High Performance Gas Expansion System for Halon-fre Hold Fire Suppression SYSTEM (ECOSYSTEM)

Evaluation of Nitrogen as a Replacement for Halon 1301 in Cargo

10th Triennial International Aircraft Fire and Cabin Safety Research Conference, Atlantic City, NJ, USA October 17-20, 2022

Consortium Partners:

Topic Manager:

Collins Aerospace

[ART Ireland]: Changmin Cao, El Hassan Ridouane [GETC-P]: Weronika Batoq, Lukasz Turek

Airbus: Andre Freiling, Rainer Beuermann

[Avionics]: Adam Chattaway, Hitesh Mistry, Francois Petetin, Francois Breton, Morgan Carrier [Interiors]: Detlev Degenhardt, Carlos Manglano, Gerrit Krause, Jens Krissun Fraunhofer: Victor Norrefeldt, Arnav Pathak, Marie Pschirer, Max Kienberger

www.cleansky.eu

Approved for Public Presentation - © Collins Aerospace 2022

arg

Clean Sky 2 – AIRFRAME-ITD

AGENDA

- Project Overview
- ECOSYSTEM Objectives
- Cargo Compartment Set-up
- O₂ Sensor Locations and Demonstrator Installation
- Testing Results
 - O₂ Concentration
 - Pressure rise
- Simulation Results and Comparsions

ECOSYSTEM OVERVIEW

BACKGROUND

- ECOSYSTEM is an EU funded Clean Sky 2 project
- Project started October 2019 and completed March 2022
- Max EU contribution of k€699
- Project effort 74 person months
- Topic Leader Airbus

SCOPE AND POSITIONING

- Develop an environmentally friendly and economically viable halon-free cargo hold fire suppression system
- TRL 5 demonstration in relevant environment at Fraunhofer facility

ECOSYSTEM OBJECTIVES

PROJECT OBJECTIVES:

- Develop requirements and KPIs with the topic manager
- Develop and assess system architecture options with respect to optimal placement and integration of components into demonstrator
- Design system components
- Perform trade studies to evaluate component options based on weight, volume, safety impact, certification complexity
- Perform a thorough safety/risk analysis at system level
- Model performance of demonstrator using CFD and stress analysis
- Characterize system performance at component and system level
- Test prototype at Fraunhofer Institute (Holzkirchen, Germany) and evaluate its performance

RECAP OF PREVIOUS WORK

- This project was presented at FAA April 2021 Meeting: 5
 - Demonstrator components
 - System design modelling process and approach
 - Modelling for component selection (cylinder, flow rate, regulators, restrictor)
 - CFD modelling of demonstrator performance at all flight phases
- This presentation will cover the testing results obtained at Fraunhofer and comparison of modelling and testing results.

	1. Cylinder se	election (nu	ımber, pr	essur	e, vol	ume)
	Overpressure requirement		Max. mas rate of HR	s flow	٦	Mass
					-	of HRI
	HRD discharge time		Min. mass rate of HF	s flow RD		
						Cyli
	Leakage in flight phase			→ Mas	s flow r	ate of L
_				LRD	dischar	ge time
		acontration	dictribu	tion of	(aluat	lion

o. oxygen e		··-
Pipe layout	 3D oxygen concentration	
Cargo dimension	 distribution	•

ECOSYSTEM Demonstrator

Prototype

FHG CARGO COMPARTMENT SET-UP

Modified SA Cargo hold

Cargo hold modification: from A310 to required volume

Original cabin floor

Original A310 Cargo hold

https://www.hoki.ibp.fraunhofer.de/vr/virtual-tour IBP/#tabpanel-Virtueller%20Rundgang%20Fraunhofer%20IBP

Approved for Public Presentation - © Collins Aerospace 2022

O2 SENSOR LOCATIONS

O₂ sensor locations in cargo hold

O₂ sensors are placed at 18 locations, near ceiling and floor, near side walls in between nozzles, in leakage pipe, near pressure management system (PMS)

DEMONSTRATOR INSTALLATION

Demonstration installation

- Cargo Air supply
- Cargo Leakage
- Demonstrator installation
- Cylinder locations

TESTING MATRIX

The scope of ECOSYSTEM demonstrator is to discharge Nitrogen over temperature range from -40°C to +70°C for both Demonstrator and cargo hold at ground, cruise and descent phases.

- Fraunhofer facility is capable for demonstrator temperature over range -40°C to +60°C and cargo air temperature over range- 17° C to + 60° C.
- 3D CFD simulations were performed for the conditions outside Fraunhofer facility test range.

O 3D simulations

TEST MATRIX

Tests covered cold, ambient and hot temperature conditions at ground and in-flight phases for empty and loaded cargos.

