

## **HR2 Development – TRL 6 Testing and Planning**



Presented by: Brian Johnson, BCA Flammability

Prepared by: Yaw Agyei, BR&T Yonas Behboud, BR&T Genya Shimada, BR&T Brian Johnson, BCA Flammability

# **OSU Test Method**



#### 14CFR25.853(d)

- Added in 1986
- Current FAR Appendix F Part IV
- Applicable to interior exposed surfaces greater than 144 square inches
- Measures heat release as a function of time
- Test code: HR

- Reproducibility challenges persist
- Specification does not tightly control some key parameters
- Decades of certification data in use



Light Brown Honeycomb Panel

\*Presented June 2012

# **HR2 - Next Generation OSU**



#### **Design and Other Changes**

- Elimination of cooling flow / inner chimney
- Insulation / metal wall specification changes
- Coupon location in chamber specified
- Air and methane flows controlled via MFCs
- Single lower Tcouple DAQ correction
- HFG calibration / limit changes (3.65 W/cm<sup>2</sup>)
- Methane calibration and cal factor correction
- Multiple additional procedural changes



\*Presented October 2016

#### **Anticipated Improvements**

- Repeatability driven by design and cal changes
- Reproducibility increased via spec controls
- Cross industry variation greatly reduced

# **Developmental Project Technical Readiness**

### Flammability Test Method/Equipment TRLs (Derived from NASA TRL)

| MATURITY                | TRL 1 | Basic principles/concept of test equipment and procedure defined.          |
|-------------------------|-------|----------------------------------------------------------------------------|
| LEVEL                   | TRL 2 | Test method concept formulated and defined by draft standards.             |
| Discovery               |       | Analytical and experimental critical function and/or characteristic proof- |
|                         | TRL 3 | of concept (e.g. by modifying old/existing equipment)                      |
| <b>↓</b>                |       | New prototype equipment validation in laboratory environment               |
| Feasibility             | TRL 4 | (robustness)                                                               |
|                         |       | Updated prototype equipment validation in relevant production              |
|                         | TRL 5 | environment (repeatability). Documented test guidance framework.           |
| Practicality            | TRL 6 | Multiple prototypes validation in relevant environment (reproducibility)   |
|                         |       | Finalized prototype equipment demonstation on range of production          |
|                         | TRL 7 | configurations. Documented test guidance defined.                          |
| Applicability           |       | Final test equipment drawigns released, equipment built to the             |
|                         |       | standards, and "qualified" through test and demonstration. Documented      |
|                         | TRL 8 | test guidance finalized.                                                   |
| <b>↓</b>                | TRL 9 | Multiple production units verified by successful round robin testing.      |
| Production<br>Readiness |       | *Presented in October 2014                                                 |

# HR2 Tailored TRL Development Model

**TRL 4** - *Robustness* - apparatus, calibration method, equipment, procedures. Evaluate calibration factor variation using methane only / no coupons.

Gate 4 / Enter **TRL 5**: Calibration factor variation (< 5%)

**TRL 5** - *Repeatability* - variation in measurements taken on the same item under the same conditions. Homogenous coupon tested multiple times using one unit.

Gate 5 / Enter **TRL 6**: Coefficient of Variation (CoV) improvement vs. OSU

**TRL 6** - *Reproducibility* - variation in measurements taken on the same items under the same conditions using different machines.

Gate 6 / Enter TRL 7: Individual coupon type CoV and ANOVA evaluation

**TRL 7** - *Range* - demonstrated ability to test a range of coupon materials and configurations. Establish pass/fail criteria for HR2 total and peak heat release.

Gate 7 / Enter **TRL 8**: Results over a range of sample types that are consistent with OSU empirical results.

