

Polyphosphonate Flame Retardants in Aviation Applications

October 24-27, 2016

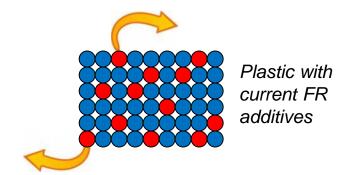
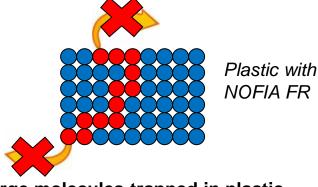

FRX Polymers®, Inc

Table of Contents

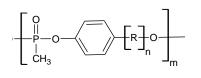
- Polyphosphonates Overview
- Applications
 - Thermoplastics
 - Thermosets
- Production

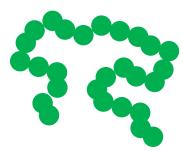
NOFIA Polyphosphonates, A Unique FR Solution


Small molecules can end up in environment

- Polymer:
 - Permanent and will not migrate out
 - Minimal impact on host plastic properties
 - Possible to use plastic processing methods
- Non-halogen flame retardant
- Extreme FR properties
- High melt flow
- Transparent
- Range of toughness

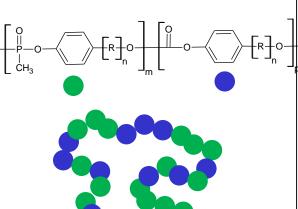
FRX Polymers[®] Inc., Page 3




Large molecules trapped in plastic

FRX POLYMERS' Products - Characteristics

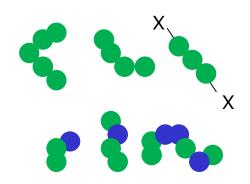
Nofia HM1100



- Polyphosphonate (P ~ 11wt%)
- High molecular weight (40-100,000 g/mole, PS)
- Tg ~ 100-105°C
- Plastic pellets

polymers ®

 Typically used as blend component in plastics



Nofia COPOs

- Polyphosphonate-cocarbonate (P ~ 3-7 wt%)
- High molecular weight (40-100,000 g/mole, PS)
- Tg ~ 120-135°C
- Plastic pellets
- Used as stand alone polymer or blend component in plastics

Nofia Oligomers

-X = different functionalities

- Phosphonate or phosphonate-co-carbonate
- Low molecular weight (1,000 – 6,000 g/mole)
- 5 90 mg KOH/g
- Solid white material
- Used as additive or as reactive ingredient in thermoset plastics

Current Markets/Polymer systems

Nofia HM1100

Polymer System

- Polyesters (PET, PBT, PTT)
- TPUs

Markets

- Electrical Equipment
- Consumer Electronics
- Fibers
- Building and Construction

Applications

- Connectors
- Commercial carpet
- Specialty textiles
- TPU films, sheet

polymers [®]

Nofia COPOs

Polymer System

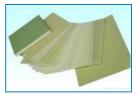
- PC, Polyesters
- PC blends (PC/ABS)

Markets

- Consumer Electronics
- Lighting
- Building and Construction
- Transportation (aviation) **Applications**
- Housings for electronic equipment
- Light diffusers
- Transparent sheets

Polymer System

Nofia Oligomers


- Epoxy resins
- Unsaturated polyesters

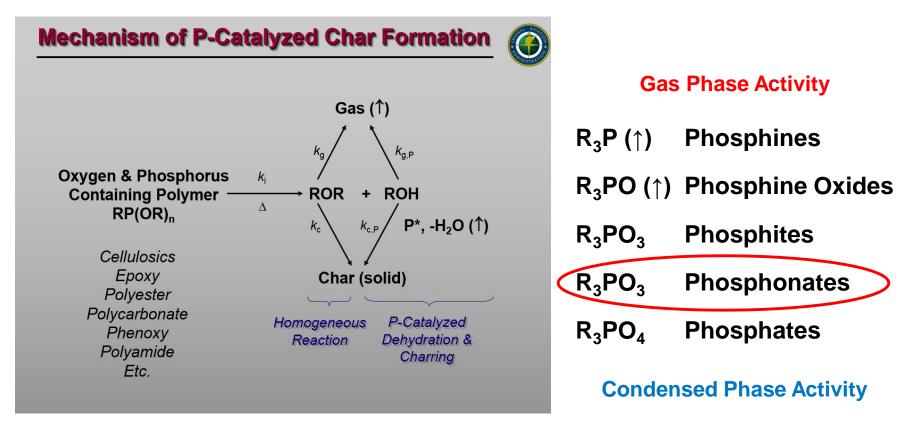
Markets

- Electronics
- Building and Construction
- Transportation (aviation)

