Presented to 7th International Fire & Cabin Safety Research Technical Conference

The Uncertainty of Temperature and Heat Flux Calibration for FAA Fire Test

<u>Robert I. Ochs</u>, FAA Technical Center <u>Yi-Huan Kao</u>, University of Cincinnati <u>Samir B. Tambe</u>, University of Cincinnati <u>San-Mou Jeng</u>, University of Cincinnati

Date: December 5th, 2013

Background and Scope of Presentation

In current FAA fire test guidance, <u>the flame temperature and heat flux calibration is</u> <u>required</u> to ensure that the flame is qualified to simulate the possible real-life severe conditions happened inside an aircraft or a powerplant environment.

In this work, the discrepancy between Gardon and Schmidt-Boelter gauges will be discussed. Several suggested cases should be taken when selecting a Gardon or Schmidt-Boelter gauge for use as a calibration standard in fire test equipment.

The uncertainty of thermocouple (TC) measurement in a high temperature environment (fire test) and the effects of convective velocity, TC size, TC location will be presented.

Heat Flux

- Quantification of the flow of heat from a region of high temperature to a region of low temperature
- Heat transfer occurs by three modes
 - Conduction
 - Convection
 - o Radiation
- Heat flux a critical fundamental parameter in assessing flame spread behavior of materials

Heat Flux Measurement

- Constant Temperature Copper Body (~cooling water temp)
- Two thermocouple junctions created at the copper wireconstantan foil connections
- Radial temperature gradient exists if temperature at center of foil is not equal to the body temperature

- Multiple TC junctions created on top and bottom of thermal resistance layer (Anodized Aluminum)
- Signal is electrically isolated from gauge body
- Signal is greater in magnitude than Gardon gauge due to multiple thermocouple junctions, hence smaller ΔT required for similar voltage output

Transfer Calibration

- A NIST-traceable HFG is used to transfer calibration to other gauges
- Electrically heated graphite plate is the radiation source
- Gauges are placed on either side of the plate and mV signals are recorded
- Calibration factor is developed for gauge based on the reference HFG's heat flux readings and the other gauge mV output

- No surround board is used for gauges
- A convective boundary layer flow develops on both sides of graphite plate, should be equal
- Resulting incident flux should be equal for both gauges

Low Heat Flux Measurement: Some Precaution¹

¹ Robertson & Ohlemiller, Fire Safety Journal **25** (1995) 109-124

- Low Heat Flux at or below 15 kW/m² (1.2 BTU/ft²s)
- Errors arise from temperature difference between gauge body and its surroundings
 - If the cooling water temperature is different from the surrounding temperature, a bias error signal will be measured
 - Experiments with 12° and 50°C water resulted in bias errors of +4.3% and -8.5%, respectively under a 5.9 kW/m² flux
- Mounting the gauge body in a board was found to increase the flux measurement
 - Board absorbs radiant heat from furnace
 - Board temperature increases, heats air near the surface
 - $\circ \quad \begin{array}{l} Buoyant \ boundary \ layer \ develops \ with \\ T_{board} > T_{BL} > T_{gauge} \end{array}$
 - Heat is transferred from the BL to the gauge
 - This is contrary to what would occur if the board and gauge were at the same temperature
 - BL flow would be lower in temperature than the board, would convect heat *away* from the board
 - Measurement error of approximately 13% higher was obtained with a surround as opposed to bare gauge under 5.9 kW/m² flux.

Heat flows from the gauge to the surroundings

Heat flows from the Surroundings to the gauge

Experimental Setup: Heat Flux & PIV Measurements

Attempt to reduce convective error by recessing board, placing the sensing surface beyond the boundary layer flow

Recessed board increases signal by approximately 5%

Heat Flux Measurement in Mixed Mode Environment²

²Lam and Weckman, Fire and Materials, Volume 33 Issue 7, November 2009

3.00

Radiation Only

- Mixed mode (convection + radiation) measurements were made with Gardon & SB gauges
- Hot air gun used for convective source
- Cone heater used for radiative source
- Gardon gauge 7-8% higher for pure radiation
- Gardon gauge 8-18% lower for mixed mode
 - Discrepancy increased as radiative fraction of total heat flux decreased and convective fraction incrased
 - Convective flow shifts peak temperature away from center of Gardon gauge foil

Summary

- Care should be taken when selecting a Gardon or Schmidt-Boelter gauge for use as a calibration standard in fire test equipment
 - Bias errors
 - Unknown convective portion of total flux
 - Mismatched calibration and use conditions
- Measurement of relatively low heat flux levels will be more impacted by errors
- Awareness of the situational specific heat transfer modes and the sources of error can lead to the correct choice for heat flux measurement

Temperature and Thermocouple

Temperature:

a numerical scale represents the intensity of heat (energy) present in a substance or object

Thermocouple (TC):

a thermoelectric device for measuring temperature, consisting of two wires of different metals connected at two points. It produces a voltage between the two junctions in proportion to the temperature difference.