# **HR2 Development Goal and Status**

 HR2 Goal: Define a robust method to determine peak and total heat release that improves repeatability and reproducibility when compared with OSU

### **History / Status**

- NASA Technical Readiness Level (TRL) model adopted
- TRL 4 Robustness completed calibration factor variation < 5%</p>
- TRL 5 Repeatability completed CoV improvement demonstrated
- HR2 development is in TRL 6 Reproducibility
  - Individual coupon type CoV and ANOVA evaluation
  - Success criteria will be determined by the OSU / HR2 task group\*

\* Key members: Mike Burns (FAATC), Martin Spencer (MarlinEngineering), Mike Schall (Deatak), Jan Christian Thomas (Airbus), Yaw Agyei (Boeing BR&T), Kent Wenderoth (Herb Curry)

## TRL 6 Test Plan - Presented March 2020

### Approach

- Phase 1 Evaluate units to ensure parameters fall within set ranges
- Phase 2 Test 40 specimens and compare variation to reproducibility criteria
  - Revised to 24 specimens per sample type to accommodate instruments coming online

#### Instruments

Tested

- Marlin Engineering HR2 FAA TC, Egg Harbor Township, New Jersey
- Deatak HR2 FAA TC, Egg Harbor Township, New Jersey

#### Future Implementation

- Marlin Engineering HR2 Boeing Test Laboratory, Seattle, Washington
- Marlin Engineering HR2 Airbus Fire Test Laboratory, Bremen, Germany

## TRL 6 Test Plan – Part 1 – Presented April 2021

### **Test Coupons**

- Coupons fabricated at Airbus (AT), Boeing (BPD), and Schneller (SPD)
- Panels shipped to Boeing for randomization and distribution
- Coupons stored in conditioning chamber (70°F, 50% RH) prior to test
- Develop plan to statistically evaluate variation due to storage effects\*

40 randomized samples each of 3 homogenous coupon types per unit

- 1. Standard laminate panel (SPD) provided by the FAA / Schneller
- 2. Boeing standard panel with decorative (BPD) provided by Boeing
- 3. Aluminum panel with transfer tape (AT) provided by Airbus



\* Boeing panels exhibit very little additional variation when similarly stored

# TRL 6 Test Plan – Part 1

#### Post Testing Actions – Presented April 2021

- ME Schneller panel mean results are 3 4 points lower than expected
  - Deatak Schneller panel results are very close to TRL 5 results
    - $\sim$  1 point difference in mean peak and mean 2-min total HR
  - Indicates lower air flow or heat loss during TRL 6 testing
- Suspected issue with ME unit due to this and BPD upper pilot extinguishing
  - ME unit had not had major maintenance since installation (7 years)
  - Pressure and flow measurements were taken after testing
    - Lower plenum pressure was low (11" WC vs 13" WC in DE)
    - No leaks discovered in the lower plenum area
    - Hardware joining lower plenum, main air distribution plate and main body were loose enough to be turned by hand

#### Post Testing Actions (continued) – Presented April 2021

- ME unit was completely torn down in the weeks after testing
  - Insulation was significantly deteriorated (left, right, & rear of unit)
    - All unit insulation was replaced
  - Upper, inner door mechanism bushings were burned out
    - Mechanisms were replaced
  - Gaskets / seals worn out replaced with high temp 1/8" graphite
    - Exhaust stack
    - Viewing window
    - Rear globar pan
    - Holding chamber
- Currently calibrating heat flux and preparing to assess operating parameters
- Spare Schneller and BPD coupons will be tested to asses performance

Due to these issues, it was decided that TRL 6 Phase 2 was needed

# TRL 6 Test Plan – Part 2

### Approach

- Phase 1 Collect 100 operating parameter sets to ensure units fall within set ranges
- Phase 2 Test 30 specimens of 2 coupon types and evaluate reproducibility
  - Aluminum panel with transfer tape (AT) were not tested due to late peak time

Instruments Tested

- Marlin Engineering HR2 (ME) FAA TC, Egg Harbor Township, New Jersey
- Deatak HR2 (DE) FAA TC, Egg Harbor Township, New Jersey

Future Implementation

- Marlin Engineering HR2 Boeing Test Laboratory, Seattle, Washington
- Marlin Engineering HR2 Airbus Fire Test Laboratory, Bremen, Germany

Note: Final TRL 6 Decision Requires Data from More Instruments

# TRL 6 Test Plan – Part 2

### **Test Coupons**

- Coupons fabricated at Boeing (BPD) and Schneller (SPD)
- Panels shipped to Boeing for randomization and distribution
- Coupons stored in conditioning chamber (70°F, 50% RH) prior to test

Test 30 randomized samples each of 2 homogenous coupon types per unit

1. Standard laminate panel (SPD) - provided by the FAA / Schneller

Thank you to Perry Riggenbach for your assistance with these!

