

Soteria Battery Innovation Group

Ending Lithium-ion Battery Fires Through Technology

Lithium Ion Battery Thermal Runaway

A Worsening Problem

Mechanism of Eliminating Thermal Runaway

Aluminum Foil Current Collector

Cathode

Plastic Separator Film

Anode

Copper Foil Current Collector

Mechanism of Eliminating Thermal Runaway

Mechanism of Eliminating Thermal Runaway

1) PET

2) Lyocell

3) Aramid

Mechanism of Eliminating Thermal Runaway

Dreamweaver Separator Material Performance

1st, 2nd and 3rd Generation Separators

1st Generation Biaxially Stretched Polyolefin

Shrink @ 130C

2nd Generation Ceramic Coating Added

Shrink @ 175C

3rd Generation
Dreamweaver
Nonwoven

No Shrink To 300C

- No unstable polymer component
- High temperature materials incorporated in homogenous composite
- Often stable to 500 C

Thermo Mechanical Analysis*

PP PP/PP Pri LayePP/PE TriR@eyemic PPE/PE Tri La Deexamvie & Ver Gold

*Measurement of shrinkage as a function of temperature

Dreamweaver Separator Material Performance

Flammability With Electrolyte

WATCH THE VIDEO

https://youtu.be/j9XWJgTlT1w

Mechanism of Eliminating Thermal Runaway

Soteria Architecture Part 1: Nonwoven Separator

Dreamweaver Separator will char but not retreat from a short.

Mechanism of Eliminating Thermal Runaway

Soteria Architecture Part 2: Metallized Film Current Collector

Soteria Metallized Current Collector Prototype Properties

	Copper Foil	Soteria Copper	Aluminum Foil	Soteria Aluminum
		Film		Film
Thickness	1 0um	11 um	1 5um	11 um
Metal Thickness	1 0um	500nm per side	1 5um	500nm per side
Weight	90 g/m ²	21.5 g/m ²	43 g/m ²	16.4 g/m ²
Tensile	400 N/mm ²	120N/mm ²	150 N/mm ²	126 N/mm ²

- Initial base film: 10 um, 13.7 g/m2, PET
- Developing metallized films down to 4.5um
- Substrate and metallization thickness engineerable

Mechanism of Eliminating Thermal Runaway

Soteria Architecture Part 2: Metallized Film Current Collector

Soteria separators oxidize and retreat from short, acting as an internal fuse.

Soteria Current Collector Material Performance Response Dynamics During a Short

Property	Aluminum	Copper
Time before broken	5 μs	28 μs
Joules generated	4 x 10 ⁻⁶ J	4 x 10 ⁻⁵ J

Once a short is created, the time before it is broken is so short that almost no energy is generated.

Soteria Current Collector Material Performance

Dry Stack Nail Penetration - Voltage and Current

Conventional Material

Nail allows current to flow between layers V = 0.5 V, I = 50 A

Soteria Architecture

Metallized current collector does not allow current to flow between layers V = 4.0 V, I = 0 A

Watch Video: https://youtu.be/4uKyObOPxaE Watch Video: https://youtu.be/Bdt2MsWdltE

Soteria Cell-Level Performance (3 Ah Pouch)

Nail Penetration Response

Materials

- Maximum surface temp near penetration point = 26C
- No detected voltage perturbation

Soteria Cell-Level Performance (3 Ah Pouch)

Post-Nail Penetration Cell Cycling

- Nail removed, cell discharged at C rate (3A)
- Total capacity remaining: 2025mAh
- Achieved 2Ah/3Ah ~66%
 remaining capacity at 1C.
- After capacity check discharge, cell cycled at C rate (3A)
- Capacity decreased on each subsequent charge/discharge from 2028mAh to 1125mAh

Soteria Cell-Level Performance (18650) NASA Full-Scale Safety Validation

2.1 Ah Cell – 100 % SOC (4.2 V)
Standard materials
Without ISC device

2.1 Ah Cell – 100 % SOC (4.2 V)
Al coated polymer current collector
Without ISC device

Watch Video: https://youtu.be/LhlaHTKIgqc

Watch Video: https://youtu.be/ulAPoho44tM

Soteria Cell-Level Performance (18650)

NASA Full-Scale Safety Validation

with nail entry hole

High resolution CT scan of nail entry area. Light grey is cathode with Al Soteria films; dark grey is anode with Cu Soteria films.

Light cathode layers have retreated below grey anode, preventing short through nail.

Open "alligator jaws" show residual electrode after collector retreated.

Soteria Cell-Level Performance (18650)

Cell Discharge Curves

- Data is combination of cells with:
 - conventional foils
 - copper Soteria films only
 - aluminum Soteria foils only
 - Soteria copper and aluminum foils
- Negligible difference in discharge curves
- Data is at low C discharge rates
- Higher C rates may require manipulating:
 - Metal thickness
 - Electrode layer thickness
 - # of layers

Effect of Soteria Materials on Weight

Samsung Galaxy Note 7 Comparison

Soteria materials can reduce copper/aluminum/separator from 25% of the weight to 8%.

Effect of Soteria Materials on Process

Minimal Change in Equipment or Process

Material Production

- Current Collector
- Vacuum deposition
- Similar to food pkg

Separator

Refining

Papermaking

Calendering

Both materials made on existing robust manufacturing processes adopted from other industries.

Battery Production

Coating

Stacking and Winding

Both materials are drop in replacements to existing materials in normal lithium ion battery production.

Effect of Soteria Materials on Cost

Cost Comparison & Effect on Cell Costs

Lithium Ion Cell Cost Structure

The Soteria Business Model

Innovative by nature

Mercedes-Benz

Research & Development North America, Inc.

The Soteria Consortium Model:

The Motivation to Work Together

Goal: 25% market penetration by 2030

Relevant Benchmarks

NMC (2005-17) Celgard (2007-17)

30% share

35% share

Resulting Market (per year)

5 Billion Square Meters of current collectors and separators

approx. \$5 Billion of existing materials being replaced

<u>Upstream Market Created (per year)</u>

Specialty Fibers

Polyester \$75M Lyocell \$90M \$225M Para-aramid

Paper Machines \$200M*

* after substantial initial investment

Polymer Film \$125M

Vacuum Metallization **Equipment** \$160M*

The Soteria Value Proposition: Safer, Cheaper, Lighter and Industry Supported

- Currently two licensable technologies
- Technologies address and eliminate root causes of thermal runaway
 - Technologies enable functioning cells after nail penetration
- Soteria has formed a global consortium of 39 member companies throughout battery supply chain
- Open innovation model with FRAND licensing
- Consortium enables broad technology development support and robust supply chain required by industry

Estimated **20% reduction in weight** at the cell level

- Potential to remove cost and weight of protective materials & systems
- Replace 90% of current collector metal with commodity film
- Drop-in replacements to existing materials
- Estimated 30% reduction in material costs for separator and current collector

Award-Winning Technology Recognized by Industry

The Soteria Executive Team

Experience and Vision

- 3rd startup
- PhD Physics Ohio State
- 200 patents
- \$1 billion in product sales from patents

- MS EE Michigan Tech
- 27 years auto & automotive
- Director of Engineering at two lithium ion battery companies
- Author of book on electric vehicles

- PhD Chemical Engineering University of Illinois
- CEO of publicly-listed chemical company
- 15 years at Miliken

Thank you!