Heat-flux Sensor Calibrations at NIST Physical Measurements Laboratory

Charles Gibson, Howard Yoon NIST

NIST Heat Flux Gauge Calibration Facilities

- 25 mm Variable Temperature Blackbody Primary facility Aperture: 25 mm dia., Temp.: 2533 K, Radiant flux: 50 kW/m²
- Electrical Substitution Radiometer (upper limit of 50 kW/m²)
- 23 cm Spherical Blackbody Mikron M300 Cooled enclosure for sensors. Aperture: 25 mm dia., Temp.: 1373 K, Radiant flux: 100 kW/m²
- High power argon and krypton lasers (up to 8 W single-line)
- 51 mm Variable Temperature Blackbody In development Aperture: 51 mm dia., Temp.: 2773 K, Radiant flux: 67 kW/m²

High Heat Flux Calibration NIST - Methodology

VTBB method or Detector based calibration (ISO Method 3)

≈50 kW/m ²	Flux-scale (ESR*) transfer
	using open-mode
	Graphite tube blackbody

*Electrical Substitution Radiometer

Source based calibration (ISO Method 2) (*in progress*)

$50 - 100 \ kW/m^2$	Temperature-scale calibration
	Closed-mode
	Spherical blackbody

VTBB experimental setup

Flux Scale & Reflected Radiation

Flux Scale Calibration Comparison In 25 mm and 51 mm Blackbodies

Measured responsivity in the 51 mm and 25 mm VTBB facilities agree [Component of reflected radiation decreases with increasing d/a]

Scaling Calibration from Primary Standard

Scale factor: 10³ - 10⁶

Cavity-Radiometer Calibration

Repeat calibrations on a reference Schmidt-Boelter sensor using the VTBB

Comparison of manufacturers' and NIST calibration of different sensors

Flux Scale Technique (ISO Method 3) - Merits

- Transfer standard radiometer absorbs all the incident flux at the measurement location.
- Reflected radiation and other extraneous effects are same on both radiometer and sensor.
- Provides flux traceability to national standards.

Temperature/Flux Scale Comparison (50 kW/m² to 70 kW/m²)

Spherical blackbody - cooled enclosure

Sensor Science Division

- Cavity surface area large compared to sensor/holder size
- Sensor/holder at ambient temperature (300 K)
- Environment temperature = blackbody temperature (Max)
- Nearly free convection conditions prevail

Rayleigh number: $6x10^4 - 24x10^4$, laminar boundary layer

Effective Emissivity

Effective emissivity (hemispherical) at sensor <1.0

Method 3/Method 2 Comparison at NIST

Measured responsivity [0.700 mV/(kW/m²)] Two methods agree within measurement uncertainty limits

Convection & emissivity effects in spherical blackbody data

Flux (Method 3)/Temperature (Method 2) Scale Comparison

Position	Distance (cm)	View angle	Responsivity
2	-2.54 cm	180 deg.	$0.704 \text{ mV/(W/cm^2)}$
2	-2.54 cm		$0.698 \text{ mV/(W/cm^2)}$
3	-3.82 cm		$0.701 \text{ mV/W/(cm^2)}$
Mean resp	ponsivity (Measu	0.700 mV/(W/cm²)	
Corrections			
Effectiv	ve emissivity	0.5%	
Natura	l convection	-1.9%	
Corrected Value (Temperature Scale)			0.689 mV/(W/cm²)
Expanded uncertainty (k =2)		3%	
Flux scale calibration (VTBB)			0.700 mV/(W/cm²)

Temperature and flux based calibrations agree within uncertainty limits

NIST PML Heatflux Gauge Calibration (Method 3) Uncertainties

Uncertainty	Туре	Relative uncertainty %
Reference radiometer	В	0,6
Black-body temperature	В	0,1
Black-body emissivity	В	0,0
Black-body aperture uniformity	В	0,0
Sensor/radiometer alignment (distance)	В	0,4
Sensor/radiometer alignment (angular)	В	0,1
Radiometer aperture averaging effect	В	0,1
Radiometer output reading	A	0,2
Sensor output reading	A	0,2
Repeat tests on a similar gauge	A	0,7
Combined expanded relative uncertainty	k = 2	2,1

Heatflux Gauge Comparisons in 2000 and in 2008 as percent differences from SP

		Forum RR (2000-2004) (kW/m ²) at 10 mV				
ISO						
Method		Schmidt	-Boelter	Gardon		
1	LNE	90.32	-0.66%	121.45	0.89%	
2	SP	90.92	0.00%	120.38	0.00%	
3	NIST	86.4	-4.97%	117.3	-2.56%	

		ISO (2008-2010) (kW/m²) at 10 mV					
ISO							
Metho				Schmidt	t-Boelter	Schmidt	-Boelter
d		Gardon (meter 1)		(meter 2)		(meter 3)	
1	LNE	80.9	1.76%	61.9	4.38%	18.7	5.65%
2	SP	79.5	0.00%	59.3	0.00%	17.7	0.00%
3	NIST	75.5	-5.03%	57.3	-3.37%	17.0	-3.95%

Conclusions

- Flux-scale calibrations (ISO Method 3) suitable when reflected component is large, and/or source characteristics are difficult to establish
- Temperature & flux scales equivalence demonstrated within measurement uncertainty (Lambertian sensor)
- Intercomparisons show that persistent differences between the three ISO methods exist outside the combined uncertainties

