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Crashworthiness - Certification by Analysis
 Motivation and Key Issues 

– The introduction of composite airframes warrants an assessment to 
evaluate that their crashworthiness dynamic structural response provides 
an equivalent or improved level of safety compared to conventional 
metallic structures. This assessment includes the evaluation of the 
survivable volume, retention of items of mass, deceleration loads 
experienced by the occupants, and occupant emergency egress paths. 

 Objective
– In order to design, evaluate and optimize the crashworthiness behavior of 

composite structures it is necessary to develop an evaluation 
methodology (experimental and numerical) and predictable 
computational tools. 

 Approach
– The advances in computational tools combined with the building block 

approach allows for a cost-effective approach to study in depth the 
crashworthiness behavior of aerospace structures.

 Applications
– Boeing 787 crashworthiness requirement (Special condition 25-362-SC)
– Airbus A350 crashworthiness requirement (Special condition 25-537-SC)
– AC 20-146 Aircraft Seat Certification

 Demonstrating compliance to standard test requirements for 
changes to a baseline seat design

 Establishing the critical seat installation/configuration in 
preparation for dynamic testing

– ARAC
 Transport airplane ditching and crashworthiness requirements

No part of this document may be reproduced or transmitted in any form or by any means without prior written permission of NIAR 3



Aerospace Structural Crashworthiness

 Crashworthiness performance of composite 
structures to be equivalent or better than 
traditional metallic structures

 Crashworthiness design requirements:

– Maintain survivable volume

– Maintain deceleration loads to occupants

– Retention items of mass

– Maintain egress paths

 Currently there are two approaches that can be 
applied to analyze this special condition:

– Method I: Large Scale Test Article Approach

 Experimental:

– Large Scale Test Articles (Barrel Sections)

– Component Level Testing of Energy 
Absorbing Devices

 Simulation follows testing – Numerical models 
are “tuned” to match large test article/EA sub-
assemblies results. Computational models are 
only predictable for the specific configurations 
that were tested during the experimental phase. 
For example if there are changes to the loading 
conditions (i.e. impact location, velocity, ..etc.) 
and/or to the geometry, the model may or may 
not predict the crashworthiness behavior of the 
structure.

– Method II: Building Block Approach 

 Experimental and Simulation

– Coupon Level to Full Scale

 Predictable modeling
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Verifying FEM Capabilities by Accident 

Reconstruction
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• How do we evaluate Full-scale models at the top of the building block approach?
• With confidence in element, coupon, component and sub-assembly models
• Comparison to Test Data

• Fortunately extensive documentation of Turkish Airline Flight 1951 crash by Dutch 
Authorities

• Considered survivable crash (only 9 fatalities out of 128 occupants)

• What are we dealing with?
• Simulation time-step is dictated by minimum element length
• Model with around 10 million elements – Typical minimum element length for crash analysis is 

3mm
• Computing Resources
• Model Stability due to large deformations

Aircraft length = 39500 mm

Minimum element length = 3mm

Coupon Level  Material Characterization | Constitutive Laws | Strain Rate Effects | Failure Criteria  

Strain Gradients | Connections

Component Level | Energy Absorbing Devices | Failure Modes

Section Test | Sub-assembly

Full Aircraft

BENCHMARKING

-Constitutive models |  Failure 
theories

LOCALIZED IMPACT PROBLEMS

- Bird, hail, projectile impact

- Damage Resistance

- UAS Impact

CRASHWORTHINESS

- Crush behavior |  Structural integrity 
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ACCIDENT OVERVIEW

Turkish Airline Flight 1951 on Final Approach to Schiphol Airport
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Accident Summary
 Turkish Airlines Flight 1951

 Flight route: Istanbul to Amsterdam

 Crash Date: 25 February 2009 at 10.26 hours (local Dutch time)

 Crash Location: 1.5km (0.93 miles) from Polderbaan (18R) - Amsterdam 
Schiphol airport (EHAM)

 Aircraft type: Boeing 737-800

 Final Known Aircraft orientation: 22 deg Pitch, 10 deg roll to the left

 Final Known Aircraft Speed: Approx 107 knots 

 Total Passengers: 128 Passengers + 7 crew

 Injury Evaluation: 9 Fatalities, 120 Injuries (Minor to Serious)

 Overview of Crash Event:
– Aircraft entered Glide path late (almost one mile closer to runway)

– Had to set low thrust to intercept path from above

– Faulty left hand altimeter displayed -8 feet altitude (primary input for autothrottle)

