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Motivation

o FAA requirement for alarms to go off within 60 seconds of fire ignition.

@ Several different detection methods are generally used together, e.g. temperature,
smoke/particulate, radiation, optical

o Their effectiveness is determined by the dynamics of a particular fire and their
relative position.

o Accurate prediction of fire-induced flow in a cargo hold is a necessary first step to
predicting detection capabilities.

o More reliable detection capabilities could potentially reduce false alarms.



B707 cargo geometry

o Experimental and computational data for B707 cargo fires available from work at
Sandia and FAA Tech center.

o Current goal is to perform a direct comparison of those results with our new
solver.

Figure: B707 cargo hold geometry.



Fire-induced fluid dynamics

@ Detailed simulation of the combustion process is expensive and unnecessary; the
large scale dynamics are primarily determined by the amount of heat release, its
position, and the geometry.

o Commonly used models apply a heat source and input of reaction products (CO,
CO2, etc.)

2 Vorticity:

Figure: Flow driven by an enclosed heat source.



Cluttered geometry 2D

o A real fire is unlikely to happen in an empty cargo hold.

o Including some obstructions changes the flowfield considerably.
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Figure: t = 20s after ignition.




Simulation challenges

Simulating a single fire case is relatively straightforward, but of limited utility. There
are several uncertainties to address:

o Initial position, size, and strength of a fire is unknown.

o Cargo hold geometry varies considerably depending on contents.
Simulation needs:

o Complex geometries: must handle complex boundary conditions accurately.

o Fast: uncertainty quantification will require a large number of simulations.

o Accurate: must accurately simulate vorticity-dominated turbulent flows for
transport prediction.



Available tools

FDS: NIST's Fire Dynamics Simulator.

@ Pros:
o Purpose-built for smoke and heat transport from fires using large eddy simulation.
o Combustion and radiation models.
o Built-in post-processing tools related to smoke transport.

o Cons:
o Handles complex boundaries with Cartesian cut cells: inaccurate for anything but
rectangles.
OpenFOAM
@ Pros:
o Similar combustion and radiation models to FDS, with additional thermodynamic
models.

o Handles arbitrary body-fitted meshes.
o Wide array of LES models.

o Cons:
o Very slow for large cases.
Fluent
o Pros:

o Well known, full combustion and radiation modeling.
o Handles arbitrary body-fitted meshes.
o Wide array of LES models.

e Cons:
o Commercial

All limited to O(Ax?) accuracy.



High order accurate CFD

o Even very low intensity fires will have very complex flow phenomena poorly
captured by low-order CFD methods.

Figure: Instability of smoke from a cigarette, Perry & Lim, 1978



High order accurate CFD

Order of accuracy in finite differences:
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o Error scales like ~ O(Ax™) for order n.
o For a 15t order method, halving the grid spacing reduces error by ~ 1/2.

o For a 4t order method, halving the grid spacing reduces error by ~ 1/16.



High order accurate CFD
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Figure: Generic error vs cost plot, Wang, 2007



Discontinuous Galerkin discretization method

For a multi-dimensional conservation law

%-Fv-f(u(x,t),x,t)zo (2)
approximate u(x, t) by
Ny Np
u(x, t) & up(x,t) = > un(xi, )i(x) = > Gi(t)i(x) (3)

i=1 i=1
where /;(x) is the multidimensional Lagrange interpolating polynomial defined by grid
points x;, N, is the number of nodes in the element, and v;(x) is a local polynomial
basis.

o Of the two equivalent approximations here, the first is termed nodal and the
second modal. i.e., up represents values of u at discrete nodes with a
reconstruction based on Lagrange polynomials, and i; represents
modes/coefficients for reconstruction with the basis ¢,.



Discontinuous Galerkin discretization method

Substituting the approximation uj, into the conservation law:

8uh
V- -f,=0
or VT

Integrate with a test function v;, the same as used to represent the polynomial above,

8”%, dv+/v fpip; dV =0

Integration by parts on the spatlal component:

8”*’% dv — /ij f, dv+%¢1f*h ndS=0

Using the modal representation, up, = Zi:pl 0i (t)i(x)
du,dJ,

P dV — /v¢, fw,dv+7§wj -ndS=0
which gives the semi-discrete form of the classic modal DG method,
~ d i
Mg
Here M is the mass matrix (identity for orthonormal bases), n the vector normal at an

element surface, and f* is a conservative flux function at interfaces, equivalent to that
used in finite volume methods.

