

A Materials Perspective on Fire Containment

A Different Perspective

- MACRO is most known in this community for composite ULD skins
 - MACRO is also engineering services company that solves problems with custom materials
 - Started with aircraft armor in late-1990's, before adapting material systems for the rail industry (high-abrasion wear pads), then into ULD's skins and EV / battery enclosures
- A cross-market view, solely focused on custom material products brings a unique perspective
 - Our military products are governed by strict specifications and subject to steadily increasing protection levels with each passing year and program
- By contrast, FRC ULD's are relatively early in specification development we now have a baseline, but the materials and engineering can do
 - more given the right goals

A Different Perspective

Challenge is that of a "catchers' mitt," reacting the impacting energy (20K Joules) over a set distance in a controllable manner

From a materials perspective, stopping a bullet and stopping a ULD fire are similar – they require only understanding of energy reaction and use of engineered "counter measures" that take advantage of how the materials react, interact, and fail

Materials Design Philosophy

- MACRO's material focus has always been maximizing protection and continually improving our offerings
 - High technical fiber content and multifunctional materials
 - Full Scale vs 5 vs 15-minute Part III Cargo-Liner Oil Burner Test
 - Life rated dual-films with zero UV transmittance and bright, durable interior
 - End of Life Recyclability / Sustainability goals

1959 South Starpoint Drive

1.0 0.8 € 0.6

> 0.4 0.2 0.0

E-0.2 -0.4

Form # 216RDCargol, Rev A dated 3/17/18

	RI	CARGO LINER ESEARCH AND DEVEL			
Date:	07/15/19		AccuFleet Test No.:		CL14
Client:	MACRO Industries, I	nc.	Purchase Order No.:		
Contact:	Mr. Damon Andersor		Work Order No.:		
		G INFORMATION		TEST CHAI	
DATE IN: 07/12/19		DATE OUT: 07/15/19		Hun	

TEST CHAMBER I	CONDITIONING INFORMATION				
Hur	07/15/19	7/12/19	DATE IN:		
Temper	12:48 PM	:35 PM	TIME IN:		

460 520 Wavelength (nm)

			SPECIM	EN DES	CRIPTION			
Part Number: Sample		: Sample 18332.03	Specimen Orientation: Celling Only					
Specimen C	Description	Sample R&D- 18332	.03	divide —		300		
		-	1	EST DA	TA			
TIME	TEMP	TEST SPECIMEN- RUN #1 COMMENTS	TIME	TEMP	TEST SPECIMEN- RUN #1 COMMENTS	TIME	TEMP	TEST SPECIMEN- RUN #1 COMMENTS
30 SEC.	137	Heavy Black Smoke/Panel Delaminating, Disc cloring	5.5 MIN.	354	No Change	10.5 MIN.	370	No Change
1 MIN.	179	No Change	6 MIN.	342	No Change	11 MIN.	370	No Change
1.5 MIN.	288	Decreasing Smoke	8.5 MIN.	356	No Change	11.5 MIN.	363	No Change
2 MIN.	328	No Change	7 MIN.	349	No Change	12 MIN.	369	No Change
2.5 MIN.	304	Panel Steble	7.5 MIN.	318	No Change	12.5 MIN.	375	No Change
3 MIN.	297	Very Little Smoke	8 MIN.	333	Bottom layer has completely delaminated	13 MIN.	314	No Change
3.5 MIN.	349	No Change	8.5 MIN.	341	No Change	13.5 MIN.	291	No Change
4 MIN.	342	No Change	9 MIN.	355	No Change	14 MIN.	299	No Change
4.5 MIN.	353	No Change	9.5 MIN.	364	No Change	14.5 MIN.	322	No Change
5 MIN.	367	Fire side of the material burning	10 MIN.	355	No Change	15 MIN.	334	No Change
EL AME DEN	ETRATION	TIME OF ELAM	E DENETO	MOTTA	30,000,000,000	1000	Section	Ť –

Figure 1a and 1b depicts the transmittance (%) of the sample. Figure 1b has same results, but at a

smaller scale to be able to see the very low transmittance of the film

A Different Perspective

Flammable materials and lowmelt temperatures pass

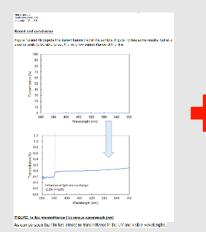
Melt temp matters, some metals & non-flammable materials begin to fail

Flame protection becomes discretized, requiring distinct, separate defeat mechanisms

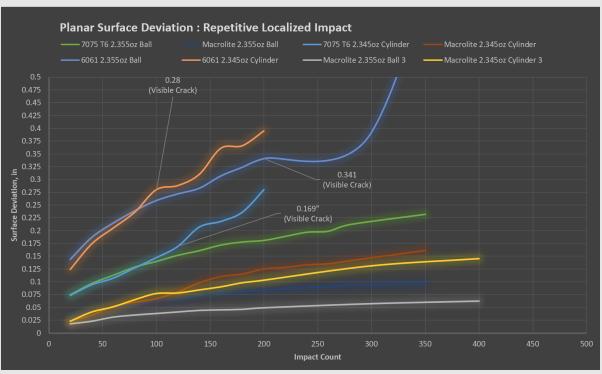
Requires a total system / materials view

Fires are all different in their lethality, just like armor protection levels vary greatly Different materials pass or fail each of these sub-component tests in different ways Each also indicates different behaviors in full-scale, integrated product fire-testing

Materials Design – Day 3650


ISO / ASTM Material Aging Tests

H


Internal "induced damage" and performance at temperature tests

Safety Equipment should be designed for sustained performance, not evaluated on Day 1 – There are too few requirements around longevity

Materials Design – Day 3650

One way that MACRO "ages" materials to simulate residual flame resistance well into service life is through repeated, low-level cyclical impacts (2.355 ounce / 1J cylinder & sphere repeatedly impact materials being compared, followed by flame resistance testing)

Final Thoughts – Standards and Iteration

- Tiered standards are an opportunity for the ULD community
 - MACRO's military programs regularly publish simultaneous baseline, threshold and objective requirements, eventually procuring to the highest level available and/or as required for specific missions
 - Standards for safety equipment could mirror this philosophy, differentiating energy capability (rather than specific fire load), given that threats change, all users have a different risk profile, and mission profiles change over the life of the aircraft / equipment
- Materials, FRC ULD's, and fire-safety products in general will continually improve if we design our regulatory framework around multi-step stretch goals, allow products to differentiate based on energy levels, and value iterative improvement as an industry

Questions? Contact Dan Ziegler @ dan.ziegler@macroindustries.com