Effects of Airplane Cabin Interiors on Egress I:

Assessment of Anthropometrics, Seat Pitch, and Seat Width on Egress

Presented to: 10th Triennial International Fire and Cabin Safety Research Conference

 By:
 David Weed

 ORCID: 0000-0002-5184-6933

 Date:
 October 2022

Federal Aviation Administration

Introduction

- Civil Aerospace Medical Institute (CAMI)
 - Human Protection and Survival Research Laboratory
 - Cabin Safety Research Team
- David Weed Primary Investigator
 - Team Coordinator, Primary Investigator

Background

- Evaluation of Seat Pitch and Width
 - FAA Reauthorization Act of 2018
 - Section 577
- Previous Evacuation Research
 - Access to Egress, McLean et. al., 2002 [1]
- Evaluate Seat Pitch

Background

Occupiable Space:

Diagram– FAA CAMI

Study Description - Topics

- Topics of Interest:
 - Anthropometry of current population
 - Body types able to utilize seats
 - Effect of seat spacing/dimensions on egress

Study Description - Questions

- Variables tested:
 - Seat Pitch
 - 28 inches, 32 inches (control), 34 inches
 - Narrowest flying, Average flying, Average "Economy Plus"
 - Seat Width
 - 18 inches, 16 inches

- Anthropometrics Collected:
 - Height, Weight, Girth, Shoulder Width, Hip Breadth, Buttock-to-knee, Knee-to-floor

Buttocks-to-Knee Length/Knee Height, Sitting: * Seated, feet in line with thighs (apart), knees at 90° * Sit tall, look straight ahead with hands resting loosely on thighs

Hip Width, Sitting: * Seated, feet and knees together, knees at 90° * Sit tall, look straight ahead with hands resting loosely on thighs * Flex elbows to 90°, hands straight, palms facing inward

Federal Aviation Administration

- Body Types able to Utilize Seats
 - Experimental Seating Mock-up
 - 28-inch pitch
 - 26-inch pitch

- FlexSim
 - Conservative simulator
 - Simulated seats vs.
 Flying seats.

Flexsim Interior – FAA CAM

- Motivation
 - First 70% out each
 evacuation received
 25% bonus.
 - Flight attendants shouting evacuation commands

- Comparative study
 - Effect of just seat pitch and width on evacuation times
- Limited Variables/Safety of the subjects
- Evacuations
 - 12 days of testing, 4 evacuations per testing day
 - Counterbalanced run order

Example Video

- Demographic and Anthropometric data collected from 775 participants
 - 368 (47.5%) Male / 407 (52.5%) Female
 - Ages ranged from 18-64 (Avg. 35.6 years old)
 - 18-30 (293), 31-40 (213), 41-50 (160), 51-60 (105), 61+ (4)

- Anthropometrics comparison to general population data [3]
 - Height (+2.57cm), Weight (+6.07kg), Girth (+2.51cm)
 - Similar to previous projects

- Ergonomics
 - 28 inch pitch
 - 6 of 775 participants unable to sit (unable to maintain ergonomic minimum) in experimental seating mock-up (<1%)
 - 26 inch pitch
 - 62 of 775 participants unable to sit (unable to maintain ergonomic minimum) in experimental seating mock-up (8%)

- Evacuation
 - Evacuation data collected from 718 participants
- Number of incidents
 - 14 total IRB reportable incidents
 - 11 injuries requiring evaluation/treatment
 - 10 treated on-site/minor
 - 1 required medical transport

Covariates:

- Gender, Girth, Age [1]
- Knee-to-floor

Outliers

- 34 individual egress times removed

Statistical Tests:

 No statistically significant differences found for evacuation times (p < .05)

Example Video – Top Down

Conclusions

- General Trends:
 - Groups mostly followed previous observations
 - First evacuation generally slowest, Subsequent evacuations tended to speed up
 - Training Effect
 - Significant variance based on individual differences
 - Covariates

Conclusions

- Seat Pitch and Width had no significant effect on egress
 - If ergonomic minimums are maintained
- Ergonomic analysis
 - Ergonomic minimums maintained for 99% at 28-inch

Acknowledgements

- 47 FTE's
 - (AAM/AFS)
- CAMI iZone
- CAMI Clinic
- OKC ARFF
- 6 FA's
- MMAC Security
- Many More

References

- [1]:McLean, G. A., Corbett, C. L., Larcher, K. G., McDown, J. R., Palmerton, D. A., Porter, K. A., Shaffstall, R. M., & Odom, R. S. (2002). Access-to-egress I: interactive effects of factors that control the emergency evacuation of naïve passengers through the transport airplane type-III overwing exit. Office of Aerospace Medicine Technical Report DOT/FAA/AM-02/16, Washington, D.C: U.S. Department of Transportation.
- [2]: United Kingdom Civil Aviation Authority. (1988). *Airworthiness Notice (AN) 64: Minimum Space for Seated Passengers.*
- [3]: Centers for Disease Control and Prevention. (2020, March). NHANES Questionnaires, Datasets, and Related Documentation. Retrieved March 19, 2020, from https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2017

Thank you

Questions?

 Weed, D. B., Beben, M. S., Ruppel, D. J., Guinn, K. J., & Jay, S. M. (2022) Effects of Airplane Cabin Interiors on Egress I: Assessment of Anthropometrics, Seat Pitch, and Seat Width on Egress. Office of Aerospace Medicine Technical Report DOT/FAA/AM-22/01, Washington, D.C: U.S. Department of Transportation.

