Modeling Composite Burning --Identifying Key Material Parameters

Ву

N. Albert Moussa, Ph.D., P.E.

Malima Wolf, Ph.D.

BlazeTech Corp

29B Montvale Ave.

Woburn, MA 01801-7021, USA

781-759-0700 x200

781-759-0703 fax

amoussa@blazetech.com

www.blazetech.com

FAA 7th Triennial International Fire & Cabin Safety Research Conf. Philadelphia PA, USA

Dec. 2013

Outline

- Part 1. Model Development
 - Assumptions and Calibration (Ref. 1)
- Part 2. Description of FAA Test Data
 - Test conditions and results (Ref. 2)
 - Key finding: some self extinguish
- Part 3. Model Predictions & Agreement with Test Data
 - Interpret self extinguishment
 - Identify key material parameters

Introduction

- Scope:
 - Carbon fiber epoxy laminates
 - Conditions of an in-flight fire with constant or time variant Heat flux
- Fairly generalized computer model with properties varying with:
 - Temperature
 - Temperature-time history
- Model can be applied to glass fiber composites and post crash fire conditions
- Model can be extended to structural response of composites

Part 1. Model Development (All properties data are taken from Ref. 1)

1D Transient Heat Transfer Model with Thermal Degradation of Epoxy

Discretized Equations

• Heat conduction and thermal degradation (0<x<l_f):

$$m_i c_p \frac{dT_i}{dt} + \Delta h_{decomp} \frac{dm_i}{dt} = \frac{(k_{i-1} + k_i)(T_{i-1} - T_i)}{(l_{i-1} + l_i)} - \frac{(k_i + k_{i+1})(T_i - T_{i+1})}{(l_i + l_{i+1})}$$

• Heat Fluxes at front face (x=0)

$$\dot{q}''_{ff} = \dot{q}''_{incident} + HRR \,\eta_{fire} - \dot{q}''_{rad} - \dot{q}''_{conv}$$

• Heat loss at rear face $(x=l_f)$ $\dot{q}''_{rf} = -\dot{q}''_{rad} - \dot{q}''_{conv}$

Thermal Degradation and Combustion of Epoxy

- Carbon inert; epoxy degrades per following kinetics:
- $k(T) = a_p \exp(-E_q/RT)$
- $E_a = 182 \text{ kJ/mol}, a_p = 9.67 \times 10^{10} \text{ s}^{-1}$
- Extent of thermal degradation or mass loss = $\alpha(k(T),t)$ $\alpha = \frac{m - m_0}{m - m_0}$

$$=\overline{m_f-m_0}$$

- With air Flame Smolder/glow
- We account for heat feedback from volatile flame only: heat of combustion = $20 \pm 3 \text{ kJ/g}$ -resin vapor

Property Variations with Temp. & Time

1. Thermal conductivity : $k(T) = 0.023(T - 273)^{0.46}$

- 2. Specific heat: $c_p(T) = 1000(0.75 + 0.0041(T 273))$
- 3. Swelling of laminate:

 $l = l_0 + \alpha (l_f - l_0)$

 α = extent of thermal degradation

Predicted Temperature Profile at Various Times for Constant Heat Flux

Predicted Epoxy Thermal Degradation Profiles at Various Times under Constant Heat Flux

Measured Heat Release Rate (HRR) Cone calorimeter from Ref. 1

Calibration of Model Flame Energy Feedback (FEF)

10% FEF Matches Heat Release Rate with Ref. 1

Part 2. FAA Test Data (from Ref. 2)

FAA Vertical Radiant Panel (VRP) Under Development for Internal Fires (from Ochs)

Variable Incident Heat Fluxes in VRP Furnace Simulates a Foam Block Fire

Sample Results in VRP (from Ochs)

- BL_{avg}=3.625"
 %sd=8.95%
- BW_{avg}=2.125" - %sd=0%
- AF_{avg}=64.67 sec. - %sd=12.011%

~ 18 tests per specimen.

Lots of variability in results; back side conditions important

After Flame Time, sec

Sample #

Materials Used in Comparison of Predictions with Measurements

Material Composition and % Mass	Plies	Thickness (mm)
Carbon fiber: T700 Epoxy TC250 (41 +/-3%)	4	1.1
	8	2.0
	12	2.8
	16	3.8
Carbon fiber: T700 Epoxy TC350 (34 +/-3%)	4	1.4
	8	2.5
	12	3.7
	16	4.9

Measured Burn Time vs. Panel Thickness for the 2 Materials

Measured Charred Length vs. Panel Thickness for the 2 Materials

Part 3. Model Predictions and Comparison with FAA Test Data

Temperature Profile at Various Times up to Extinguishment in VRP

Epoxy Thermal Degradation Profiles at Various Times up to Extinguishment in VRP

TC350 8-Ply Sample and Variable Incident Heat Flux

Predicted Time Histories for HRR and Resin Vapor Mass Outflow Rate for Various Thicknesses

TC350 and Variable Incident Heat Flux of VRP

Predicted Total Burn Time Based on 1.5 g/s-m² Mass Flow Cut-Off

Material (Resin)	Plies	Thickness (mm)	Total Burn Time (s)
TC250 (41%)	4	1.1	54
	8	2.0	107
	12	2.8	161
	16	3.8	180+
TC350 (34%)	4	1.4	68
	8	2.5	131
	12	3.7	95
	16	4.9	70

Predicted vs. Measured Burn Times vs. Various Panel Thicknesses

Extinguishment when resin vapor flow rate <1.5 g/s-m²

Extent of Thermal Degradation for TC250 (41% Resin)

Extent of Thermal Degradation for TC350 (34% Resin)

Comparison of TC250 and TC350

Closure

- Composite Burning Model agrees well with test data in predicting burn time and self extinguishment
- Entire Process is transient → self extinguishment depends on:
 - Incident heat flux level and duration (may not occur in a post crash fire)
 - Material properties

Implications of Model

- Model quantifies the following:
 - Importance of resin content fuels the flame → minimize it while satisfying mechanical properties
 - Importance of panel thickness transfers heat inward and lowers surface temp. → thicker is more likely to self extinguish weight and volume penalty
 - Importance of heat loss from rear for thin panels → design issue

Closure

- Other model implications:
 - Confirms that carbon is essentially inert
 - Challenges reported thermal insulating effect of char
- Extinguishment occurs Good but are we safe?
 - Toxic gases? Negligible in FAA tests (Marker and Speitel, Ref. 3)
 - Residual strength for structural composites?
- Model can be coupled to applied mechanics to calculate residual strength and failure

References

- Quintere J., Walters R. N. and Sean Crowley ,"Flammability Properties of Aircraft Carbon-Fiber Structural Composite", DOT/FAA/AR-07/57 , October 2007.
- 2. Ochs, Robert, "Development of a Lab-Scale Fire Test Method for Composite Structure", FAA Presentation at IAMFTWG, Indianapolis, IN, October 16-17, 2012.
- Marker, Timothy R. and Louise C. Speitel, Evaluating the Decomposition Products Generated Inside an Intact Fuselage During a Simulated Postcrash Fuel Fire", DOT/FAA/AR-09/58, June 2011.

Questions?

Contact:

N. Albert Moussa, Ph.D., P.E.

BlazeTech Corp.

29B Montvale Ave., Woburn, MA 01801-7021, USA

781-759-0700 x200, 781-759-0703 fax

amoussa@blazetech.com www.blazetech.com