2. Boeing standard panel with decorative (BPD) - provided by Boeing



## TRL 6 Test - Part 2 - Calibration and Test Data Log

| CF     |       | Ran   | dom Factor       |         |            |          |          |          | Cont            | trol Fact | ors      |         |          |             |            | Response Factors |                      |              |               |                |
|--------|-------|-------|------------------|---------|------------|----------|----------|----------|-----------------|-----------|----------|---------|----------|-------------|------------|------------------|----------------------|--------------|---------------|----------------|
|        |       |       |                  |         |            |          |          |          | Specimen        | Room      | Room     | Outside | Outside  | Supply      | Supply Air |                  | Peak Heat            |              | 2-Min         |                |
|        |       |       |                  |         | Sample     | Specimen | Specimen | Specimen | Mass            | Temp      | Humidity | Temp    | Humidity | Air         | Pressure   | Tpile            | Release Rate         | Peak         | Total HR      |                |
| Unit 🖵 | Day 🖵 | Set 👻 | File Name 💌      | Order 👻 | Holder # 👻 | Type 🖵   | # 🔻      | ID 👻     | (Pre-test, g) 👻 | (°F) 👻    | (% RH) 👻 | (°F) 👻  | (% RH) 👻 | Temp (°C) 💌 | (mmHg) 💌   | Baseline (°C) 💌  | (kW/m <sup>2</sup> ) | Time (sec) 🔻 | (kW-min/m²) 💌 | Eliminated 💌 I |
| FAA-ME | 1     | 1     | FAA-ME-Day1-Set1 | 5       | 2          | SPD      | 67       | SPD-67   | 25              | 72.5      | 20       | 54.7    | 24       | 22.7        | 20.02      | 342.10           | 47.37                | 42           | 35.58         |                |
| FAA-ME | 1     | 1     | FAA-ME-Day1-Set1 | 7       | 1          | SPD      | 15       | SPD-15   | 25              | 72.1      | 20       | 54      | 24       | 22.7        | 20         | 343.30           | 46.64                | 45           | 35.61         |                |
| FAA-ME | 1     | 1     | FAA-ME-Day1-Set1 | 9       | 3          | SPD      | 16       | SPD-16   | 25              | 72.0      | 20       | 53.2    | 24       | 22.7        | 20         | 343.30           | 48.46                | 46           | 36.44         |                |
| FAA-ME | 1     | 2     | FAA-ME-Day1-Set2 | 11      | 2          | SPD      | 28       | SPD-28   | 25              | 72.1      | 20       | 53.4    | 25       | 22.8        | 20         | 343.80           | 48.54                | 45           | 34.87         |                |
| FAA-ME | 1     | 2     | FAA-ME-Day1-Set2 | 12      | 3          | SPD      | 80       | SPD-80   | 25              | 72.5      | 20       | 53.2    | 25       | 22.9        | 19.99      | 344.10           | 48.46                | 45           | 35.47         |                |
| FAA-ME | 1     | 2     | FAA-ME-Day1-Set2 | 13      | 1          | SPD      | 60       | SPD-60   | 25              | 72.5      | 20       | 54.3    | 25       | 22.8        | 19.99      | 343.50           | 48.17                | 45           | 37.64         |                |
| FAA-ME | 1     | 2     | FAA-ME-Day1-Set2 | 17      | 2          | SPD      | 25       | SPD-25   | 25              | 72.1      | 20       | 54.7    | 25       | 22.5        | 20.02      | 343.30           | 51.30                | 44           | 34.75         |                |