– Faulty input commanded the autothrottle to “RETARD Flare mode”
 RETARD flare mode selection normally applied during final landing phase below 27 feet

– This reduced thrust to idle at an altitude and airspeed insufficient to reach the 
runway

– The right hand altimeter displayed correct altitude

– At 460 ft altitude, aircraft warned of approaching stall and crew reacted by pushing 
throttle up to regain airspeed

– Then captain took over and in response first officer relaxed his push on the throttle

– Since autopilot was not deactivated, throttle went back to idle (RETARD mode)

– Captain then deactivated auto throttle and increased thrust but it was too late

– The aircraft stalled at 350 FT and speed of 105 knots

Runway

Crash 
Site

Source: Crashed during approach, Boeing 737-800, near Amsterdam Schiphol Airport, 25 February 2009. The Dutch Safety Board 
Doc: Rapport_TA_ENG_web.pdf
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Damage to Aircraft

Source: Crashed during approach, Boeing 737-800, near Amsterdam Schiphol Airport, 25 February 2009. The Dutch Safety Board 
Doc: Rapport_TA_ENG_web.pdf

 Observed Damage
– Traveled approximately 100 m from first impact

– Horizontal Stabilizer separated and flipped

– Fuselage breaks into 3 pieces

– Engines detach and fly away

 Why this Accident is interesting?
– No fire

– Doors and escape route accessible – Egress

– Survivable volume maintained

– Most items of mass retained

– Fits the definition of survivable accident (FAA)

 Areas this allows to explore
– Defining requirements for Seats

– Defining crashworthiness requirements

– Exploring FEM capabilities (CBA / Special Conditions)

– Exploring injury criteria

 Accident Documentation
– Extensive documentation available

– This complements FEM
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Project Scope and Tasks
Scope - Prediction of overall failure modes and 
demonstration of critical parameters such as survivable 
volume and egress paths

Tasks
 Full Aircraft CAD – Similar to B737-800

– Challenge
 Actual drawings not available from OEM

– Solution  
 Books, Online Resources, Repair Manuals
 Validation study

 Full Aircraft FEM
– Challenge

 Model critical assumptions
 Connections
 Material Application

– Solution
 Document Assumptions and its likely impact on results
 Create an organized process for FEM assembly

 150 m of Soil FEM
– Challenge

 What will LS-DYNA be able to handle
 Material properties of soil at crash site not available

– Solutions
 Extensive study of FEM techniques for Soil
 Extensive literature review for material data

 Crash Boundary Conditions
– Challenge 

 Last data point at Aircraft altitude of 80 ft
– Solution

 Extensive study of available data
 Expert opinions
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CAD-FEA Model Example
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 Constructed using manuals and information in public database

 Model Assumptions
– Avionics, wires and systems not modeled

– Lightning holes simplified or assumed

– Fastener points and locations based on repair guidelines (REF)

– Thickness of some parts not available so created based on geometric scaling

– Some access panels and cutouts not modeled

– Interiors not modeled



FE Modeling Process

- Extract material 
information from 
CAD 

- Obtain material 
cards from 
material database

- Apply to over 
2500 sub 
assemblies

MATERIALS

- Assemble 
individual section 
to create the full 
aircraft model

- Wing to Fuselage

ASSEMBLY

- Eigenvalue 
analysis 

- Natural 
Frequencies and 
mode shapes to 
review connections

IMPLICIT CHECK

- Parts connected 
using beam 
elements

CONNECTION

- Document Part 
ID’s and Mesh 
Quality

DOCUMENTATION

- Check Mesh 
Quality

- Renumber using 
Table 1 (slide 3)

NUMBERING

- Inspect CAD 
Model

- Mesh Parts 

- Mesh Quality 
Check

DISCRETIZATION 
PROCESS

• Other steps include
• Mass distribution
• Weight and CG Balance
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FEA Modeling - Discretization Process

Quality Parameter
Allowable 
Min./Max.

Min.Side Length 3 mm

Max.Aspect Ratio 5

Min. Quad Angle 45 deg

Max. Quad Angle 140 deg

Min. Tri Angle 30 deg

Max. Tri Angle 120 deg

Max Warp Angle 15 deg

Min. Jacobian 0.7

Quality 
Parameter

Allowable 
Min./Max.