- /\/v¢j.f,¢, dv+£¢jf,.*¢,- ndS



Discontinuous Galerkin discretization method

The modal coefficients 0 can always be represented on nodal locations u through a
change of basis by the Vandermonde matrix,

Va=u

which turns the previous modal method into a nodal method. This code uses
unstructured tetrahedral elements in 3D with Legendre-Gauss-Lobatto nodes:
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(a) Volume nodes for varying order, Hesthaven (b) N = 2 element surfaces; nodes are at line
& Warburton. intersections.



Discretization method - solving the discretized equations

This ends up with a potentially very large system of ODEs to be solved:

du
— =f(u,u',t
il )
Simplest method for integrating this system in time is the explicit (forward) Euler
method:
u™? = u" + Atf(u, v’ t)"

Unfortunately, explicit time-stepping for high-order DG is stable only for excessively
small At,
Ax
At = O(W)
where a mesh cell Ax can be very small (boundary layers, small geometric features)
and N2 quickly grows large. For any engineering-scale problem, explicit methods are
unfeasible for use.

o This requires the use of implicit time-stepping methods, e.g. 1st order backward
Euler:

u™ = u" + Atf(u,u’, t)"+1

where we now have a set of non-linear equations to solve for u"™1. Typically we use
3rd order or higher time-accurate schemes.



Discretization method - solving the discretized equations

Task is to solve the very large non-linear system at each time step:
F(u)=0

Newton's method for this problem derives from a Taylor expansion (Knoll/Keyes
2004):
F(u*™!) = F(u*) + F/(uf) (k! — u¥)

resulting in a sequence of linear systems
JWR)ouk = —F(uk), o = uk 4 suk

for the Jacobian J.

o The linear system J(u*)duX = —F(u¥) is straighforward enough to write, but for
these methods J is a very large sparse matrix which is prohibitively expensive to
actually compute and store.

o A mesh of 100,000 4th order cells requires roughly 250GB of memory to store in
64-bit floats.



Discretization method - solving the discretized equations

o A remedy for this is to use a "Jacobian-Free" method based on Krylov subspace
iterations (e.g. GMRES, BiCGSTAB), which only require the action of the
jacobian in the form of matrix-vector products:

K = span(Jér, J25r, J36r, ...)

which can be approximated by a finite difference:
Jv = [F(u+ ev) — F(v)]/e

@ This enables a solution method for the non-linear system that doesn't require ever
explicitly forming the Jacobian, and instead only requires the evaluation of the
RHS of the ODE.

o This is the Jacobian-free Newton-Krylov (JFNK) method:

o Take a Newton step from the previous iterate.
o Approximately solve the linear system using a matrix-free Krylov method.
o Repeat until desired convergence is reached, and move to the next physical time

step.
o Current solver uses a damped Newton line-search for the non-linear systems
coupled with a GMRES Krylov method for the linear systems.



1D test case

1D Poisson test case to illustrate accuracy vs computational cost:
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1D test case
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Figure: Close up of a single element with a 9th order polynomial basis.



1D test case

o For an ideal numerical method, computational cost is linearly proportional to the
number of unknowns (degrees of freedom).
o e.g. 10 cells with 10 quadrature nodes compared to 50 cells with 2 quadrature
nodes.
o The end result is achieving equivalent accuracy with less computational expense
or higher accuracy at similar computational expense compared to traditional finite
volume methods.
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Figure: Error for varying order of accuracy with constant DOFs on 1D test case.



case - Isentropic vortex
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(a) Coarse mesh for vortex case. (b) Initial vorticity.



Test case - Isentropic vortex

o Non-dissipative vorticity convection is essential for these simulations.

o Test case of Yee et al (1999) for a convecting vortex is an exact solution for the
compressible Euler equations. Free-stream conditions are

p=1,U=Uso,V=Veo,p=1

with an initial perturbation

exp(1 — r?)

p=

for vortex center (xo, yo), and distance from center r = /(x — x0)% + (¥ — y0)2.