| FAA-ME | 1     | 2     | FAA-ME-Day1-Set2 | 18      | 3          | SPD      | 78       | SPD-78   | 25              | 72.5      | 20       | 54      | 25       | 22.4        | 20.02      | 346.90           | 48.75                | 50           | 33.90         |                |
| FAA-ME | 1     | 3     | FAA-ME-Day1-Set3 | 21      | 3          | SPD      | 3        | SPD-3    | 25              | 72.9      | 22       | 53.6    | 26       | 22.4        | 20.02      | 345.00           | 47.30                | 47           | 34.12         |                |
| FAA-ME | 1     | 3     | FAA-ME-Day1-Set3 | 23      | 2          | SPD      | 100      | SPD-100  | 25              | 73.4      | 21       | 53.2    | 25       | 22.4        | 20.01      | 343.60           | 48.90                | 45           | 36.72         |                |
| FAA-ME | 1     | 3     | FAA-ME-Day1-Set3 | 24      | 3          | SPD      | 85       | SPD-85   | 25              | 73.2      | 21       | 53.2    | 25       | 22.2        | 20.01      | 346.00           | 48.17                | 43           | 35.72         |                |
| FAA-ME | 1     | 3     | FAA-ME-Day1-Set3 | 28      | 1          | SPD      | 70       | SPD-70   | 25              | 72.3      | 21       | 53.1    | 26       | 22.5        | 20         | 342.50           | 48.32                | 44           | 37.68         |                |
| FAA-ME | 1     | 3     | FAA-ME-Day1-Set3 | 30      | 3          | SPD      | 36       | SPD-36   | 25              | 72.5      | 21       | 53.6    | 27       | 22.5        | 20         | 342.70           | 49.77                | 45           | 36.35         |                |
| FAA-ME | 2     | 1     | FAA-ME-Day2-Set1 | 32      | 1          | SPD      | 63       | SPD-63   | 25              | 73.0      | 23       | 50.7    | 29       | 22.9        | 20.02      | 340.60           | 46.30                | 45           | 33.90         | '              |
| FAA-ME | 2     | 1     | FAA-ME-Day2-Set1 | 36      | 3          | SPD      | 6        | SPD-6    | 25              | 73.6      | 23       | 53.6    | 29       | 22.6        | 20.03      | 340.30           | 50.43                | 45           | 35.70         |                |
| FAA-ME | 2     | 1     | FAA-ME-Day2-Set1 | 38      | 2          | SPD      | 41       | SPD-41   | 25              | 73.9      | 22       | 54      | 29       | 22.6        | 20.02      | 340.50           | 47.44                | 43           | 34.43         |                |
| FAA-ME | 2     | 1     | FAA-ME-Day2-Set1 | 39      | 3          | SPD      | 33       | SPD-33   | 25              | 72.7      | 21       | 55      | 28       | 22.6        | 20.03      | 341.50           | 48.83                | 46           | 35.56         |                |
| FAA-ME | 2     | 2     | FAA-ME-Day2-Set2 | 41      | 2          | SPD      | 86       | SPD-86   | 25              | 73.9      | 21       | 61      | 28       | 22.6        | 20.04      | 341.40           | 46.06                | 44           | 34.27         |                |
| FAA-ME | 2     | 2     | FAA-ME-Day2-Set2 | 42      | 3          | SPD      | 1        | SPD-1    | 25              | 74.1      | 21       | 64.9    | 27       | 22.7        | 20.02      | 342.80           | 45.84                | 41           | 33.49         |                |
| FAA-ME | 2     | 2     | FAA-ME-Day2-Set2 | 43      | 1          | SPD      | 94       | SPD-94   | 25              | 73.9      | 21       | 67.5    | 26       | 22.8        | 20.02      | 343.10           | 47.59                | 47           | 35.81         |                |
