Victor Norrefeldt, Arnav Pathak, Marie Pschirer, Max Kienberger Fraunhofer IBP Tenth Triennial International Aircraft Fire and Cabin Safety Research Conference, October 17-20, 2022, Atlantic City, New Jersey, USA

Investigation and modelling of cargo hold fire suppression agent concentration profiles for Halon replacement

Introduction

Existing Aircraft Fire Protection System

Halon based fire protection system

- Discharge nozzles and smoke detectors integrated in cargo ceiling
- After fire / smoke detection:
 - Fire Knockdown Phase: rapid release of Halon 1301 knockdown and suppress fire
 - Constant Metering Phase: constant discharge of Halon 1301 to maintain the concentration

Environmentally Friendly Fire Protection

Clean Sky 2 Environmentally Friendly Fire Protection System project

- Replacement of Halon due to high GWP and ODP.
- Investigation of alternative agents here: Nitrogen to dilute oxygen concentration
- Development of sizing tools and models

Fraunhofer Flight Test Facility

Low-pressure chamber:

- Length: 30 m
- Replication of flight pressure envelope down to 750 hPa

Cabin air conditions:

- Air temperature: -20 °C to +30 °C
- Relative humidity: 5 % to 65 % at 20 °C

© Fraunhofer IBP

Test preparations

Cargo bay refurbishment

- Original lining and ceiling panels
- Integration of high pressure piping and nozzles
- Integration of the pressure management system
- Cargo door leakage simulation

Test preparations

Cargo bay oxygen sensors

Cargo hold setup

Pressurized nitrogen bottles for knockdown

On-Board Inert Gas Generation System (OBIGGS) for metering

Test configurations

Empty cargo bay

LD3 containers in cargo bay

Exemplary cabin/cargo pressure profile

Fire protection system activation

Cabin pressure: 750 hPa

Time [min]

Fire protection system sustaining

Descent: Repressurization to ground

Influences on oxygen concentration:

- Forced air ingress due to repressurization
- Rule of thumb:

750 \rightarrow 1013 hPa means ½ of air volume to be added

Model Implementation

Zonal Modelling

VEPZO (VElocity Propagating ZOnal Model)

Subdivision of a space into zones (volumes)

- Volume model:
 - Mass Conservation of species
 - Conservation of thermal energy

Flow Model

- Links two volume models
- Calculates mass flow rate from pressure difference

Advantages

- Local Resolution
- High simulation speed, transient simulations

Cargo Bay Zonal Model

Zonal model integrated with CFD domains

CFD domain

- Simulation of high momentum flow and turbulent eddies in the vicinity of the agent discharge
- Pre-processed CFD domains for each type of nozzle
- Determines the flow of agent in the adjacent zones

Zonal volume – CFD domain interface

- Mass flow (air and discharged agent)
- Temperature of the mixture
- Agent concentration at the interface

Model Validation

Models for Validation

Empty cargo bay

Containerized cargo bay

Model Validation – Empty Cargo Hold – Left side

Accuracy of ~1% oxygen concentration

Model Validation – Empty Cargo Hold – Right side

Accuracy of ~1% oxygen concentration

Model Validation – Loaded Cargo Hold – Left side

High gradient between measurement positions

- Local leakages act on much smaller air volume
- Model only foresees air ingress at pressure management system

Model Validation – Loaded Cargo Hold – Right side

High gradient between measurement positions

- Local leakages act on much smaller air volume
- Model only foresees air ingress at pressure management system

Model Validation – Loaded Cargo Hold Comparison Min and Max Concentrations

Difference between min and max concentrations reasonably well predicted

- Exact location difficult to predict due to local leakages in lining
- → Method to detect and eliminate leakages needed

Cargo Liner Leakage Detection

Test conduct – Cargo Blower Door like test

Step 1: without "Blower Door"

- Cabin ventilation \rightarrow Cool air flows around cargo
- Heater

- \rightarrow Temperature gradient
- After stabilization \rightarrow Thermography

Step 2: with "Blower Door"

- Activation of door leakage as pressure sink
- After stabilization \rightarrow Thermography

Step 3: Compare thermography from step 1 and 2

- Changed picture \rightarrow Leakage
- no change \rightarrow Heat bridge

Step 4: Improvement & Verification

Fraunhofer

Results – Identified Leakage I

no suction, before sealing

identified leakage

heat bridge

Results – Identified Leakage II

Passenger Health and Safety

Cabin and Underfloor Ventilation Pattern

Passenger Health and Safety Assessment

Full nitrogen discharge

Threshold	Effect	Source
> 19 Vol-%	non noticeable adverse physiological effects	Air Products and Chemicals, Inc.: Dangers of oxygen-deficient Atmospheres, 2014 (36199) 900-13- 098-US
≥ 17 Vol-%	Class 0: Employee training, 30min break after 4h work	DGUV Information 205-006: Working in oxygen-reduced atmospheres, November 2013 with issue update from April 2019

O2 concentration in cabin in Vol.-%

\rightarrow No adverse reduction of oxygen concentration measured in cabin

Conclusion

Conclusions

Comparison Empty vs. Containerized load

• Different dynamic response at start of NEA flow and start of descent

Conclusions

Comparison Empty vs. Containerized load

- Different dynamic response at start of NEA flow and start of descent
- Different local gradients in cargo hold

Conclusions

Empty Cargo Hold

- Good prediction of transient oxygen concentration profile
- Local leakages show lower impact on measurements

Containerized Cargo Hold

- Min. and Max. transient oxygen concentration reasonably predicted
- Local deviations due to huge impact of lining leakage distribution
- Leakage pattern non-predictable, lining installed as airtight as possible

Blower Door method for Leakage detection

Passenger Health and Safety Assessment shows no issues in cabin

Outview & Acknowledgement

Upcoming presentation with N₂-bottles with higher TRL

Extension of test rig and simulation method to

- High-boiling point agents
- Two-phase flow conditions

This project received funding from the Clean Sky 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement LPA-IADP CS2-LPA-GAM-2018-2019-01. The authors are responsible for the content.

