

Predicting and mitigating cascading failure of thermal runaway in stacks of Li-ion pouch cells

Presented by

Andrew Kurzawski, Randy Shurtz, Loraine

Torres-Castro, Joshua Lamb, John Hewson

Ninth Triennial International Aircraft Fire and Cabin

Safety Research Conference October 28-31, 2019 SAND #: SAND2019-10280 C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Thermal runaway and cascading failure

Validated reliability and safety is one of four critical challenges identified in 2013 Grid Energy Storage Strategic Plan

Failure rates as low as 1 in several million

2

- Potentially many cells used in energy storage
- Moderate likelihood of 'something' going wrong

Increased energy densities and other material advances lead to more reactive systems

A single cell failure that propagates through the pack can have an impact even with low individual failure rates.

How do we decrease the risk?

www.nissan.com www.internationalbattery.com www.samsung.com www.saft.com

Approaches to designing in safety

3

The current approach is to test our way into safety

• Large system (>IMWh) testing is difficult and costly.

Supplement testing with predictions of challenging scenarios and optimization of mitigation.

- Develop multi-physics models to predict failure mechanisms and identify mitigation strategies.
- Build capabilities with small/medium scale measurements.
- Still requires some testing and validation.

Cascading failure testing with passive mitigation

LiCoO₂ 3Ah pouch cells

4

5 closely packed cells with/without aluminum or copper spacer plates

- Spacer thicknesses between 1/32" and 1/8"
- State of charge (SOC) between 50% and 100%

Failure initiated by a mechanical nail penetration in the outer cell (cell I)

Thermocouples (TC) between cells and spacers (if present)

Thermocouple Locations

⁵ Cascading failure testing

Finite element model for full cells in thermal runaway

6

7 Finite element model equations

Energy conservation:

$$\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (K \nabla T) + \dot{q}^{\prime \prime \prime}$$

Mass conservation for species i with N_r reactions:

$$\frac{\partial \rho_i}{\partial t} = \sum_{j=1}^{N_r} (\nu_{ij}^{\prime\prime} - \nu_{ij}^{\prime}) r_j$$

Energy source:

$$\dot{q}^{\prime\prime\prime} = -\sum_{j=1}^{N_r} \Delta H_j r_j$$

Chemical source terms for thermal runaway

Preliminary chemistry model from literature

- Based on Dahn group (1999-2001)
- Derived from calorimetry
- Good onset predictions

8

Under-predicts peak temperature

Empirical chemical reactions:

• SEI decomposition (Richard 1999)

 $(CH_2OCO_2Li)_2 \rightarrow Li_2CO_3 + gas$

Anode-electrolyte (Shurtz 2018)

 $2C_6Li + C_3H_4O_3 \rightarrow 2C_6 + Li_2CO_3 + gas$

• Cathode-electrolyte (Hatchard 2001)

$$CoO_2 + \frac{2}{15}C_3H_4O_3 \rightarrow \frac{1}{3}Co_3O_4 + gas$$

Short-circuit

 $C_6Li + CoO_2 \rightarrow C_6 + LiCoO_2$

Anode-electrolyte calorimetry and modeling

Anode-electrolyte calorimetry suggest several regimes during thermal runaway

Initiation – Plateau -Runaway

Anode-electrolyte reactions generate heat

- Could raise cell temperatures $\sim 650^{\circ}C$
- Nominal reaction:

 $2LiC_6 + C_3H_4O_3 \rightarrow 2C_6 + Li_2CO_3 + C_2H_4$

More predictions with the comprehensive model

Predicting the full range of behavior over a range of particle sizes

Many predictions with the comprehensive model 24 x DSC, 5 x ARC

A comprehensive model for anode-electrolyte runaway

$$Q[W/g] = -\frac{dx_i}{dt} \frac{\Delta H_{rxn}}{W_a}$$
 Heat Release with new ΔH_{rxn}

Simulation results: 100% SOC, no spacers

- Prediction of peak temperatures and cooling
- Cell crossing speed over-predicted

Deriving propagation times

Predicted crossing times: 100% SOC, no spacers 15

- Experimental cell and space crossing times are on the same order.
- Cell crossing times are under-predicted and space crossing times are overpredicted.

• Insufficient heat generation to initiate thermal runaway outside of the nail penetration region

• Experimental peak temperatures lower than 100% SOC

- Temperature difference in TCs on either side of the plates underpredicted
- Cell crossing speed still over-predicted

No propagation in simulations and experiments

Cascading failure: propagation speeds

Adding spacers **increases** space crossing time, but **decreases** cell crossing time Increasing state of charge (SOC) **decreases** both space and cell crossing time Interplay between **heat capacity** of system and **energy release**

²⁰ Heat capacity and SOC: limits of propagation

Interplay between heat capacity of system and energy release:

 $Energy/Capacity = Q_{cells}/(m_{cells}c_{p,cells} + m_{spacers}c_{p,spacers})$

Case Description	Energy/Capacity (K)	Experiment	Simulation
100% SOC	940	Propagation	Propagation
I/32" Aluminum	819	Propagation	Propagation
I/32" Copper	778	Propagation	No Propagation
80% SOC	752	Propagation	No Propagation
I/I6" Aluminum	725	Cell 2 Failure	No Propagation
75% SOC	705	Cell 2 Failure	No Propagation
I/I6" Copper	663	Cell 2 Failure	No Propagation
I/8" Aluminum	590	No Propagation	No Propagation
I/8" Copper	512	No Propagation	No Propagation
50% SOC	470	No Propagation	No Propagation

Finite element model with chemical source terms was tested against experimental data.

- Captures trends at 100% SOC, over-predicts propagation velocity through cells.
- Model is under-conservative with predictions when heat capacity is increased and SOC is decreased.

There is a need for validated chemical source models tested at higher heat release rates.

Ongoing work to improve mechanistic understanding of thermal and chemical time scales.

- Comprehensive cathode models
- Transport limited reaction kinetics

22 Acknowledgements

This work is supported by US Department of Energy, Office of Electricity Energy Storage Program. We thank Dr. Imre Gyuk, Manager of the Energy Storage Program.