| FAA-ME | 2     | 2     | FAA-ME-Day2-Set2 | 44      | 2          | SPD      | 17       | SPD-17   | 25              | 74.3      | 21       | 64.9    | 25       | 22.9        | 20.02      | 342.60           | 47.52                | 43           | 35.11         |                |
| FAA-ME | 2     | 2     | FAA-ME-Day2-Set2 | 46      | 1          | SPD      | 69       | SPD-69   | 25              | 73.2      | 21       | 59.70   | 26.00    | 22.4        | 20.03      | 340.70           | 46.94                | 44           | 36.16         |                |
| FAA-ME | 2     | 2     | FAA-ME-Day2-Set2 | 47      | 2          | SPD      | 47       | SPD-47   | 25              | 73.6      | 21       | 57      | 26       | 22.4        | 20.03      | 342.40           | 48.03                | 44           | 35.81         |                |
| FAA-ME | 2     | 2     | FAA-ME-Day2-Set2 | 48      | 3          | SPD      | 75       | SPD-75   | 25              | 73.8      | 20       | 59.2    | 25       | 22.3        | 20.05      | 342.50           | 49.26                | 45           | 36.90         |                |
| FAA-ME | 2     | 2     | FAA-ME-Day2-Set2 | 49      | 1          | SPD      | 30       | SPD-30   | 25              | /3.6      | 20       | 60.4    | 25       | 22.3        | 20.03      | 343.60           | 50.65                | 45           | 35.56         |                |
| FAA-DI | 3     | 1     | FAA-DI-Day3-Set1 | 5       | 2          | SPD      | 48       | SPD-48   | 2/              | 74.1      | 20       | 55.8    | 21       | 22.6        | 20.02      | 334.23           | 50.00                | 4/           | 38.00         |                |
| FAA-DT | 3     | 1     | FAA-DI-Day3-Set1 | /       | 1          | SPD      | 98       | SPD-98   | 26              | 73.6      | 20       | 58.1    | 21       | 22.4        | 20.02      | 335.67           | 46.70                | 44           | 37.00         |                |
| FAA-DT | 3     | 1     | FAA-DI-Day3-Set1 | 9       | 3          | SPD      | 9        | SPD-9    | 2/              | 73.8      | 20       | 59.7    | 21       | 22.4        | 20.02      | 336.22           | 47.10                | 46           | 37.70         |                |
| FAA-DT | 3     | 2     | FAA-DT-Day3-Set2 | 11      | 2          | SPD      | 2        | SPD-2    | 20.5            | 74.1      | 20       | 6.60    | 21       | 22.7        | 20.02      | 335.57           | 46.80                | 4/           | 58.50         |                |
| FAA-DT | 2     | 2     | FAA-DT-Day5-Set2 | 12      | 3          | SPD      | 24       | SPD-24   | 20.5            | 74.5      | 20       | 60.1    | 21       | 22.0        | 20.02      | 335.19           | 51.50                | 40           | 45.60         |                |
| FAA-DT | 2     | 2     | FAA-DT-Day5-Set2 | 15      | 2          | SPD      | 02       | SPD-69   | 20.5            | 73.9      | 20       | 00.1    | 21       | 22.5        | 20.02      | 224.72           | 47.40                | 44           | 39.10         |                |
| EAA DT | 2     | 2     | FAA-DT-Day3-Set2 | 1/      | 2          | SPD      | 95       | SPD-95   | 20.5            | 73.2      | 20       | 91      | 21       | 22.1        | 20.02      | 226 70           | 48.90                | 40           | 22.40         |                |
| EAA-DT | 3     | 2     | FAA-DT-Day3-Set2 | 21      | 3          | SPD      | 35       | SPD-37   | 20              | 75.0      | 20       | 52.1    | 21       | 22.2        | 10.02      | 226.25           | 48.50                | 45           | 27.50         |                |