Min.Side Length 5 mm

Max.Aspect
Ratio

5

Tet Collapse 0.3

Max Warp Angle 15 deg

Min. Jacobian 0.5

Shell (2D)Mesh Solid (3D)Mesh

• Inspect CAD model for

– Penetration

– Intersections

• Document and Request corrections

Geometry Cleanup Meshing Quality Check
• Consistent Element Sizes

• Mesh Flow

• Minimize number of Trias < 5%

• Mesh Quality Criteria for Crash Analysis

NOT desirable mesh transition

• Check Normals

• Check Penetrations

• Check Intersections

• Check Edges and Element Connectivity

• Check for Duplicates

Intersections and Penetrations need to be fixed

Element Normals need fixing Element Normals fixed

Not desirable

Bad element connectivity
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FEA Modeling – Modular FEA Model Approach

Include Sections Nodes Elements Parts Sections Sets Others eg. Constraints

FUSELAGE 1 - 16,000,000 1 - 16,000,000

SEC 41 + NLG 1 - 2,499,999 1 - 2,499,999 410000 - 419999 410000 - 419999 410000 - 419999 410000 - 419999

SEC 43 2,500,000 - 4,999,999 2,500,000 - 4,999,999 430000 - 439999 430000 - 439999 430000 - 439999 430000 - 439999

SEC 44 5,000,000 - 7,499,999 5,000,000 - 7,499,999 440000 - 449999 440000 - 449999 440000 - 449999 440000 - 449999

SEC 46 7,500,000 - 9,999,999 7,500,000 - 9,999,999 460000 - 469999 460000 - 469999 460000 - 469999 460000 - 469999

SEC 47 10,000,000 - 12,499,999 10,000,000 - 12,499,999 470000 - 479999 470000 - 479999 470000 - 479999 470000 - 479999

SEC 48 12,500,000 - 14,999,999 12,500,000 - 14,999,999 480000 - 489999 480000 - 489999 480000 - 489999 480000 - 489999

KEEL BEAM 15,000,000 - 15,499,999 15,000,000 - 15,499,999 400000 - 409999 400000 - 409999 400000 - 409999 400000 - 409999

WING-BODY FAIRING 15,500,000 - 16,000,000 15,500,000 - 16,000,000 450000 - 459999 450000 - 459999 450000 - 459999 450000 - 459999

WING 17,000,000 - 20,500,000 17,000,000 - 20,500,000

Wing + Engine + MLG 17,000,000 - 20,500,000 17,000,000 - 20,500,000 500000 - 529999 500000 - 529999 500000 - 529999 500000 - 529999

VERTICAL STAB 21,000,000 - 21,999,999 21,000,000 - 21,999,999 700000 - 709999 700000 - 709999 700000 - 709999 700000 - 709999

HORIZONTAL STAB 22,000,000 - 22,999,999 22,000,000 - 22,999,999 800000 - 809999 800000 - 809999 800000 - 809999 800000 - 809999

Numbering Ranges

SEC 41 SEC 43 SEC 44 SEC 46 SEC 47 SEC 48

KEEL BEAM FAIRING

WING + ENGINE + MLG

V STAB

H STAB

 Enable multiple people to work on the 
model

 Avoid clashes when assembling model

 Independent editing of sections

 Ease of documentation and tracking

 More manageable amount of work
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FEA Modeling – Connections and Implicit 

Check  Connection Points were derived by research and by 
following guidelines in FAA Advisory Circular for Repair 
(AC 43.13-1B)

 Parts were connected using Beam elements (Type 9) in 
LS DYNA. These are known as Mesh-Independent Spot-
weld Beams. Based on our joint modeling R&D this is 
the most practical solution available in LS DYNA for large 
structural models. 

 Implicit Eigenvalue analysis on connected sections to 
study natural frequencies, mode shapes and 
connectivity of parts

 Helps characterize basic dynamic behavior and how 
structure will respond to dynamic loading

Window 
Frame

Skin

Beam 
Element

21 in. (Distance 
between Frames)

16 rivets

(AC 43.13-1B)

Points created 
in CAD

FE Model 
Connected
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FEA Modeling – Materials

Extract Material List

Materials extracted from NIAR COMPMECH 
MATERIAL DATABASE

Apply MAT ID to PART ID – SUITE OF MACROS 
DEVELOPED FOR MATERIAL APPLICATION

 NIAR COMPMECH Material Database

– 1800 Materials from MMPDS
 Steel

 Aluminum

 Titanium

– Each material has information for
 Direction – L or LT

 Basis – A, B, S or Typical

 Thickness – The ranges provided in MMPDS

– LS DYNA MAT Cards extracted from 
information

 MAT 24

 MAT 82

 MAT 224

– Each MAT Card is Validated against
 MMPDS Properties

 Test data – IF AVAILABLE
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Full Aircraft FEA Model – 10M Elements
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Preliminary Numerical Model Stability Checks

30 ft/s
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FEA MODEL VALIDATION

Comparison to FAA 10-FT Aircraft Section Drop Test
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FAA Vertical Drop Test

Abramowitz,Allan , Smith,Timothy G. Vu, Dr. Tong and Zvanya, John R. “Vertical drop test of a narrow-body 
transport fuselage section with overhead stowage bins”, FAA Report: DOT/FAA/AR-01/100 ,(2002). 

