Tension-Bending Risk Curves for the ATD Lower Lumbar Spine Subjected to Oblique Impact under FAA Emergency Landing Conditions

Karthik Somasundaram, John Humm, Narayan Yoganandan, Frank Pintar David Moorcroft (CAMI)

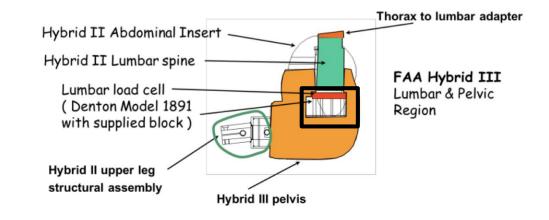
FAA- PMHS test background

- ¹Oblique whole-body PMHS sled tests demonstrated distractionbending injuries to L5/S1 level
- ¹Primary injury mechanism
 = multi-axis bending + tension

Fig. Whole-body test. Corresponding L5-S1 transection injury

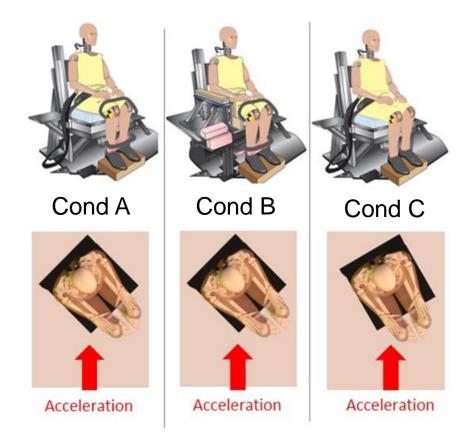
1. Humm et al. 2016. "Responses and injuries to PMHS in side-facing and oblique seats in horizontal longitudinal sled tests per FAA emergency landing conditions. Stapp Car Crash, 135-163.

• Lower lumbar spine injury metric (FAA- LL_{tb})


$$- \mathsf{FAA-LL}_{\mathsf{tb}} = \frac{\mathsf{Fz}}{\mathsf{F}_{\mathsf{int}}} + \frac{\mathsf{My}}{\mathsf{My}_{\mathsf{int}}} + |\frac{\mathsf{Mx}}{\mathsf{Mx}_{\mathsf{int}}}|$$

- F_z = axial tensile load,
- F_{int} = critical intercept value for tensile force,
- My = flexion bending moment
- My_{int} = critical value for flexion moment
- Mx = lateral bending moment (absolute value)
- Mx_{int} = critical value for lateral moment
- "tb" = indices represent tension-bending

- FAA-H3-Metric was developed for lower lumbar spine load cell.
- Injury definition was based on FE and PMHS tests.
- Critical values were calculated based on risk curves.

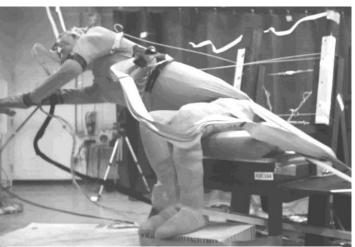


FAA-H3 test condition summary

- FAA-H3 test conditions
 - A: no arm rest, 2 belts, 45 deg
 - B: arm rest, 1 belts, 45 deg
 - C: no arm rest, 2 belt, 30 deg
- 2 belt standard lap belt plus lap belt used in sidefacing seats

- Pulse severity: 16 g (100%), 12 g (75%), 9.6 g (60%), 8 g (50%)
- The severities were referred as 1, 2, 3 and 4, respectively
- For example:
 - ATD test A.1 –no arm rest, 2 belts, 45 deg, with 16 g pulse severity

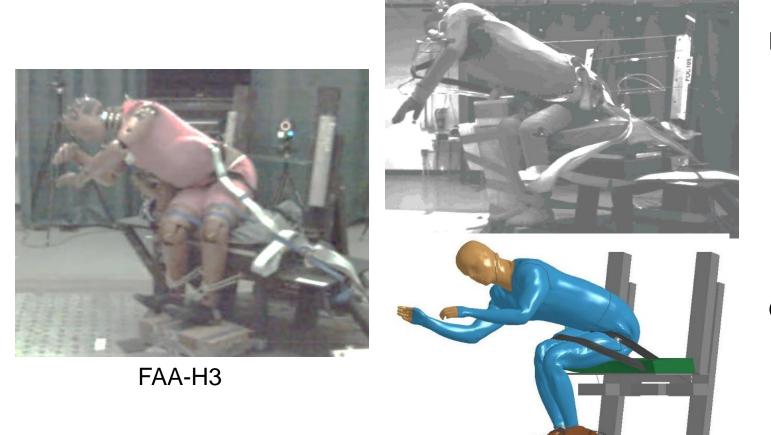
- 2 sources for defining injuries in ATD
- Matched-pair PMHS results
 - Available for only N=5 test conditions
- ¹FEM based results
 - Available for all N=12 test conditions
 - To note, for modeling study, PMHS-age specific HBM was selected and simulated to obtain the injury status