| EAA-DT | 3     | 3     | FAA-DT-Day3-Set3 | 21      | 2          | SPD      | 84       | SPD-97   | 20              | 75.0      | 20       | 64      | 21       | 23.2        | 19.90      | 337.36           | 45.10                | 43           | 37.30         |                |
| EAA-DT | 2     | 2     | FAA-DT-Day3-Set3 | 23      | 2          | SPD      | 25       | SPD-25   | 20              | 75.0      | 20       | 62.2    | 21       | 22.1        | 10.00      | 225 74           | 40.60                | 42           | 40.90         |                |
| EAA-DT | 3     | 3     | FAA-DT-Day3-Set3 | 24      | 1          | SPD      | 73       | SPD-33   | 25.5            | 75.6      | 20       | 61.5    | 21       | 23.1        | 20         | 333.74           | 49.00                | 43           | 40.80         |                |
| EAA-DT | 3     | 3     | FAA-DT-Day3-Set3 | 30      | 3          | SPD      | /3       | SPD-73   | 20              | 75.7      | 20       | 61.5    | 20       | 22.0        | 20         | 331.00           | 52.20                | 42           | 41.30         |                |
| EAA-DT | 4     | 1     | FAA-DT-Day4-Set1 | 32      | 2          | SPD      | 20       | SPD-20   | 26.5            | 75.9      | 20       | 60.6    | 28       | 22.5        | 20.05      | 332.94           | 48.40                | 44           | 39.10         |                |
| FAA-DT | 4     | 1     | FAA-DT-Day4-Set1 | 36      | 3          | SPD      | 64       | SPD-64   | 26.5            | 75.8      | 21       | 62.2    | 26       | 22.7        | 20.00      | 333.30           | 48.20                | 44           | 39.20         |                |
| FAA-DT | 4     | 1     | FAA-DT-Day4-Set1 | 38      | 2          | SPD      | 44       | SPD-44   | 26.5            | 74.7      | 20       | 63.9    | 25       | 22.2        | 20.00      | 336.04           | 44.30                | 46           | 35.70         |                |
| FAA-DT | 4     | 1     | FAA-DT-Dav4-Set1 | 39      | 3          | SPD      | 18       | SPD-18   | 26              | 74.7      | 20       | 63.1    | 25       | 22.2        | 20.07      | 335.06           | 49.40                | 43           | 39.80         |                |
| FAA-DT | 4     | 2     | FAA-DT-Dav4-Set2 | 41      | 2          | SPD      | 11       | SPD-11   | 26.5            | 74.5      | 20       | 67.5    | 25       | 22.2        | 20.07      | 333.92           | 45.80                | 48           | 37.90         |                |
| FAA-DT | 4     | 2     | FAA-DT-Dav4-Set2 | 42      | 3          | SPD      | 57       | SPD-57   | 26.5            | 74.3      | 20       | 66.7    | 24       | 22.2        | 20.06      | 336.44           | 48.50                | 45           | 38.20         |                |
| FAA-DT | 4     | 2     | FAA-DT-Dav4-Set2 | 43      | 1          | SPD      | 12       | SPD-12   | 26.5            | 74.3      | 20       | 66.7    | 24       | 22.2        | 20.06      | 336.82           | 46.90                | 44           | 38.10         |                |
| FAA-DT | 4     | 2     | FAA-DT-Day4-Set2 | 44      | 2          | SPD      | 27       | SPD-27   | 26              | 74.1      | 20       | 70.2    | 24       | 22.2        | 20.06      | 336.51           | 45.30                | 42           | 37.40         |                |
|        |       | 2     | EAA-DT-Dav/-Set2 | 46      | 1          | SBD      | 50       | SPD-50   | 27              | 74.1      | 20       | 67.1    | 24       | 22.1        | 20.06      | 334 30           | 46.90                | 45           | 37.60         |                |

