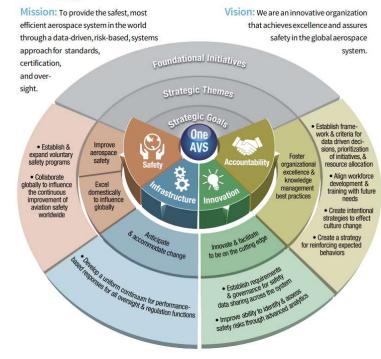

Battery Crashworthiness

Presenter: Dave Stanley

FAA Research Team Members: Structures and Propulsion Branch David Brandt, Elisabeth Davis, Tom Maloney, Jon Doyle, Dave Stanley


Sponsor: Dr. Joseph Pellettierre, Dr. Nazih Khaouly

Research Sponsors

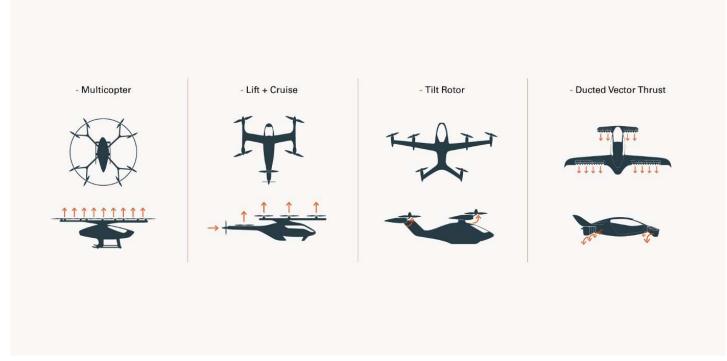
- Most research at the Tech Center is evaluated through the lens of Aviation Safety (AVS)
 - <u>https://www.faa.gov/sites/faa.gov/files/about/office_org/head</u> <u>quarters_offices/avs/avs_strategy_508_final.pdf</u>
- AVS sponsors create research questions to fill knowledge gaps within the FAA to meet Four Strategic Goals (Safety, Infrastructure, Innovation, and Accountability)
- The FAA William J. Hughes Technical Center teams work to generate data and transfer knowledge to aid our sponsors in rulemaking decisions

The AVS Strategy

Why does the FAA conduct research?

Preparation for applications of new technologies

- Actively work to not create burdensome regulations
- Cannot allow industry to self-certify without oversight
- Cannot say no to innovation ("Don't be caught flat-footed!")


To provide proper oversight

- FAA needs to understand new technologies
- Cooperative research is needed to "meet industry at the finish line"
- Success and expediency by Early Engagement and Cooperative Research with industry groups
- All of the above is needed for successful eVTOL integration

eVTOL Design Concepts

 Multiple eVTOL design architectures that may have battery placement in different locations

Source: Lilium Blog, What it takes to design an aircraft from scratch, 09/24/2020

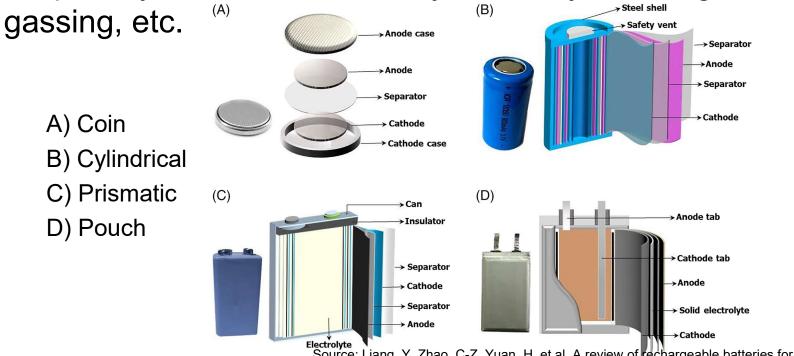
10th Triennial International Aircraft Fire and Cabin Safety Research Conference October 20, 2022

eVTOL Emergency Landing

- Part 23 and 27 based on years of service data
 - Do we consider some wing lift? Autorotation?
- In what stage of flight is the emergency landing happening?
- What constitutes a hard impact?

