#### UN Battery Classification Test Method Development and Testing

Presented to: The Tenth Triennial International Fire & Cabin Safety Research Conference By: Steve Rehn Date: 10/18/2022



#### Introduction

- Currently all lithium batteries are classified as either lithium-ion or lithium metal
- All lithium-ion or lithium metal batteries are not created equal
- New classifications take into account actual hazards:
  - Initiation
  - Propagation
  - Fire
  - Gas Hazard
  - Temperature Hazard





## **Lithium Battery Classification**

- By Default, no testing will be required, all hazards would be considered worst case with common chemistry
- Purpose of this testing is to determine worst case as well as developing test methods for individual batteries to be classified on their own
  - Gas Test
  - Propagation Test
  - Flammability and temperature hazard determined in one of these tests



- Single cell placed in 21.7L pressure vessel and heated until thermal runaway
- Instrumented with pressure transducers and thermocouples for heater, battery, and ambient air
- Chamber is evacuated with vacuum pump, then filled with nitrogen at atmospheric pressure
- Battery gas volume is calculated from temperature and pressure measurements
- All cells at 100% SOC





- Heating rate controlled with temperature controller
- Cells heated at rates of 5°C, 10°C, and 20°C per minute
- Example shows an 18650 cell heated at 20°C/min





- Chamber pressure and temperature data from same test
- Calculated amount of gas (in moles) using ideal gas law
- Converted to liters of gas at NIST normal temperature and pressure (NTP – 20°C and 1 atm)
- This test produced 3.39L of gas





- Repeated tests 3 times to get
  repeatability data for two cells
- 2600 mAh 18650:

|             | 5°C/min | 10°C/min | 20°C/min |
|-------------|---------|----------|----------|
| Average     | 3.38    | 3.70     | 3.43     |
| Std. Dev.   | 0.06    | 0.21     | 0.10     |
| % Std. Dev. | 1.64%   | 5.75%    | 3.02%    |

• 2400 mAh 18650:

|             | 5°C/min | 10°C/min | 20°C/min |
|-------------|---------|----------|----------|
| Average     | 3.19    | 3.25     | 3.29     |
| Std. Dev.   | 0.13    | 0.12     | 0.30     |
| % Std. Dev. | 3.92%   | 3.63%    | 9.03%    |





- Tested 10 lithium-ion cells
  - Size from AAA to 18650
  - LCO, NMC, LFP, LTO chemistries
- Tested 6 lithium metal cells
  - Size AAA, AA, and CR123A
  - LiFeS<sub>2</sub> and LiMnO<sub>2</sub> chemistries



Lithium-ion batteries tested



Lithium metal batteries tested



- Looking for relation between battery capacity and volume of gas emitted
- All cells tested so far





- Lithium-ion cells only
- Comparing highest volume from each cell





- Lithium ion cells only
- Comparing gas volume to capacity (mAh) instead of energy (Wh)





Lithium metal cells only





UN Battery Classification Testing



# **Ignitor in Chamber**

- Tested cells in nitrogen first
- Then tested in air w/ ignitor to determine flammability
- Much greater pressure rise in air showed that ignition took place
- Fire/explosion inside chamber can damage wiring/instruments inside
  - Shorted out the heater and burned up temperature controller in the process





- 6 cells placed in a line in an insulated box to determine if thermal runaway will propagate down the line
- Cell #1 heated at 20°C/min until thermal runaway occurs, then heater is turned off
- Thermocouple placed on each cell to measure temperature
- Top of box is vented to allow gas to escape
- Spark ignitor placed 6 inches above the box
  - To determine if gas is flammable
  - Ignitor turned off after first cell goes into thermal runaway
- All cells at 100% SOC









- Tested repeatability for two sets of cells, both AA (14500) size
- LiCoO<sub>2</sub> cell propagated with very repeatable test results





- LiFePO4 cell did not propagate
- Second cell vented for all three tests





- All LCO cells propagated except AAA size
- No LFP cells propagated
- LiFeS<sub>2</sub> propagated at AA size\*, not AAA
  - \*Non-propagating AA cell may not have been heated enough
- All cells produced flammable gas

|                       | Propagation Testing of Various Cells |   |   |   |   |   |   |  |  |  |
|-----------------------|--------------------------------------|---|---|---|---|---|---|--|--|--|
|                       | Number of Cells Propagated           |   |   |   |   |   |   |  |  |  |
| gated                 | C                                    | ) | 1 | 2 | 3 | 4 | 5 |  |  |  |
| ĺ                     | LiCoO2 18650                         |   |   |   |   |   |   |  |  |  |
| gated<br>at AA<br>Ion | LiCoO2 18650                         |   |   |   |   |   |   |  |  |  |
|                       | LiCoO2 18500                         |   |   |   |   |   |   |  |  |  |
|                       | LiCoO2 AA                            |   |   |   |   |   |   |  |  |  |
|                       | LiCoO2 AAA                           |   |   |   |   |   |   |  |  |  |
|                       | Li2TiO3 18650                        |   |   |   |   |   |   |  |  |  |
|                       | LiFePO4 AA                           |   |   |   |   |   |   |  |  |  |
|                       | LiFePO4 AA                           |   |   |   |   |   |   |  |  |  |
| Metal -               | LiFeS2 AA                            |   |   |   |   |   |   |  |  |  |
|                       | LiFeS2 AA                            |   |   |   |   |   |   |  |  |  |
|                       | LiFeS2 AAA                           |   |   |   |   |   |   |  |  |  |
|                       | LiMnO2 CR123A                        |   |   |   |   |   |   |  |  |  |
|                       | LiMnO2 CR123A                        |   |   |   |   |   |   |  |  |  |
|                       | LiMnO2 CR123A                        |   |   |   |   |   |   |  |  |  |



## **Conclusion and Future Work**

- Battery gas volume increases with battery capacity in lithium-ion cells
  - No relation so far with lithium metal cells
- Battery propagation test works well for testing propagation
  - Ignitor placed above cell #1 always ignited flammable gases
  - Cells must be secured in box
- Additional testing needed



#### **Questions?**

#### Contact:

Steven Rehn Federal Aviation Administration William J. Hughes Technical Center Fire Safety Branch, Bldg. 203 Atlantic City Int'l Airport, NJ 08405 (609) 485-5587 steven.rehn@faa.gov