Test case - Isentropic vortex - 1st order (c.f. 2nd order FV)

Figure: Vortex transport over 35 characteristic lengths, O(Ax).



Test case - Isentropic vortex - 2nd order

Figure: Vortex transport over 35 characteristic lengths, O(Ax?).



Test case - Isentropic vortex - 3rd order

Figure: Vortex transport over 35 characteristic lengths, O(Ax?).



Test case - Isentropic vortex - 4th order

Figure: Vortex transport over 35 characteristic lengths, O(Ax*).



Test case - Isentropic vortex order of accuracy

o L, norm of kinetic energy losses for isentropic vortex convection.

L2 error of u?

Grid refinement

Figure: Solution accuracy versus grid refinement, for levels h, h/2, and h/4.



AIAA 2016 2D cargo hold results
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AIAA 2016 2D cargo hold results

Uncertainy Quantification for Cargo Hold Fires, DeGennaro, Lohry, Martinelli, &
Rowley, 57th AIAA Structures, Structural Dynamics, and Materials Conference, San
Diego CA, Jan. 2016.

o Two objectives of this study:

o Assess the feasibility of using DG methods for buoyancy-driven flows,
o Use uncertainty quantification techniques to analyze statistical variations in flows.



AIAA 2016 2D cargo hold results

o The mock fire sources were chosen to vary based on 2 parameters: fire strength
and location.
o Fire location was chosen to vary between the centerline and the far right wall,
exploiting the symmetry of the geometry.
o Fire strength was chosen to vary between a weak, slowly rising plume and a faster
rising plume.

@ 5 x 5 parameter sweep performed for these 2 parameters.

e Simulations performed with 3rd order elements (10 nodes per 2D cell) with
approximately 1,500 triangular cells, or 15,000 nodes. All boundary conditions are
isothermal non-slip walls. Time integration by 3rd order backward difference
formula (BDF).
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Figure: Flow driven by a heat source in a 2D cross-section. Colormap shown is temperature
normalized by the initial bulk temperature.



AlAA 2016 cargo hold results

o Time evolution of temperature field:
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(a) (b) t = 3s. (c) t =4s.

G O

(d) t = 5s. (e) t = 6s. (f) t =7s.

Figure: Temperature field time evolution for T, = 1.486, x; = 0.024 case.



AIAA 2016 2D cargo hold results

@ Variation of fire source location:

(a) xs = 0.024m. (b) xs = 0.116m. (c) xs = 0.262m.

W

(d) x, = 0.387m. (e) xs = 0.480m.

Figure: Temperature fields for T = 1.486 source at the 5 source locations, time t = 10s after
startup.



AIAA 2016 2D cargo hold results

o Variation of fire source temperature:

W W

(a) T, = 1.214. (b) Ts = 1.269. (¢) Ts = 1.350.

W O

(d) Ts = 1.431. (e) Ts = 1.486.

Figure: Temperature fields at x, = 0.024m for the 5 values of temperature source, time
t = 10s after startup.



AIAA 2016 2D cargo hold results
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Figure: Time-averaged ceiling temperature distributions collected at the 25 quadrature nodes.
Each subtitle corresponds to the parameter pair (xs, Ts).
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o Current work is on verification and validation of the full 3D problem.
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Ficure: Combaricon of mesh and 4th order elements



3D isentropic vortex




3D isentropic vortex




3D isentropic vortex
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3D driven cavity

Velocity Magnitude: 0.10.20.30.40.50.6 0.7 0.80.9

Figure: 1st order, 354 cells.




3D driven cavity

Velocity Magnitude: 0.10.20.30.40.50.6 0.7 0.80.9

Figure: 2nd order, 354 cells.




3D driven cavity

Velocity Magnitude: 0.10.20.30.40.50.6 0.7 0.80.9

Figure: 3rd order, 354 cells.



3D driven cavity

Velocity Magnitude: 0.10.20.30.40.50.6 0.7 0.80.9

Figure: 4th order, 354 cells.



3D driven cavity

Velociy Magnitude: 010203

Velosity Magnitude: 0.10203040506070809 Velociy Magnitude: 01020304 0506070809

Velocity Magnitude: 0.1020304050607 0808

Figure: 3D DG solution with 354 cells c.f. Bruneau & Saad (2006), 1024 x 1024 grid.



