

Modeling of Cough Transport in an Aircraft Cabin

Angela Davis, Stephen Trent | FAA Triennial | Atlantic City | October 18, 2022

What makes the air quality better?

Parameters observed in Boeing modeling make the airplane cabin a low risk environment

- 1. Cabin air flows primarily from ceiling to floor
- 2. The circular air pattern limits particle movement
- 3. Airflow pulls cough particles down
- 4. The seat position acts as a barrier and minimizes particle spread
- 5. Airborne particles flow out through the floor grilles
- 6. HEPA filters trap more than 99.9% particles including spores, bacteria, viruses
- New fresh, filtered air constantly fills the cabin 20-30 times per hour

Why Boeing relies on high resolution particle modeling

 CO_2 is a poor simulant for particles

- CO₂ does not settle due to the force of gravity
- CO₂ cannot be removed by HEPA filtration
- CO₂ is not removed from the atmosphere by contact with surfaces unless those surfaces have been specifically designed to remove CO₂
- CO₂ is a permanent gas and is not condensed at room temperature
- CO₂'s behavior in the atmosphere changes very little as a result of relative humidity
- The size of CO₂ molecules does not change with evaporation
- CO₂'s diffusion in the atmosphere is that of a permanent gas and not of a particle
- CO₂ has no complex behavior due to dissolved materials as it is not a particle and is a single compound

CO2 is recirculated which is not the case for viruses or bacteria.

DIRECT INTERCEPTION

2 INERTIAL IMPACTION

3 DIFFUSIONAL INTERCEPTION

HEPA Filter Removal Mechanisms

Computational Fluid Dynamics (CFD) Model Inputs

- 737 cabin interior geometry; 5 rows and 30 passengers
- Each passenger has 1 cubic foot breathing zone
- 13M volume elements, with 106M particles modeled, on 20k cores, using 800 Ansys Fluent[™] licenses

- Single cough; modeled with and without a mask
- Cumulative cough material tracked in each passenger's breathing zone
- Tabulated worse case accumulation for each passenger

	737 Aircraft	737 Aircraft	Indoor Commercial Space		
	Cough	Breathing	Cough		
Supply flow rate [Actual ft ³ /min]	323-588	588	171-683		
Return flow rate [Actual ft ³ /min]	Same as supply	Same as supply	Same as supply		
Air changes per hour	24.7-44.9	44.9	2-8		
Relative humidity [%]	0-20	0	50		
Occupant heat generation [W]	70/person	70/person	70/person		
Walls [°F]	55-65	65	Adiabatic		
Ceiling, floor, stowage bins	Adiabatic	Adiabatic	Adiabatic		
Front and back interfaces	Periodic	Periodic	Non-periodic		
Supply air temperature [°F]	62-67	65	65		
Environment average temperature [°F]	75-77	75	70-80		
All occupants inhaling/exhaling?	Yes for simulations with	Both	No		
	relative humidity $> 0\%$				
Recirculation?	Yes	Yes	No		

Airflow and thermal boundary conditions used for CFD simulations

Mass Inhaled

- Total mass inhaled calculated using:
 - Mass in breathing zone vs time
 - Inhalation portion of tidal breathing
- Maximum mass inhaled was 0.3% of the initial release
- Average mass inhaled over the 29 susceptible passengers was 0.05%

- 95% of the mass removed from the breathing zone in 1.4 min for the occupant with the highest exposure
- Removal from breathing zone more rapid than removal from the cabin

Influence of Initial Condition Velocity Vector

Airborne Particle Decay

Con	stant	flov	wrat	te, va	rying	jinde	x & i	initia		ndit	ions
Airborne particles in simulation (% of discharge)	90%	Ì				Index Index	3D, In 3D, In	itial Co itial Co	nditic nditic	on 1 on 2	
	80%				Index	3D, In	itial Co	onditic	on 3		
	70%					Index Index	3E, In 3F, In	itial Co itial Co	onditio onditio	on 1 on 1	
	60%					1000/	·				
	50%					100%					
	40%					95%			\sim		
	30%					90% 85%					
	20%					0570	0 2	4	68	10	
	10%							Time	(s)		
	0%	(a)									
	0.	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.()
	Time (min)										

- Initial differences due to surface deposition
- At 100% flow rate, 95% particle removal from the cabin in 2.4-2.5 minutes

Constant index, varying flow rate

- Reducing flow rate increased removal time
- At 55% flow rate, 95% particle removal from the cabin in 4.5 minutes

1B | 1C

2B

3B

4B

5B

2C

3C

4C

5C

1A

2A

ЗA

4A

5A

1D | 1E | 1F

2D 2E

3D 3E

4D

5D 5E 5F

4E | 4F

2F

3F

Effect of Flow Rate

- Reducing the flow rate resulted in more particle spread throughout the cabin
- Average mass inhaled increased with reduced flow rate
- Maximum mass inhaled did not increase with reduced flow rate

Mass inhaled,

% of release

0.30%

0.20%

0.15%

Airplane testing validates Boeing's cabin airflow modeling Hundreds of cough tests show passenger risk is extremely low

The US Department of Defense conducted **over 300 tests** in-flight and on the ground.

A robotic manikin released 180 million particles, the **equivalent of multiple coughs**, in each test.

Particles were tracked and showed only a **0.3% maximum risk of exposure** to infected particles even when seats are full.

Coughing manikin

Bioaerosol sensors

Cough Comparison to USTRANSCOM Experiments

- 75 releases with conditions most similar to CFD were compared to one 77% flow rate simulation
- Adjusted USTRANSCOM inhalation rate to match model

For more details: https://www.ustranscom.mil/cmd/docs/ TRANSCOM%20Report%20Final.pdf

- Experiment resulted in higher maximum exposure
- Model resulted in higher median exposure at close distances
- Both studies concluded low exposure

Findings from both empirical study and CFD modeling

- Airplane cabins do not have a wellmixed atmosphere
- This is due to high seatbacks, overall ceiling to floor airflow and positioning of the air inlets and return air grilles
- When a release such as a cough occurs, they are neither well-mixed nor steady state
- There is no simple relationship between distance and exposure to aerosol particles on aircraft
- HEPA-filtered and outside air sources are equivalent from a virus perspective on aircraft as the most penetrating size is retained by the filters at 99.97%

Exposure seat maps for CFD simulations with the highest individual occupant exposure to a single cough in the ICS and airplane, and exposure to eight hours of breathing in the airplane. Each bubble represents the position of an occupant, and the size of the bubble represents the nonvolatile mass inhaled as (a) a percentage of the mass released, and (b) the total mass inhaled, μg . (Trent et al.)

Travel Confidently.

boeing.com/confident-travel

Copyright © 2021 Boeing. All rights reserved.