Crash Survivability

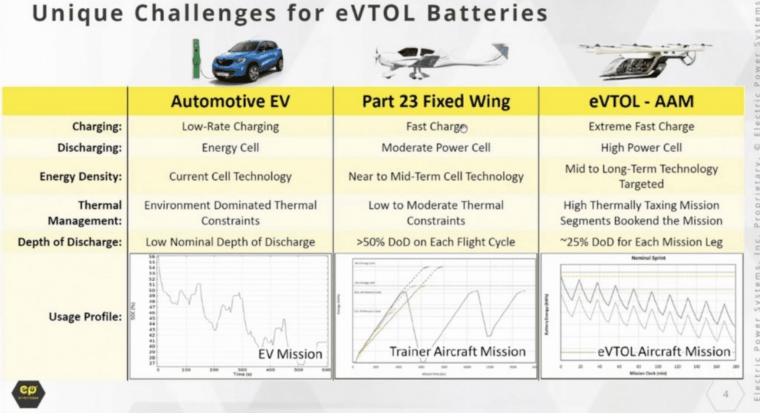
- Rotorcraft Occupant Protection Working Group (ROPWG) Final Analysis Report to the ARAC, Revised September 27, 2018
 - Context : Existing fleet of rotorcraft do not meet current occupant protection requirements of 27/29.561, .562, .785, and .952 since they were certified prior
 - "Most significant hazards to personal survival in a potentially survivable crash are post-crash fire an inadequate upper torso restraint"
 - Recommended retrofitting crash resistant fuel bladders and upper torso restraints
 - Rotorcraft operations overall accident rate is over 30 times of Part 121 air carrier
- eVTOL needs to have crashworthiness integrated into design
 https://www.faa.gov/regulations_policies/rulemaking/committees/documents/media/ROPWG% 20Task%206%20Final%20Report%20Revised%202018-09-27.pdf


Where does eVTOL battery crashworthiness fit?

- First we need to define the configuration and utilization?
- Is 14 CFR § 27.952 Fuel system crash resistance a fair comparison for battery packs? Is there data that can be produced to verify it is robust enough?
 - (1) 50 foot drop height onto non-deforming surface
 - (4) Tank must be enclosed in a surrounding structure representative of the installation unless it can be established that the surrounding structure is free of...features likely to contribute to rupture
 - (5) The tank must drop freely and impact in a horizontal position ±10°.
 - (6) After the drop test, there must be no leakage

Battery Structures

- Different battery structures can behave differently in a crash scenario
 - Propensity for thermal runaway, electrolyte leakage, off


Source: Liang, Y, Zhao, C-Z, Yuan, H, et al. A review of rechargeable batteries for portat electronic devices. *InfoMat*. 2019; 1 6– 32. https://doi.org/10.1002/inf2.12000

10th Triennial International Aircraft Fire and Cabin Safety Research Conference October 20, 2022

Federal Aviation Administration

Challenges for eVTOL batteries

• Should we consider reusability after a crash event?

Source: Reichmann, K. Why are Batteries a Problem for eVTOLs? Aviation Today. May 14, 2021.

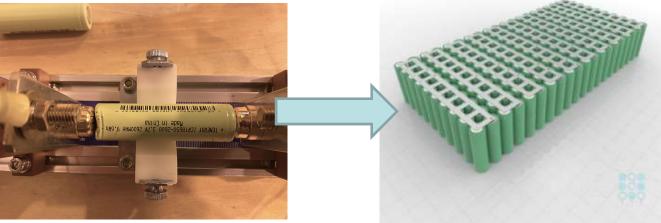
Battery Specific Research Questions

- What is the minimum required amount of time to allow egress before hazardous condition?
- Will thermal runaway occur at drop tests lower than 50ft?
- Can we used measured deformations of the battery (module or cell) to replicate tests?
- Does the battery module leak electrolyte following a crash?
- What effect does drop height and orientation have on battery crashworthiness? What about reusability?
- What constitutes a hard landing? How do we go about return to service?
- Is it possible to reuse a battery pack after X hard landings or a crash event?

Drop Test Tower

- The FAA William J. Hughes Technical Center is home to a 57' drop test tower
- Conducting drop tests of battery cells, packs and modules to gain a greater understanding of their crash behavior
- Plan on conduction tests on different landing pads (rigid, soft soil, etc)
- Long term goal : drop a generic eVTOL structure with battery pack to identify crashworthiness

strengths/weaknesses


10th Triennial International Aircraft Fire and Cabin Safety Research Conference October 20, 2022

Post Drop Evaluation

- Visual Inspection. Is there quantifiable damage?
- Complete discharge/recharge cycling to evaluate electrical performance
- Starting at cell level, moving to pack and then system

Cell After Drop

10th Triennial International Aircraft Fire and Cabin Safety Research Conference October 20, 2022

Other Current Work

- JAMS grant with NIAR (Dr. Gerardo Olivares and Luis Gomez) to assess state of the market for eVTOL design and operation windows
- Current grant between FAA/CAMI/NASA (IA1-34337) titled "Aerospace Medical Research Division Biodynamics (AAM-632) Crashworthiness and Occupant Protection of Rotorcraft Structures and Seats in Vertical Takeoff and Landing Research

Questions?