Applications

- Printed Circuit boards
- Composites
- Decorative laminates and panels

FRX Polymers[®] Inc., Page 5



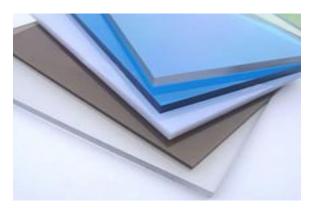
Mechanism of Phosphorus Flame Retardants

- Phosphorus is an element that reduces flammability of certain polymers.
 - Phosphorus can act in the gas phase as a flame inhibitor.
 - Phosphorus can act in the condensed phase as a char promoter.

Richard Lyon, Federal Aviation Administration, 25th Annual BCC Conference on Recent Advances in Flame Retardancy of Polymeric Materials, Stamford, CT, May 19-21, 2014

Aviation Applications Thermplastics

Polyphosphonates in Thermoplastic Applications


Aircraft Interior Parts

Benefits

- Low heat release
- Low smoke density
- Reduced flame spread
- Good impact resistance
- Transparent
- Processable Film, Sheet

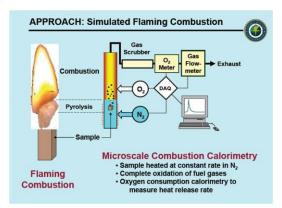
Opaque / Transparent Sheets: Extruded

FRX polymers ®

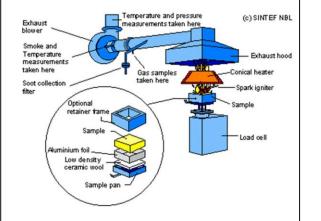
Thermoformed Products

nofia®

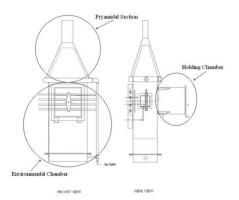
Evaluation of FR Properties


- Heat Release Properties
- Vertical Burn
- Flame Spread
- Smoke density
- Smoke toxicity

Testing Heat Release Properties

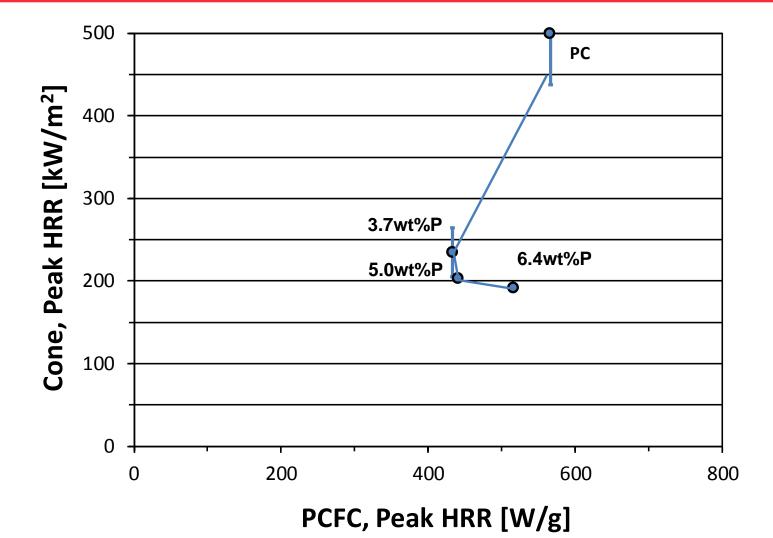

Small Scale

- Pyrolysis Combustion Flow Calorimeter (PCFC), also known as Micro Combustion Calorimetry (MCC)
- ASTM D7309
- Material Needed: Few mg
- Output:
 - Heat of Combustion or Fire Load
 - Ignition Temperature
 - Heat Release Rate
 - Heat Release Capacity: Fundamental Material Property