 737-100 Fuselage Drop test

 30 ft/s

 10-ft section extracted

 Front cargo bay door included

 Full cargo in Cargo bay

 Extra floor beam for boundary condition

 Two different Overhead bins

 Two different Seat models (UOP and Weber)

 ATD’s and Mannequins placed in seats

 Steel-plates and Camera systems added to fuselage
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Simulation Setup
 10-ft section extracted

 Extra beams added to replicate boundary condition

 Fully filled cargo modeled

 Overhead bins and attachment modeled

 Camera mounts and steel plates for drop added

 Seats, ATD and Mannequin accounted for using added mass

 Camera accounted for using added mass

 Dropped on rigid surface

Lifting

Plate

Camera

mount

Reinforce

Beam

Inside View of Cargo Door

Cargo

Door

Cameras

ATDs/Mannequins/

Seats

Miscellaneous

Overhead Bin Contents

FEM Summary
Entity Total Number
Nodes 822481

Lumped masses 32
Beam Elements 23937
Shell Elements 664972
Solid Elements 25080
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TEST

T= 0.03 s T= 0.06 s T= 0.09 s T= 0.12 s T= 0.15 s

SIMULATION

Test Simulation Correlation - Results
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Test Simulation Correlation – Results
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SOIL MODEL STUDIES
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Sample Soil Model Validation
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Comparison of the Soil Materials
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FULL SCALE MODEL VALIDATION

Initial Run for Accident Reconstruction
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Flight Model Pre-Impact

 NIAR Virtual Flight Testing Lab

 Define Aircraft Boundary 
Conditions prior to impact:
– Linear Velocities

– Angular Velocities

– Forces and Moments

 Crash Location:
– 1.5km (0.93 miles) from Polderbaan

(18R) - Amsterdam Schiphol airport 
(EHAM)
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CFD Analysis Pre-Impact & Impact BC’s
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 Pre-impact Boundary Conditions Definition: Pressure Mapping
 Impact BC’s :Pressure Mapping vs. Aircraft Orientation
 CFD Analysis Ongoing



Preliminary Results
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Preliminary Results
 Initial runs show promising results

 Current run only up to 700 ms

 Areas that need more work
– Engine failure

– Soil and Landing gear interaction

– Tail section failure

– Stability of model for running up to 3 seconds

– Re-evaluate boundary conditions
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Conclusions and Future Work
 Full aircraft model impact simulations need to address not only the structural component of the 

analysis but also include aerodynamic, propulsion and control input data to define the proper 
boundary conditions

 The model is a representative narrow body structure therefore obtaining the exact same failure 
locations and mechanisms may not be possible

 Preliminary analysis results look promising in terms of overall deformations and damage

 Continue understanding boundary conditions to improve correlation to actual event

 Summarize findings in an interim report to support the ARAC Transport Airplane Crashworthiness 
and Ditching Working Group 

 In parallel we are working in High End Visualization for Accident Data and Simulation Data using 
NIAR’s new CAVE VR Environment

 Working on the definition of a full scale test and simulation program for a part 25 composite and 
metallic business jet configuration
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Looking Forward

 Benefit to Aviation
– Provide a methodology and the tools required by industry to maintain or improve the 

level of safety of new composite aircraft when compared to current metallic aircraft 
during emergency landing conditions

– Improve the understanding of the crashworthy behavior of metallic structures

– Provide R&D material to the ARAC Transport Airplane Crashworthiness and Ditching 
Working Group 

– The FEA models developed for this program are contributing also to ongoing UAS-
Aircraft  impact R&D 

– These models may also be used for ditching evaluations

– FEA models can help accident investigators understand different damage characteristics 
resulting from various accidents for better understanding of the event

 Future needs
– Development of a High Strain Rate Testing Standard for material characterization

– Training of Industry and FAA personnel on the use of numerical tools to support the 
development and certification process

– Conduct a baseline business jet size metallic aircraft drop test 
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