3D driven cavity




3D B707 cargo hold
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3D B707 cargo hold




3D B707 cargo hold




3D B707 cargo hold
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Figure: FDS, Oztekin



Software design aspects of a Discontinuous Galerkin solver

Aspects of the Discontinuous Galerkin solver:

o Core flow solver (it works):

o 3D spatial discretization with unstructured meshes and arbitrary order of accuracy,
cubature and quadrature rules for evaluating DG terms in the RHS, time
integration, ...

o Bells and whistles (it’s useful for complex problems):

o Interface to PETSc libraries to handle distributed memory parallelism, nonlinear and
linear algebra, Jacobian-Free Newton-Krylov methods.

o Error-adaptive implicit time stepping.

o User implemented boundary conditions and volumetric sources to model fires with
easy hooks via boost::dll.

o Separation of discretization details from flow equations: very simple to switch

between 1D, 2D, and 3D.
Implementation of traditional 2nd order finite volume method.
Wide variety of LES and RANS models.



Major software components for DG solver:

o Evaluation of right-hand-side spatial discretization for Discontinuous Galerkin
method.

Time integration
Nonlinear algebra solver

Linear algebra solver

Parallel communication
File i/o

@ User input options

@ User-defined boundary/volume functions
o Logging of residuals, debugging info.

Lots of moving parts.



Design patterns - mediator

o Making everything work together without becoming a tightly coupled mess is
hard.

TimelntegrableRHS | | SpatialDiscretization | Timelntegrator

1

! Y

: === -INanli'nearA!gebraSnlverl
- JEogging} -

Spaghetti.

o O(N) mutually interacting components require O(N?) communication complexity.



Design patterns - mediator

o The mediator ! design pattern encapsulates interactions between classes, which
reduces coupling by requiring all communication go through one class.
o Much easier to extend functionality and refactor existing code.
o Many-to-many relationship becomes one-to-many.

SpatialDiscretization |

| TimelntegrableRHS Timelntegrator

| ProgramOptions I——<:> Mediator|<:>-—| LinearA lgebraSolverl
Vo0
|

Logging |Nonh’nearAlgebraSolver|

FilelO

Un-spaghetti'd mediator design pattern.

o | prefer the term puppeteer from Rouson et al.?

1Design Patterns: Elements of Reusable Object-Oriented Software, 1994
23cientific Software Design: The Object-Oriented Way, 2011



Design - time stepping and algebraic solution hiera

o Inheritance or composition where they make sense.

o Time integrators/solvers totally decoupled from spatial residual evaluations:

Timelntegrator

+options: TimeIntegratorOptions

+Solve(in rhs:TimeIntegrableRHS&,
in fo:Eigen: :MatrixXds,
out soln:Eigen: :MatrixXds,
out res:Eigen::Matrixxds): void

NonlinearAlgebraSolver

~options: NonlinearAlgebraOptions

+Solve(in nonlinsystem:NonlinearSysten&,
in fo:Eigen: :MatrixXds,
out soln:Eigen::MatrixXds,
out res:Eigen::MatrixXd&): void

Newton Multigrid

+linsolver: Linearsolver

+smoother: Smoother

LinearAlgebraSoliver

“options: LinearAlgebraOptions

+Solve(in linsystem:Linearsystems,
in f0:Eigen: :MatrixXdg,
out soln:Eigen::MatrixXd&,
out res:Eigen::MatrixXd&): void

AN

ImplicitTimelntegrator

| ExplicitTimelntegratorI

+nonlinsolver: NonlinearAlgebraSelver

IBackwardEuIerl |Impl|c RKl
I 11 1
I 1 | |

[ForwardEuler| [ODE4s]




Design - right hand side evaluation

@ Inheritance or composition where they make sense.

o Time integrators/solvers totally decoupled from spatial residual evaluations:

TimelntegrableRHS

+EvalRHS(in y0:Eigen::MatrixXd&,
in time:double,
out dydt:Eigen::MatrixXd&): void

patialDiscretizati

Ci vatii jon
+Gradient () > n T n =
+Divergence() +geom: SpatialDiscretization
+Curl()

LaxFriedrichs
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