Lab Scale Up

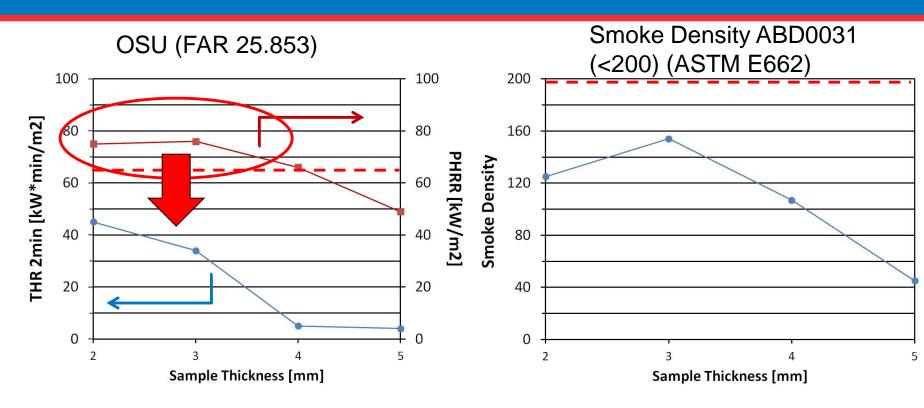
- Cone Calorimeter
- ISO 5660 / ASTM E1354
- Material Needed: 100x100mm plaque
- Output:
 - Rate of heat release
 - Time to ignition
 - Critical ignition flux
 - Mass loss rate
 - Smoke release rate
 - Effective heat of combustion
 - CO2, CO release

Pilot Plant


- OSU and Smoke Density
- FAR 25.853 / ASTM E906 and ASTM E662
- Material Needed: 150x150mm plaque
- Output:
 - Heat Release (2 min total)
- Heat Release Rate (peak)
- Heat Flux Density
- Smoke Density

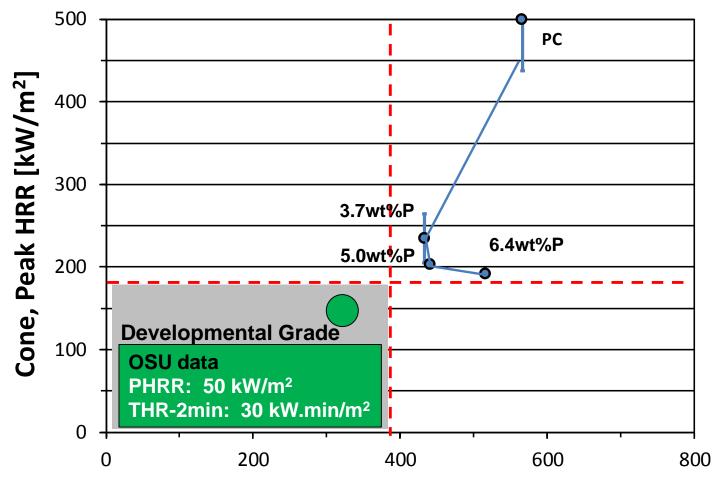
nofia

Effect of P-Content on Heat Release Properties



FRX Polymers® Inc., Page 11

nofia


OSU and Smoke Data for 3.5wt% P

- Polyphosphonate-co-carbonate has good total heat release and smoke properties that are within spec for OSU (FAR 25.853)
- About ~50% lower Peak Heat Release Rate (PHRR) than PC (150-200 kW/m²) but not good enough to pass the PHRR specification of 65 kW/m²
- Future goal: Obtain additional improvement (~>12.5 25%) in PHRR

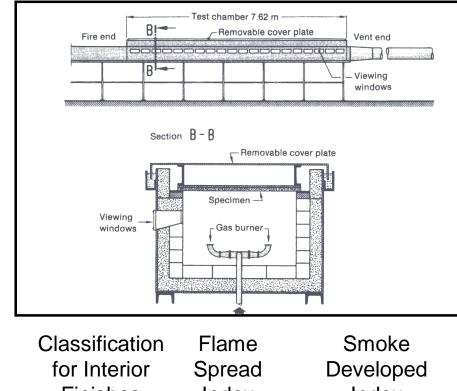
Product Optimization

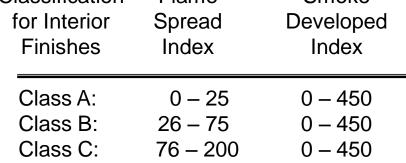
PCFC, Peak HRR [W/g]

