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Introduction
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• Additive Manufacturing (AM) is the process of joining 

materials, usually layer by layer, to produce an object
– Commonly referred to as 3D printing

• Many different types of AM including:
– Material Extrusion

– Powder Bed Fusion

– Binder Jetting

• For the purposes of this study, Fused Deposition 

Modeling (FDM), a type of Material Extrusion AM, was 

the primary focus



Introduction

• Aircraft manufacturers have interest in the use of AM produced 

parts within the cabin
– 3D printed parts are currently used within small components such as fold 

down tray tables and arm chair rests within certain airlines

– AM market is projected to grow significantly within the aerospace industry in 

the next 5 – 10 years

• Additive Manufacturing presents new challenges due to the 

different variables that are used in the production process
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Test Objective
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• Testing was conducted to determine how different print variables affect 

a 3D printed part’s flammability

• Experiment results will be used to simplify future flammability testing
– By determining what would be considered a “worst case scenario” for each variable, 

future guidance could simplify certification testing

• All tests were conducted using the procedures in the 12 second Vertical 

Bunsen Burner (VBB) test handbook



VBB Test Measurements
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Burn Length – the distance (in)

from the sample edge to the farthest 

evidence of combustion damage

Flame Time – the time (s) that 

the specimen continues to flame 

after the burner flame is removed 

Drip Flame Time – the time (s) that 

any flaming material continues to 

flame after falling to the bottom of test 

chamber



Previous Testing

• Past testing was conducted in which one factor at a time (OFAT) was 

altered

• Several variables were identified as factors which affect flammability:

• OFAT testing results indicated that all variables above had impact on 

flammability, but infill percentage, material and # inner layers had largest 

effect

• Different style testing was needed to determine if any of the variables had 

interaction effects – Design of Experiments
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- Material - # Inner Layers - Infill Percentage

- Infill Pattern - Raster Thickness - Raster Angle

- Print Orientation (XY, YZ, ZX)



Design of Experiments (DOE) Setup

• 120 16” x 3” samples were printed 
– Samples were cut into fourths, in which 480 4” x 

3” samples were tested 

– Samples and factors were randomized

• The factors that were altered in this study 

included:
– Material

– # of Inner Layers (Sample Thickness)

– Infill % (Space Between Rasters)

– Infill Pattern

– Raster Angle

– Raster Width (Width of inner extruded material)
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Materials from left to right: Ultem 9085, Ultem 1010, 

Ultem Support, and Antero 800 NA



Materials
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Ultem 9085 Ultem 1010

Ultem Support Antero 800 NA

11 Inner Layers

0.15” Thick

4 Inner Layers

0.08” Thick

0 Inner Layers

0.02” Thick

All samples of this 

thickness had 0% infill

# Inner Layers (Sample Thickness)
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Infill Pattern

Solid (100% Sparse infill) Sparse

Sparse DD Hexagram

Raster Angle

45°

67.5° 90°



Infill Percentage Comparisons
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60%20%

Sparse
Hexagram

20% 60%20% 60%

Sparse DD



Raster Width Comparisons
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0.016” Width 0.018” Width 0.022” Width 0.030” Width

• Difficult to see, but the thickness of the extruded inner material 

increases from left to right

• Not visible in pictures of actual samples



Exceptions
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• Due to constraints with the 3D printers, some combination of factors could 

not be created
– Antero 800 NA samples could not be created at a raster width of less than 0.018”, so all 

0.016” Antero samples were changed to 0.018”

– All 60% infill hexagram with raster sizes of 0.016”, 0.018” and 0.022” were removed. All 

0.030” samples were kept.

• These changes did not significantly affect the DOE data analysis



Observations

• As expected, Ultem Support was the most 

flammable material
– Highest burn length, flame time and only material to 

experience drip flame time

– All samples with a burn length greater than 4.0” were 

Ultem Support with 0 inner layers

• Samples with more inner layers and higher 

infill percentages were observed to perform 

better
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0 inner layer Ultem Support sample 

w/ > 4.0” burn length  



Infill % and # Inner Layers – Burn Length 
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Infill % and # Inner Layers – Flame Time
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DOE Analysis

• All variables were significant as either main or 

interaction effects for predicting burn length

• All factors except for infill pattern were 

significant for predicting flame time
– Material, # of inner layers, and infill % most significant 

variables for flame time and burn length 

– Raster width and raster angle less significant as main 

effect variables, but significant as interaction effect 

variables

• Material was the most significant variable in 

the occurrence of drip flame
– Drip flame only occurred for Ultem Support materials, 

but was present with all other variable changes
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DOE Analysis (Continued)

• 10 best and worst case flammability scenarios were generated on the 

combinations below for each material
– Infill Pattern (None, Sparse, Sparse DD) 

– Raster Width (0.016” to 0.030”, by 0.002”)

– Raster Angle (45° to 100°, by 7.5°)

– Inner Layers (0, 4 to 11, by 1 layer)

– Infill Percentage (0%, 20% to 60% by 10%)
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Generated Best Case Scenarios – Ultem 9085 

• Samples with higher infill % and inner layers created optimal conditions
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• Infill pattern, raster 

width and raster angle 

dependent on material
– Ultem 9085 mainly 

Sparse and 0.016” 

raster widths

– Ultem 1010 primarily 

Sparse DD and 0.030” 

raster widths

Ultem 9085 - Top 10 Combinations for Minimization

Rank Infill % Infill Pattern # Inner Layers Raster Angle [°] Raster Width [in]

1 60 Sparse 11 90 0.016

2 60 Sparse 11 82.5 0.016

3 50 Sparse 11 90 0.016

4 60 Sparse 11 90 0.016

5 60 Sparse 11 75 0.016

6 50 Sparse 11 82.5 0.016

7 40 Sparse 11 90 0.016

8 60 Sparse 10 90 0.016

9 60 Sparse DD 11 90 0.016

10 60 Sparse 11 82.5 0.016



Generated Worst Case Scenarios – Ultem 9085

• Samples with 0 inner layers 

(0% infill) maximized burn 

length and flame time

• Raster angles and raster 

width varied
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Ultem 9085 - Top 10 Combinations for Maximization

Rank Infill % Infill Pattern # Inner Layers Raster Angle [°]
Raster Width 

[in]

1 0 None 0 90 0.016

2 0 None 0 45 0.016

3 0 None 0 82.5 0.016

4 0 None 0 90 0.018

5 0 None 0 45 0.030

6 0 None 0 52.5 0.016

7 0 None 0 90 0.030

8 0 None 0 45 0.018

9 0 None 0 75 0.016

10 0 None 0 90 0.020



Conclusion and Future Work

• Testing will be conducted on the 10 best/worst case scenarios for each 

material in order to confirm the validity of the DOE results

• Repeat testing may be needed to validate results

• Other suggestions at task group meeting?

• Goal is to eventually create guidance from results of testing
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Questions?

Dan Keslar

Federal Aviation Administration

William J. Hughes Technical Center

Fire Safety Branch, Bldg. 203

Atlantic City Int’l Airport, NJ 08405

(609) 485-5767

Daniel.Keslar@faa.gov
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Contact:

Steve Rehn

Federal Aviation Administration

William J. Hughes Technical Center

Fire Safety Branch, Bldg. 203

Atlantic City Int’l Airport, NJ 08405

(609) 485 - 5587

Steven.Rehn@faa.gov