Energy Balance of Thermocouple

- Assumptions for the following theoretical calculation:
 - TC bead is spherical shape
 - The flame is uniform, and all TCs have the same reading temp.
 - The emissivity of K-type TC (ε_{TC}) is around 0.8.

Estimated Temperature Error

measured by K-type TC with 1/8" SS sheath, exposed bead

- There is a huge temperature gap around 800 °F between thermocouple reading temperature and estimated flame temperature.
- The estimated flame temperature is much higher than the TC reading temperature.

Effect of Convective (Air) Velocity

	test conditions		calibration data				
	fuel (GPH)	air (SCFM)	temp. (ºF)	heat flux (BTU/ft^2- s)	estimated flame temp. (°F)	temperature gap, ΔT, (°F)	adiabatic flame temp. (°F)
Case #1	2.25	67.6	1920	9.4	2717	797	3109
Case #2	2.25	62.2	1920	9.4	2739	819	3278
Case #3	2.25	57.7	1926	9.5	2788	862	3426

 The estimated flame temperature increases with decreasing air flow rate and follows the trend of adiabatic temperature, even though the TC reading temperatures are almost identical among three cases.

Effect of Convective (Air) Velocity ...cont'd

Front Side of Test Panel (after 10 mins)

Case #2 (melted)

B.T. = 11.5 mins

Case #1 (intact) B.T. = 15 mins

Case #3 (burnthough) B.T. =10 mins

The burnthrough time from fire test result shows an inversely proportional relationship with the estimated flame temperature or adiabatic flame temperature.

Effect of Thermocouple Size

	test conditions		calibrat	ion data		
	fuel (GPH)	air (SCFM)	temp. (F)	heat flux (BTU/ft^2-s)	estimated flame temp. (°F)	temperature gap, ΔT, (°F)
small TCs	2.14	60.4	1919	9.0	2535	616
big TCs	2.25	62.2	1920	9.4	2739	819

Front Side of Test Panel (after 10 mins)

big TCs, (melted) B.T. = 11.5 mins

small TCs, (intact) B. T. = 15 mins

- The smaller temperature gap obtained by small TC results in that the small TC could reach the identical reading temperature.
- The fire test result shows that the burnthrough time depends on the estimated (real) flame temperature instead of the TC reading temperature.

Effect of Thermocouple Size ...cont'd

• The smaller TC could reach higher reading temperature and have faster response time than the bigger TC in the identical fire environment.

Literature Review About TC Measurement

•According to Blevins' model in 1999, the error of a <u>bare bead thermocouple with</u> <u>diameter $D_b=1mm$, emissivity $\varepsilon=0.8$, and external convective flow velocity</u> <u>U=0.5m/s</u> could be up to 20% <u>while gas temperature $T_g=1400K$ and ambient</u> <u>temperature $T_{\infty}=300 K$. $\rightarrow 20\%$ error, $T_{error}=280K$ </u>

•If the <u>thermocouple diameter was changed to 1.5mm</u>, and the remaining rest of properties were kept the same. The error could be up to 340K. \rightarrow 24% error, T_{error} =340K

Ref.:

- 1. Linda G. Blevins, Behavior of Bare and Aspirated Thermocouples in Compartment Fires, Proceedings of the 33rd National Heat Transfer Conference ,Albuquerque, New Mexico, August 15~17, 1999
- 2. Linda G. Blevins, William M. Pitts, Modeling of Bare and Aspirated Thermocouples in Compartment Fires, Fire Safety Journal, 33 (1999), 239~259

Temperature Distribution Comparison

TC Pattern #1

- TC1 TC7 are identical
- TC size: 1/8" SS sheathed
- 4" away from burner exit
- 1" above the centerline of burner

TC Pattern #2

- TC1 TC3&TC7:1/8" SS sheathed
- TC4 TC6: 1/16" SS sheathed
- TC1 TC4&TC7: 4" away from burner exit
- TC5/ TC6: 5"/ 3" away from burner exit
- 1" above the centerline of burner
 - 1/16" TC could get around 100°F higher reading temperature than 1/8" TC.
 - The location of TC also shows an impact on the temperature measurement.

Summary

- Because of the heat radiation loss, the thermocouple reading temperature is significant lower than the theoretical gas (flame) temperature in the high temperature environment.
- The smaller TC indicates the higher TC temperature and provides quicker response time than the bigger TC.
- The fire test results have been shown to follow the trend of the "adiabatic flame temperature" instead of the "TC reading temperature".
- The location of TC could also have impact on the TC reading temperature.

