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Background

• Context: Ignition assessment of fuel leaks near a hot surface

• What ignition temperature to use?
• Auto-Ignition Temp. (AIT) is not representative of the dynamic 

conditions of a leak 

• Hot Surface Ignition temperature (HSIT) is more representative and 
depend on their local conditions

• Values reported for HSIT vary significantly (about 400 F for 
same fuel)

• The purpose of this talk is reliable measurements of HSIT

• This work was performed under Air Force sponsorship
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Outline

• Challenge in measuring HSIT

• BlazeTech approach

• Experimental setup

• Test results for a hot cylindrical duct

• Comparison of hot duct with flat plate results
• Computational Fluid Dynamics (CFD) to interpret test results

• Engineering model to predict HSIT
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AFWAL-TR-88-2101- AIT=430 F

Challenge in Measuring HSIT is 
Surface Temp. Can Change During Test
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Approach: 
Maintain Constant HSIT during Ignition

• Use test surface with high thermal diffusivity and high 
thermal mass 

• Inject small volumes (50 to 300 µL) 
• Using accurate micropump 

• Result: minimal surface quenching during test
• TSurface (before liquid injection) ~ TSurface (at ignition)
• Confirmed by measurements on flat SiC plate

• Constant temp. enables us to get kinetics data →modeling

• Use simple geometries: flat plate and cylindrical duct
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Hot Duct Design
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• Testing Surface
• 4.5” OD Tube

• 14” overall length (12” of tube is exposed)

• 0.2” tube thickness

• Inconel 625

• Heating Element
• 11 kW Silicon Carbide “Starbar” from I2R 

Elements

• 2.125” OD, 29” overall length

• 16” of the 29” is the “hot zone”

• Injection achieved by micropump and 
removable injection arm

Duct

Heating

Element

Ceramic Supports

Electrical Connections

Fluid 

Injection



Hot Duct Experimental Setup

7

24” depth

48” height

12” of tube

exposed

Fluid 

Injection

Ceramic boards used to 

2-dimensionalize airflow

Heater

24” height



Sample Video
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Inconel Duct – Jet A – Inj. Height 20 cm – Nozzle ID: 0.6 mm

240 FPS

617 °C – 300 µL



Sample Video – 16x slow
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Inconel Duct – Jet A – Inj. Height 20 cm – Nozzle ID: 0.6 mm

617 °C – 300 µL



Sample Experiment
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Inconel Duct – Jet A – Inj. Height 20 cm – Nozzle ID: 0.6 mm

Ignition temperature corresponds to 3 Ignition out of 5 runs (60%)

617 °C – 300 µL

t = 33 ms t = 659 ms



Selected Test Parameters# for Hot Duct

• Fluids
• Jet A (most test data), n-Decane (some tests and model), hydraulic fluid 83282

• Dosage Volume*
• 50 – 300 µL 

• Injection Height*
• 10 cm – 50 cm relative to hot surface

• Injection Nozzle Inner Diameter (ID)
• 0.6 mm – 0.8 mm

• Effect of Confinement*

________________

# Effects of altitude and ventilation air velocity will be accounted for by modeling

*Not usually varied by other investigators

11



Effect of Injection Volume and Flow Rate
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HSIT Comparison with Literature
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Effect of Injection Height
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Effect of Injection Nozzle ID
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Effect of Confinement
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HSIT for Various Injected Fluid
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Summary of Results for Duct Configuration

• For jet A, HSIT decreased with: 
• Increasing discharge volume

• Increasing injection height

• Increasing injection nozzle tip diameter 

• Increasing confinement

• For all test parameters, HSIT decreased from:
• Jet A → n-decane → hydraulic fluid (83282)
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Hot Duct vs. Hot Plate Setups
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Hot Duct Hot Plate

Fluid 

Injection

Fluid 

Injection

12” OD

0.59” plate 

thickness

1 mm lip
0.2” tube 

thickness

4.5” OD

12” Length

Inconel 

625
Silicon

Carbide

The 2 surfaces differ in materials, thickness and 

thermal inertias but same temperatures and lengths



Duct vs. Flat Plate for Various Fluids
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Hot Duct vs. Hot Plate – Injection Height
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Hot Duct vs. Hot Plate – Nozzle Tip ID
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n-Decane – Inj. Height 20 cm
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Hot Duct Side View

Stagnation Zone:

Velocity Vectors and Contours

Streamlines



Duct vs. Flat Plate - Velocity Contours from CFD
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Hot Plate

Stagnation Zone: 0.4” height

Hot Duct

6” 6”