 Somasundaram, K., et al. "Occupant Injury and Response on Oblique-Facing Aircraft Seats: A Computational Study." ASME. J Biomech Eng. 2023; 145(2): 021003. <u>https://doi.org/10.1115/1.4055511</u>

Kinematic – Condition A (16 g pulse)

PMHS

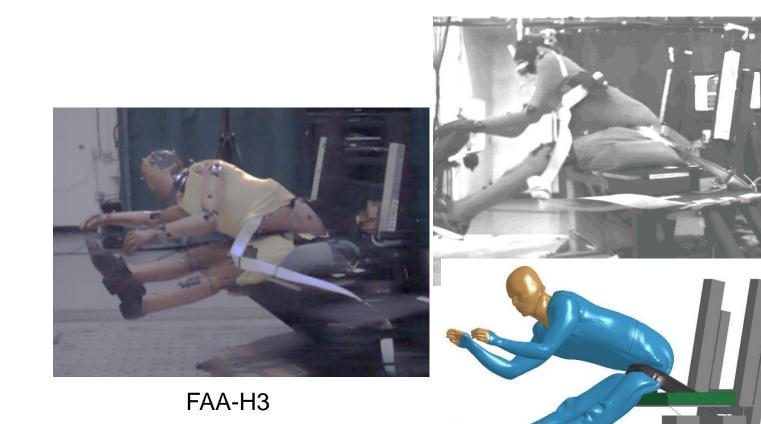
GHBMC


FAA-H3

Y_X

Kinematic – Condition B (16 g pulse)

PMHS


GHBMC

Y_X

Kinematic – Condition C (16 g pulse)

PMHS

GHBMC

- For the condition with N>2, mean value was used
- Survival analysis was used to construct the risk curve for lower lumbar spine load cell

$$P(Injury) = 1 - \exp(-1 * (\alpha * FAA_LLtb)^{k})$$

Where, $\alpha = \exp(-1 * \lambda)$
Fz My Mx

• Metric =
$$\frac{FZ}{F_{int}} + \frac{My}{My_{int}} + |\frac{Mx}{Mx_{int}}|$$

Test condition	Test ID	Pulse severity (g)	Seat angle	Pelvis restraint	Leg constraint	Arm rest	Matched pair tests for (Lspine/pelvis injury status)	
A-1	Md00119	16	45°	2belt	Yes	NA		
A-1	Cd12024	16	45°	2belt	Yes	NA	From PMHS	
A-1	Cd12022	16	45°	2belt	Yes	NA	(Yes)	
A-1	Cd12023	16	45°	2belt	Yes	NA		
A-2	Md00120	12	45°	2belt	Yes	NA	from FEM	
A-2	Md00123	12	45°	2belt	Yes	NA	(Yes)	
A-3	M _d 00122	9.6	45°	2belt	Yes	NA	From PMHS	
A-3	Md00125	9.6	45°	2belt	Yes	NA	(No)	
A-4	Md00107	8	45°	2belt	Yes	NA	From FEM (No)	
A-4	Md00121	8	45°	2belt	Yes	NA		
B-1	Cd12025	16	45°	1belt	Yes	Yes	From PMHS (No)	
B-1	Cd12026	16	45°	1belt	Yes	Yes		
B-1	Md00128	16	45°	1belt	Yes	Yes		
B-1	Md00131	16	45°	1belt	Yes	Yes		
B-1	Cd12021	16	45°	1belt	Yes	Yes		
B-2	Md00129	12	45°	1belt	Yes	Yes	From FEM	
B-2	Md00124	12	45°	1belt	Yes	Yes	(No)	
B-3	Md00126	9.6	45°	1belt	Yes	Yes	From PMHS	
B-3	Md00127	9.6	45°	1belt	Yes	Yes	(No)	
B-4	Md00110	8	45°	1belt	Yes	Yes	From FEM	
B-4	Md00130	8	45°	1belt	Yes	Yes	(No)	
C-1	Md00116	16	30°	2belt	NA	NA	From PMHS (Yes)	
C-2	Md00115	12	30°	2belt	NA	NA	From FEM (Yes)	
C-3	Md00114	9.6	30°	2belt	NA	NA	From FEM (No)	
C-4	Md00132	8	30°	2belt	NA	NA	From FEM (No)	

• The value measured at 80% probability of each bending or tension metric in isolation was considered as the intercept or critical value for the corresponding individual parameter.

