A Two-Step Reaction Mechanism for Combustion of Polymeric Solids Containing Flame Retardants

Haiqing Guo^a, Richard E Lyon^b, Natallia Safronava^c, Richard N Walters^b, Sean Crowley^b

^a C-FAR Services, 303 Quail Drive, Marmora, NJ
^b FAA WJHTC Atlantic City International Airport, NJ
^c Technology and Management International, LLC ,1433 Hooper Ave, Toms River, NJ

Background

- A ban of highly effective bromine containing flame-retardant compounds that are widely used in aircraft cabins.
- Advance in phosphorous containing flame-retardant compounds as bromine replacement.
- Use of MCC (micro scale combustion calorimeter) as a tool for gas-phase combustion kinetics study (one-step global reaction).
- \Box MCC is modified for measurements of CO and CO₂.

Objectives

- Obtain incomplete combustion of polymeric solids containing flame retardants in MCC by varying the combustor temperature.
- Implement a 2-step reaction mechanism, including a CO generation and a CO oxidation step, to describe the kinetics in the combustor.
- Correlate the kinetics from MCC test with cone calorimeter test results.

MCC Modification

Combustor Temperature

- Combustor temperature is not perfectly uniform at each set point.
- Surface fitting was performed with the measured temperatures at varied locations and temperature set points.
- Pyrolyzer temperature is maintained at 430 °C.

Set Temperature (°C)

2-Step Reaction Kinetics

The kinetics in the MCC combustor involves a 2-step reaction mechanism.

$$Fuel+O_2 \xrightarrow{k_1} CO+H_2O + product$$
$$CO+\frac{1}{2}O_2 \xrightarrow{k_2} CO_2$$

- Both reactions are second-order: first-order dependent on the fuel and the oxidizer concentration.
- □ Wall effect is negligible.
- Heat release through chemical reaction does not affect combustor temperature.
- The molar number change in the combustor is neglected.

2-Step Reaction Kinetics

- □ MCC measures species (O_2 , CO and CO_2) molar fraction in a dry-basis. Water is corrected based on molar balance.
- □ The combustor is divided into 200 elements and the residence time in each element is evaluated with the bulk velocity at ambient temperature and corrected with local temperature.
- □ The initial fuel concentration into the combustor is estimated with the CO_2 measurement at the complete combustion condition.
- □ Species concentration in the next time step is updated with d[*i*]/dt and also accounts for temperature-related volume change.
- Evolution of the species within the combustor are simulated following the 2-step mechanism using MATLAB.
- □ The appropriate value for the pre-exponential factor (A) and the activation energy (E) are obtained by minimizing the error in fitting the measured and the simulated species concentrations (i.e., O_2 , CO, and CO_2)

Materials

Sample	Formula	Structure
Polystyrene	PS	
	C ₈ H ₈	
Decabromodiphenyl oxide	DBDPO	Br Br Br Br
ONICE	C ₁₂ Br ₁₀ O	Br Br Br Br
Triphenylphosphine oxide	ТРРО	
	C ₁₈ H ₁₅ PO	
9,10-dihydro- 9-oxa-10- phosphaphenanthrene- 10-oxide	DOPO	
	$C_{12}H_9PO_2$	

Results _ Bromine Containing

PS + 20% Br

Results _ Phosphorous Containing

Results _ CO Oxidation

- □ The second reaction is examined with pure CO burning in the combustor.
- \square N₂ line was replaced 4.06% CO mixed in N₂ balance.

Fuel Dependence

- The measured CO molar fraction should be proportional to the initial sample mass if the proposed 1st order fuel dependence is satisfied.
- □ Combustor temperature is fixed at 675 °C

Oxygen Dependence

 \square PS was tested at T=690 °C with varied initial O₂ molar fraction.

□ Reasonable agreement was observed.

Reaction Rates _ Bromine

□ Presence of bromine suppresses both reactions.

 \Box The effect on the 2nd reaction is larger.

□ The bromine becomes less efficient with the increase of additive concentration.

Reaction Rates _ Phosphorous

- Phosphorous containing materials' reaction rates are comparable to that of the pure PS.
- □ TPPO has a much faster reaction rate on the 1st reaction at higher temperatures.

Diffusion and Reaction Rates

- Damkohler number (diffusion time scale / chemical reaction time scale) is used to evaluate the condition in fire.
- Diffusion time scale is evaluated with:

$$\tau_{diff} = \frac{L^2}{D}$$

□ For bimolecular reactions where $[O_2]_0$ >>[Fuel]₀, chemical reaction time scale is evaluated with:

$$\tau_{chem} = \frac{1}{[o_2]k_{chem}}$$

Damkohler Number for Materials

- At typical fire temperatures, the 2nd reaction is much faster than the 1st reaction. The total chemical reaction is limited by the 1st reaction (CO generation).
- Da number estimated for the 1st reaction for all materials.
 - Da number is always higher than unity.
 - For brominated materials, *Da* number is close to 1.
 - For Phosphorous containing materials, Da number is significantly higher than 1.
 - It is noted the turbulent mixing in real fires should be faster than the diffusion.

Comparison with Cone Tests

- Cone test with bromine containing material has a similar CO yield but much more smoke yield.
- Cone test with phosphorous containing material has a significant increase in incomplete combustion products.

	Smoke Yield (m2/kg)	CO Yield (kg/kg)	
PS	1244	0.12	
PS+10%Br	1751	0.14	
PS+15%Br	1940	0.14	
PS+20%Br	1999	0.15	
TPPO	> 2369	0.27	0
DOPO	> 2416	0.37	

Summary

- A MCC was used to study gas phase combustion of phosphorus and bromine containing polymeric materials.
- 2-step reaction kinetics were developed. And appropriate values for A and E were obtained by optimization.
- Presence of bromine suppresses both reactions with larger effect on the 2nd reaction.
- □ Presence of phosphorous has a higher temperature dependence.
- □ The Damkohler number evaluated at typical flame temperature is higher than unity, indicating a oxygen starving condition in fires.
- The cone calorimeter tests show a correlation between Damkohler number and carbon monoxide yield. For materials in which chemical reaction rate is significantly higher than mixing rate, CO yield increases.

Future Work

- Mix phosphorous additives (TPPO / DOPO) with other polymeric materials and study their kinetics. (degrading at the similar temperature)
- Modify current method of MCC testing. Use high-temperature furnace and different oxygen concentrations to achieve flame alike condition.

Acknowledgement

□ The authors are grateful to the companies for providing samples used in the current experiments.