Vertical Burn Test: FAR 25.853 A/B: Nofia Grades

- Test Facility: TTF Aerospace LLC (FAA approved Test Lab), Auburn, WA
- Average of 3 plaques of 3" X 12" (7.5x30cm) at 30 mil (0.76mm)

		A: 60Sec-Vert				B: 12 Sec-Vert			
Nofia Grade	P [wt%]	Burn length [inch]	Exting t [s]	Drip ext t [s]	Smoke	Burn length [inch]	Exting t [s]	Drip ext t [s]	Smoke
EX2111	2.0	5.1±0.3	0.3±0.6	6±1**	Moderate	2.5±0.3	11±3	0.7±0.6**	Moderate
CO3000	4.0	6.5±0.5	0	1±2**	Moderate	2.1±0.3	0.3±0.6	0*	Slight
CO4000	5.0	5.0±0.3	0	0**	Moderate	-	-	-	-


* = Single drip


** = Multiple drips with extinguishing time

- Class A when tested according FAR 25.853 when P ~> 4.5 wt%
- At 2-3.5wt% of P, PC blends / copolyphosphonates (EX2111) obtain class B in the FAR 25.853

Flame Spread: ASTM E 84-15 (Steiner Tunnel Test)

ASTM E84 equivalent to - NFPA 225 - UL 723

nofia

Flame Spread: ASTM E 84 -15 Data*

- Samples: 0.8mm and 1.6mm sheets
- Sheets are supported with ¼" diameter steel rods spaced 24 inches on center and 2" hexagonal wire mesh

SAMPLE	%P	Thickness [mm]	Flame Spread Index	Smoke Developed Index	Melting / Dripping	Melting Distance	CLASS
Nofia CO3000	4.0	0.8	5	170	Yes	24'	А
Nofia CO4000	5.0	0.8	5	185	Yes	22'	А
Nofia CO4000	5.0	1.6	5	300	Yes	24'	А

* Artificial support due to melting/dripping of thermoplastic may interfere with test, additional testing to validate FSI results may be required

nofia

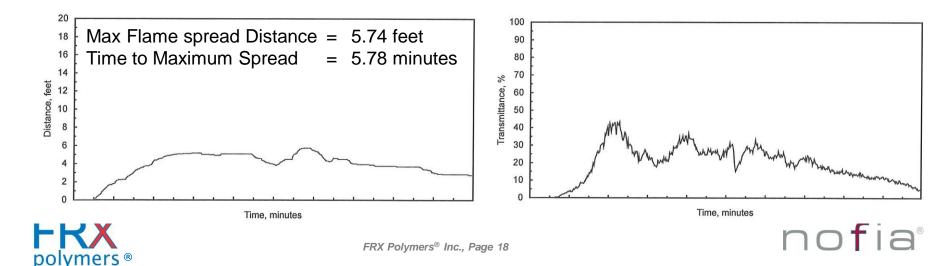
Thermoplastic Polyurethane (TPU) Applications

Aircraft Interior Parts

Benefits

- Low heat release
- Reduced flame spread
- Low smoke
- Melt processable
- Halogen free alternative to existing materials

Non-textile Floor Coverings


Aircraft Seats

Polyphosphonates in TPU Applications

	aread Teat	Test Specimen				
	pread Test 84 - 10b	Fiber-Reinforced Cement Board, Grade II	Red Oak Flooring	TPU w/ HM1100 (0.7mm)		
ASTM E84	Classification					
	A: 0-25			\frown		
Flame spread Index (Is)	B: 26-75	0	100	24		
	C: 76-200					
	A: 0-450					
Smoke Developed Index	B: 0-450	0	100	189		
	C: 0-450			Class A		

Aviation Applications Thermosets

Polyphosphonates in Thermoset Applications

Composites

Thermoset Prepregs

Ероху

Phenolic

Cyanate-Ester

Benzoxazines

Benefits

- Excellent flame retardancy
- High heat resistance
- Improved mechanical strength
- Improved adhesion to glass fiber
- Low dielectric properties (Dk/Df)