		Demonstration	Carra Llald		In flight	Loaded
		Demonstrator	Cargo Hold Flight Phases		leakage	tactor
Test NO.	Condition	(°C)	(°C)		[Y/N]	%
1	Ground, ambient	ambient	ambient	Ground	N	0
2	In-flight, ambient	ambient	ambient	Cruise to descent 1	Y	0
3	Ground, cold	-40	-17	Ground	N	0
4	Ground, cold	-40	-17	Ground	N	0
5	In-flight, cold	-40	ambient	Cruise to descent 1	Y	0
6	In-flight, cold	-40	-15	Cruise to descent 1	Y	0
7	In-flight, cold	-40	-15	Cruise to descent 2	Y	0
8	In-flight, hot	55	ambient	Cruise to descent 1	Y	0
9	Ground, hot	55	ambient	Ground	N	0
10	Hot HRD only	55	ambient	Cruise to descent 1	N	75
11	Loaded, ambient	ambient	ambient	Cruise to descent 1	Y	75

TESTING RESULTS – EMPTY CARGO

Tests at ground and in-flight phases

- Throughout HRD to LRD ends, O2 concentrations are lower than 9% for ground and in-flight condition. •
- O2 concentration stratification showed at LRD stage because of low jet momentum from nozzles, resulting in higher O2 concentration near floor.
- For in-flight testing, O2 concentration increased during descent phase, but still maximal O2 concentration is lower than 9%. The • enhanced O2 concentration stratification is caused by non-uniform leakages in cargo hold.

Average O2 vol. frac.

12

Clean Sku₂

TESTING RESULTS – EMPTY CARGO

Repeatability test:

- Good repeatability of O₂ concentrations
- About 5 minutes difference of discharge time because of variation of stored Nitrogen mass in cylinders.
- Throughout HRD to LRD ends, O2 concentrations are lower than 10%, slight higher than that at ambient condition. It is worth to note that this testing condition gives highest peak O2 concentration throughout HRD to LRD ends for empty cargo.

TESTING RESULTS – EMPTY CARGO

Cold tests: effect of increased cargo temperature and pressure

Approved for Public Presentation - © Collins Aerospace 2022

Overall O₂ concentration increased because of increased cruise pressure.

—	fO2_FUL
—	fO2_FOL
—	fO2_MUL
—	fO2_MOL
—	fO2_BUL
—	fO2_BOL
	fO2_FUR
	fO2_FOR
	fO2_MUR
	fO2_MOR
	fO2_BUR
	fO2_BOR
—	fO2_av

TESTING RESULTS – LOADED CARGO

Loaded, in-flight condition

- A rapid O₂ concentration reduce showed during HRD, low concentration maintains during LRD.
- O₂ concentration increased through air ingress during decent, fluctuations showed at different locations caused by local leakage and turbulence.

PRESSURE RISE

Pressure rise for empty and loaded cargo

- Maximum pressure rise is about 230 Pa, much lower than overpressure in the requirement because of high leakage in tests.
- Leakages (container, PMS, door, liner) shall be carefully quantified in future tests.

SIMULATION & TESTING COMPARISON

3D simulations performed and compared with testing results

	Demonstrator	Cargo Hold	Pressure
Condition	(° C)	(° C)	(hPa)
Ground, cold	-40	-12	Ground
In-flight, cold	-40	-15	Inflight

- Good agreement showed in the comparison of the predicted and measured oxygen concentration.
- Predicted pressure is slightly higher than measured pressure, but overall trends are well captured.
- The disparity of pressure can be reduced by adjusting the fitting curve of leakage rate, however, this improvement on O_2 concentration is insignificant.

SIMULATION & TESTING COMPARISON

Comparison oxygen concentration results of 0D simulations with testing

Averaged oxygen concentration from testing

Predicted oxygen concentration using 0D code

- Solid lines are the results of tests at in-flight condition, dash lines are the results of tests at ground condition. Results for hot, ambient and cold conditions are in red, black and green/blue, respectively.
- Compared to averaged oxygen concentration from testing, overall trends are well captured in the 0D modelling.

SUMMARY

- Demonstrator has been designed, built and tested as ground and simulated in-flight conditions.
- A successful testing campaign was conducted at Fraunhofer Institute, Holzkirchen, Germany by achieving the required oxygen concentration
- Demonstrator discharge tests were completed at different conditions including ambient, cold and hot temperature conditions, ground and in-flight conditions as well as empty and loaded cargo configurations.
- The CFD predictions and 0D modelling results were compared with the measured data and good agreement was obtained in terms of oxygen concentration data

ACKNOWLEDGEMENTS

- EU Clean Sky 2 for funding
- Airbus as Topic Manager 5
 - Rainer Beuermann, Nadine Gomm, Andre Freiling
- Fraunhofer Team
 - Arnav Pathak, Marie Pschirer, Victor Norrefeldt, Max Kienberger
- **Collins Aerospace Team**
 - El Hassan Ridouane, Laurie O'Sullivan, Hitesh Mistry, Francois • Petetin, Francois Breton, Morgan Carrier, Detlev Degenhardt, Carlos Manglano, Gerrit Krause, Jens Krissun, Weronika Batog, Lukasz Turek
- FAA Tech Center

Approved for Public Presentation - © Collins Aerospace 2022

EXPECTED IMPACT

Project expected impact:

- Regulation (EC) No 1005/2009 of the European Parliament on substances that deplete the ozone layer
- Elimination of a highly ozone-depleting and global warming substance
- Replace halon by nitrogen, a sustainable alternative to an ozone-depleting and global warming gas
- Successfully use inert gas in aerospace
- Having this technology at TRL 5 is a step further to bringing a **product to market**
- Strengthen European aerospace industry competitiveness

Halon 1301 availability Oct18Meeting/Verdonik-1018-XXIX-8.pdf