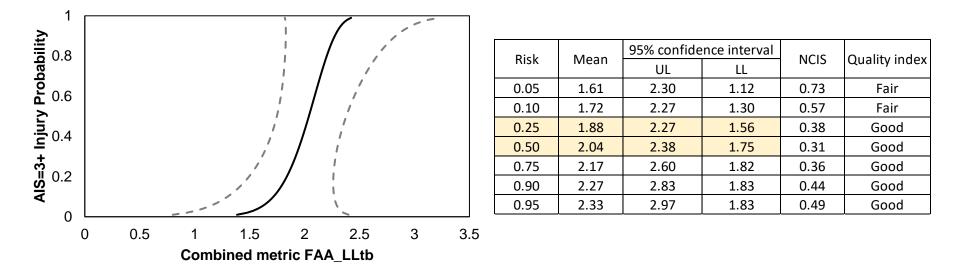
Metric	L5 Fz (lbf)	L5 My (lb-ft)	L5 Mx (lb-ft)	
Fz+Mx+My	2,833	226	255	

• Normalized Confidence Interval Size (NCIS) defines the tightness of the interval of the developed risk

 $NCIS = \frac{UL-LL}{M}$

• A quality index is defined for this purpose

Quality index	NCIS values for
(Petitjean et al.	95 th confident
2015)	interval
Good	0 to 0.5
Fair	0.5 to 1
Marginal	1 to 1.5
Unacceptable	over 1.5



• In the present study, the intercept values for the combined metrics were derived from the individual risk curves taken at 50%, 60%, 70%, 80%, 90% and 100%.

Injury prob.	FAA-LL _{tb} _50	FAA-LL _{tb} _60	FAA-LL _{tb} _70	FAA-LL _{tb} _80	FAA-LL _{tb} _90	FAA-LL _{tb} _100
0.05	0.87	0.83	0.78	0.73	0.70	1.85
0.10	0.68	0.65	0.61	0.57	0.52	1.54
0.25	0.44	0.43	0.41	0.38	0.34	1.35
0.50	0.33	0.32	0.31	0.31	0.32	1.01
0.75	0.35	0.35	0.35	0.36	0.42	1.25
0.90	0.43	0.42	0.42	0.44	0.53	1.65
0.95	0.48	0.47	0.47	0.49	0.59	2.05
% Chance for injury occurrence	50%	60%	70%	80%	90%	100%

**Note: This is a research value and has not been proposed for certification at this time

 Karthik Somasundaram, John R. Humm, Narayan Yoganandan, David M. Moorcroft & Frank A. Pintar (2022) Tension-bending risk curves for the ATD lower lumbar spine subjected to oblique impact under FAA emergency landing conditions, International Journal of Crashworthiness, https://doi.org/10.1080/13588265.2022.2130611

ATD risk curves evaluation

- ATD runs which did not have matched paired PMHS tests and FE runs were considered as unknown or other ATD runs.
- The metrics were calculated for these runs based on the estimated critical values.
- The corresponding probability values based on the risk curves were determined.

FAA-H3 tests for evaluation

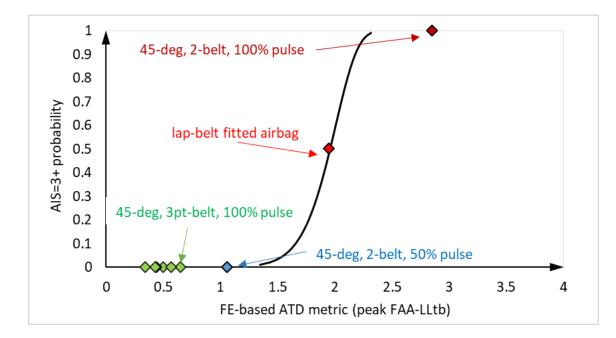
ATD with 3 pt-belt and armrest

ATD with 3 pt-belt

ATD_ 3 pt-belt and airbag cases						
	Severity	Seat	Pelvis restraint	Leg_	Arm-	
Test ID	Sevency	Angle	Pelvis lestialit	Const	rest	
16034	100	45°	3 pt - belt	Y	Y	
16035	100	45°	3 pt - belt	Y	Y	
16036	100	45°	3 pt - belt	Y	NA	
16037	100	45°	3 pt - belt	Y	NA	
16038	100	45°	3 pt - belt	Y	Y	
16039	100	45°	3 pt - belt	Y	Y	
16041	100	45°	Lap-belt + airbag	Y	NA	

ATD with developmental lap-belt fitted airbag

Occupant kinematic


ATD run with 3 pt-belt and armrest

ATD run with 3 pt-belt

ATD run with lap-belt fitted with airbag

- The developed risk curve is defined as AIS=3+ injury probability curve.
- At risk levels 5%, 25% and 50% the combined metric values were 1.6, 1.8, and 2.0, respectively.
- The combined metric was estimated to be a better criterion than the single function and/or force-based combined function for assessing the injury to lower lumbar spine and pelvis.

- The present study also demonstrated the applicability of a computational model in estimating the injury status for metric development.
- The tests considered for metric development were performed with a frontal loading vector.
- Therefore, the estimated criterion can be extended to automotive applications, which have similar crash pulses albeit lower delta V.

- The PMHS and ATD data used for metric development in the present study originated from the work conducted under the support of grant #17–G-002, sponsored by the Federal Aviation Administration.
- The computational modeling was completed in part with computational resources and technical support provided by the Research Computing Center at the Medical College of Wisconsin.
- The endowment support for the primary author was from the Dr. Robert D. and Dr. Patricia E. Kern Professorship of Biomedical Engineering (FP).
- Any views expressed in this manuscript are those of the authors and are not necessarily representative of the funding organizations.

Questions/Discussion