Reinforcements Carbon, Aramid and Glass fiber

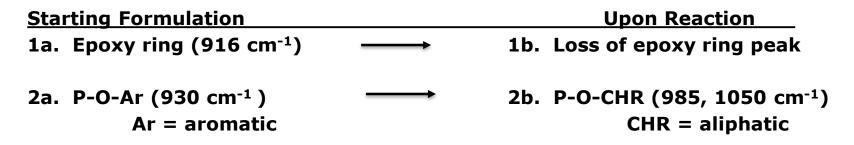
Wall and ceiling panels, cabin dividers, galleys

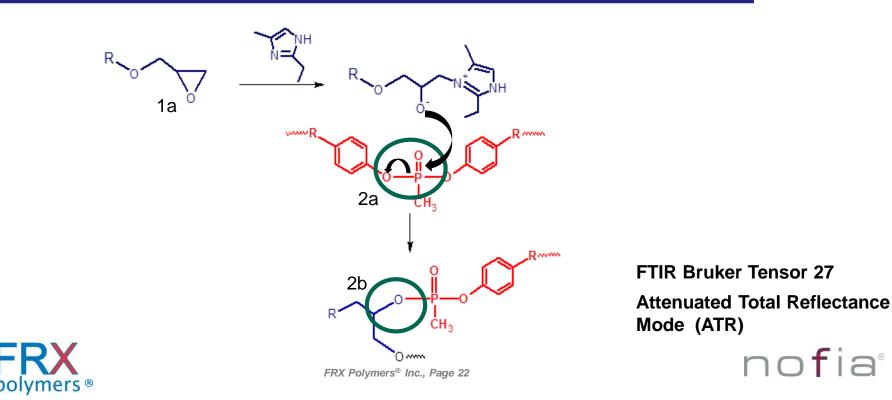
FRX Polymers[®] Inc., Page 20

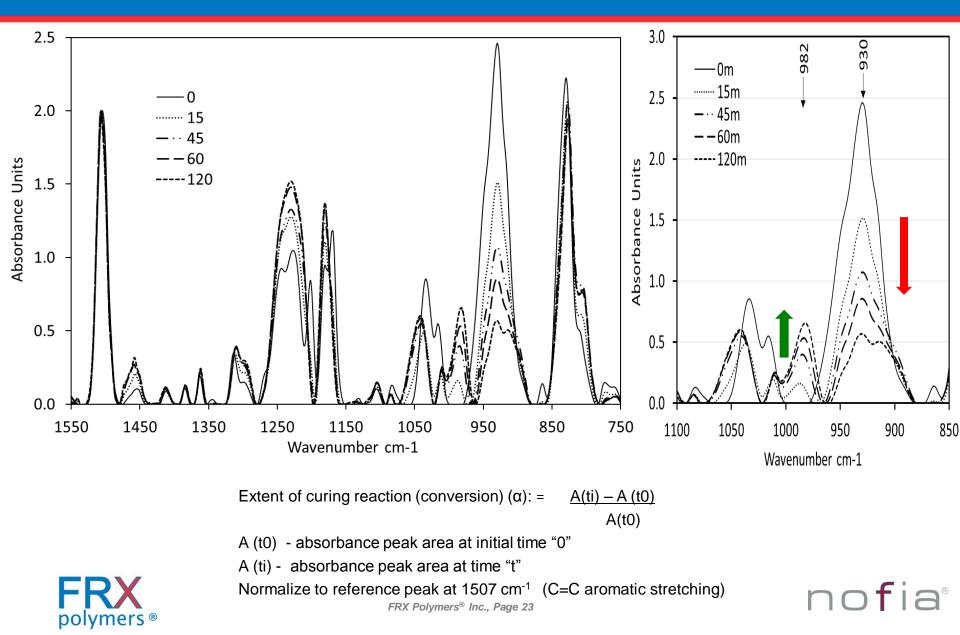
Benefits of Polyphosphonates in:

Epoxy-based systems

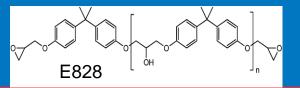
- Highly soluble in epoxy resins
- Dual purpose as flame retardant and hardener for epoxy resins
- Multi-functional reactivity with epoxy resulting in high crosslink density
- Strengthens adhesion to glass fabric used in composites
- Maintains Transparency

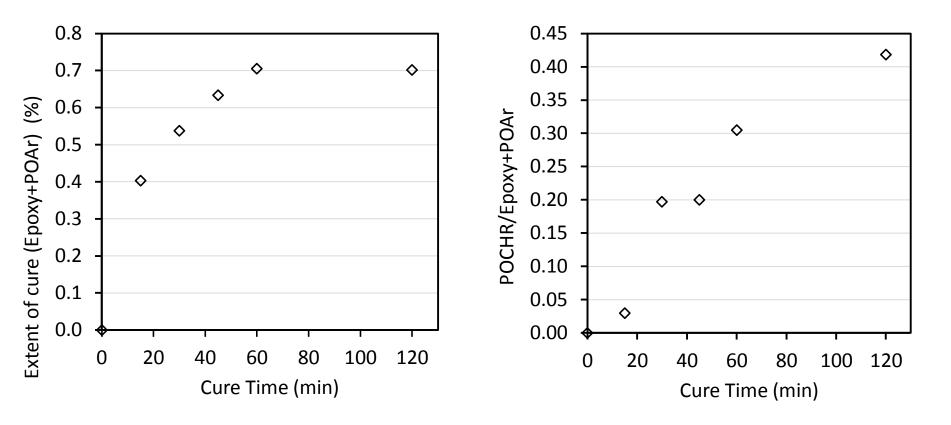

Phenolic prepregs


- Good compatibility with phenolic resins
- Reduces smoke


Phosphonates Oligomers: Hardener for Epoxy

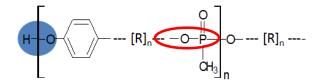
Monitor Curing Reaction with FTIR





Monitoring the Curing Reaction using FTIR

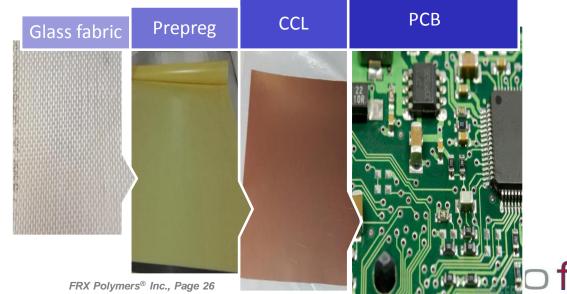
Curing Reactions



1:1 equiv weight [OL3001]:[E828], 0.2wt% 2E4MI catalyst, 165°C

Summary of Phosphonate Oligomer-Epoxy Curing Reaction

- FTIR provides evidence of the curing reaction: formation of the P-O-C (aliphatic) group generated by the reaction of the alkoxide group (⁻OR) of epoxy at P-O-Ar site of oligomer
- Curing reaction is temperature dependent, minimum temp ~160°C
- Imidazoles are effective catalysts for the phosphonate curing reaction
- Reactive equivalent of phosphonate oligomer is calculated based on both phenolic-OH and P-O-Ar reaction sites but P-O-Ar sites dominate


Product	OH Equiv weight (g/eq)	Total Reactive Equiv weight (g/eq)		
Phosphonate oligomer (OL3001)	1240	141		

Comparative Example in Epoxy based Electronic Laminate Applications

Benefits of Phosphonate Oligomer vs current Halogen-Free (Phosphorus) FRs used in CCL

- Excellent thermal stability Td (5%) >400°C
- Increased peel strength very good adhesion to glass fabric
- Improved dielectric properties (low Dk <3.9/Df <0.009 @ 10GHz)
- Increased toughness 45% increase storage modulus (50-150°C)
- Improved moisture and heat resistance (passes 3 hr pressure cooker test/288°C solder dip

FRX Polymers' Plant in Antwerp

FRX Polymers[®] Inc., Page 27

polymers[®]

Acknowledgements: R&D Team, Chelmsford, MA

FRX POLYMERS 200 Turnpike Road Chelmsford, MA 01824, USA Tel: +1 (978) 856-4145 Fax: +1 (978) 250-4533 www.frxpolymers.com