Longer duct stagnation zone promotes ignition; also higher temperature there



Duct vs. Flat Plate – Air Temp. Contours from CFD
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FLUENT, TDuct = Tplate = 650 °C



Temperature as a function of height 
at 3” from center, TDuct = Tplate = 650 °C
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Engineering Model – Individual Modules
I. Fuel injection and impact velocity

II. Droplet breakup1and dynamics

III. Droplet evaporation  rate2

IV. Integration of vapor from each droplets

V. Hot air plume correlation from Fu3

VI. Vapor-air mixing in plume

VII. Ignition criteria –

Heat Generation Rate > Rate of external heat 

input from plume

1. A. S. Moita and A. L. N. Moreira, "Development of empirical correlations to predict the secondary droplet 

size of impacting droplets onto heated surfaces," Experiments in Fluids, vol. 47, no. 4-5, pp. 755-768, 

2009.

2. B. S. Gottfried, C. J. Lee and K. J. Bell, "The Leidenfrost phenomenon: film boiling of liquid droplets on a 

flat plate," Int. J. Heat Mass Transf., vol. 9, no. 11, pp. 1167-1188, 1966.

3. T. T. Fu, "The turbulent free convection flow above a heated horizontal circular plate," 1970.

Hot Plate

FuelAir
Air



Summing Vapor Contribution from Each Droplet
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ሶ𝑚𝑓 𝑡, 𝑛 =

ሶ𝑚𝑓 1,1 ⋯

0 ሶ𝑚𝑓 2,1

ሶ𝑚𝑓 1, 𝑡𝑒𝑥𝑖𝑡 0

⋯ ሶ𝑚𝑓 2, 𝑡𝑒𝑥𝑖𝑡

⋯ 0
⋯ 0

0 ⋯
0 ⋯

ሶ𝑚𝑓 𝑛, 𝑡 ⋯
⋯ ⋱

ሶ𝑚𝑓 𝑛, 𝑡 + 𝑡𝑒𝑥𝑖𝑡 0

0 ⋯
0 ⋯ 0 ሶ𝑚𝑓 𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 , 𝑁 ⋯ ሶ𝑚𝑓 𝑡𝑒𝑛𝑑, 𝑁

σ ሶ𝑚𝑓 𝑡 = σ ሶ𝑚𝑓 1,1: 𝑁 , σ ሶ𝑚𝑓 2,1: 𝑁 ,… , σ ሶ𝑚𝑓 𝑡𝑒𝑛𝑑 , 1: 𝑁

Where,

• 𝑡𝑒𝑥𝑖𝑡 = time for 1 droplet to travel from center of the plate to the edge (s)

• 𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = total time of fluid discharge (s)

• 𝑡𝑒𝑛𝑑 = total time from the start of the first droplet formation to the last droplet left the hot surface 

= 𝑡𝑒𝑥𝑖𝑡 𝑜𝑓 1𝑠𝑡 𝑑𝑟𝑜𝑝𝑙𝑒𝑡+𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑡𝑒𝑥𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = 2𝑡𝑒𝑥𝑖𝑡 + 𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (s)

• N = total number of droplets formed



Summing Vapor Contribution from Each Droplet
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12” Flat Plate – n-Decane - Inj. Height 20 cm - Nozzle ID: 0.6 mm - Discharge time: 0.5 s
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Approach for Duct Model

• Ignition occurs at the top of the duct, therefore only the droplets traveling 
on the top of the surface are accounted for in the model.

• 𝑁𝑑𝑢𝑐𝑡 = 𝐾 × 𝑁𝑝𝑙𝑎𝑡𝑒
• Where K ~ 0.1

• Temperature gradient close to the duct are considered negligible in the 
stagnation zone

• 𝑇𝑔𝑎𝑠 ≈ 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒

304.5” Dia. Inc 625 Duct – Jet A - Inj. Height 10 cm - Nozzle ID: 0.6 mm

50 µL 100 200 300 µL µLµL



Comparison of Engineering Model Results for
Duct vs. Flat Plate
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Closure: Duct vs. Flat Plate

• They same temp. and length
• But different materials, thickness and thermal inertia

• For all liquids tested, lower HSIT for duct than flat plate
• Ducts more realistic on aircraft than flat surfaces

• From CFD, this was attributed to:
• Longer stagnation zone created above the duct longer time in hot zone

• Temp. drops slower for duct than flat surface as one moves away from surface

• Engineering model yields reasonable trends, but further work is 
needed for closer agreement with test data

• Runs faster and easier to use than CFD

• Can be adapted to individual cases
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