## A TWO-STEP REACTION MECHANISM FOR COMBUSTION OF POLYMETRIC SOLIDS CONTAINING FLAME RETARDANTS

## Haiqing Guo, Richard E. Lyon, Richard N. Walters, Natallia Safronava Fire Safety Branch, FAA Technical Center, Atlantic City, NJ

Recent advances in Microscale Combustion Calorimetry (MCC) allow the combustion gases,  $O_2$ , CO, and  $CO_2$  to be measured using in-line analyzers. A simplified two-step reaction mechanism, which involves a CO generation step and a CO oxidation step, was proposed to better describe the chemical reaction scheme that generates these products within the pre-mixed combustor. Different incomplete combustion conditions were obtained by varying the MCC combustor temperature, and a numerical model of the combustor was developed to simulate the species evolution. Kinetics parameters for both reactions were found by minimizing the error between the predicted species concentrations ( $O_2$ , CO, and  $CO_2$ ) and the measurements. The two-step method was employed to examine halogenand phosphorous-containing polymers of known compositions. The halogen additives were found to have a significant effect on the gas phase reactions, whereas the effect of phosphorous was found to be relatively small. The MCC pre-mixed kinetic parameters were also used to correlate combustion of the same polymers in a diffusion flame in the cone calorimeter.