- Marlin Unit (ME): 25 SPDs tested, 30 BPDs tested
- Deatak Unit (DT): 25 SPDs tested, 30 BPDs tested
- Calibration factor determined on test day 1 only for each unit (ME, DT)
- Heat flux was measured, calibrated each day prior to testing (center, corners)

## TRL 6 Test – Part 2 – Schneller Panels - Results

#### Peak HR, 2-Minute Total HR, and Peak Time



## TRL 6 Test – Part 2 – Boeing Panel w/Dec Analysis

#### Peak HR, 2-Minute Total HR, and Peak Time



## TRL 6 Test – Part 2 – Results



- Plots indicate average (mean) values
- Error bars are +/- 1 standard deviation (σ)
- Means are within 1 std dev of each other with 1 exception:

2-Min Total HR – Schneller panel

<u>Note</u>: Thanks to Christian Thomas of Airbus for charts and data analysis.



### TRL 6 Test – Part 2 – Takeaways

- Peak HRR
  - SPD means are very similar with very low deviation
  - BPD means differ by 2.7 points, but fall within the deviation of the machines
- Peak Time
  - SPD sample deviation for both machines is 3-4%
  - BPD sample deviation for both machines is 4-5%
- 2-Min Total HRR
  - Highest deviation came from the BPD sample expected due to decorative
  - BPD means differ by 3 points, but fall within the deviation of the machines
  - SPD means lie outside the deviation of the machines  $(+/-1\sigma)$  the reason is unclear and should be investigated
  - DT machine produced larger 2-Min Total HR means for both materials this may indicate that more energy is stored in the DT machine structure

## TRL 6 Test – Part 2 – Takeaways (cont.)

The uncertainties in the data presented can be considered reasonable given the complexities in the:

- Combustion processes
- Test environment
- Measurement processes

#### **Discussion topics**

- Peak HR is most influenced by the material burning behavior
- 2-Min Total HR is most influenced by the instrument construction, materials and environment
- > This led to a discovery that the insulation was not the same for both instruments

## TRL 6 Test – Part 2 – Post-Analysis Actions

Instrument insulation during TRL 6 Part 2:

- Deatak FAATC unit used ROXUL AFB (w/aluminum foil), density 10 lb/ft<sup>3</sup>
- Marlin FAATC unit used ROXUL (no foil backing), density 8 lb/ft<sup>3</sup>

Action: Current specification, which includes insulation density and R-value, will be updated to include the moisture barrier (aluminum foil backing) and 3" tape

- Mineral wool/foil backing (Rockwool)
  - R-value = 4, K-value = 0.23 BTU\*in +/-10%
  - o Density 8 lb/ft<sup>3</sup>
  - Moisture vapor barrier (foil) installed facing away from metallic skin
- Insulation tape, 3 in width, silver aluminum

Action: Both instruments torn down and insulation completely removed

- New insulation (ROXUL 19NE81) ordered and fitted into both units
- 16 Schneller coupons were tested on each rebuilt instrument <u>Note:</u> these coupons were not from the same lot as those used in TRL 6

## TRL 6 Test – Part 2 – Post-Analysis – Marlin Test



### TRL 6 Test – Part 2 – Post-Analysis – Deatak Test



## TRL 6 Test – Part 2 – Post-Analysis Actions

• 2-Min Total HR Data Comparison – New Insulation & Tape (ME & DE)

|                   |               | 2-Min Total HR (W/m <sup>2</sup> ) |         |       |  |  |  |
|-------------------|---------------|------------------------------------|---------|-------|--|--|--|
|                   |               | Mean                               | Std Dev | CoV   |  |  |  |
| TPL 6 Part 2 Data | ME 8# no foil | 35.6                               | 1.12    | 3.15% |  |  |  |
| The Oran 2 Data   | DE 10# w/foil | 38.7                               | 1.73    | 4.47% |  |  |  |
|                   |               |                                    |         |       |  |  |  |
| Now 16 Coupons    | ME 8# w/foil  | 34.1                               | 1.19    | 3.50% |  |  |  |
| New To Coupons    | DE 8# w/foil  | 34.0                               | 1.71    | 5.00% |  |  |  |

Average values very close and within 1 standard deviation

### Questions for the HR2 Breakout Session

- Should TRL 6 testing be repeated on the FAA TC units (Schneller only)?
- How many instruments and locations are required to complete TRL 6?
  - Two in the same location is not sufficient

# **Next Steps**

### **Anticipated Schedule**

| Boeing HR2 delivery and installation                | Complete     |
|-----------------------------------------------------|--------------|
| Boeing HR2 unit response experiment                 | In Progress* |
| Boeing HR2 TRL 6 testing and data analysis complete | Nov 2022     |
| FAA TC HR2 TRL 6 Schneller retest                   | TBD          |
| FAA TC data analysis complete                       | TBD          |
| Airbus HR2 upgrades                                 | TBD          |
| Airbus HR2 unit response experiment                 | TBD          |
| Airbus testing and data analysis complete           | TBD          |

\* Attend HR2 Breakout Session for more details

## **Questions?**

