7th Triennial Conference on Cabin and Fire Safety

Development of a New Flammability Test for Magnesium-Alloy Seat Structure

Presented to: 7th Triennial Conference on Fire and Cabin Safety, Marriott Philadelphia

By: Tim Marker, FAA Technical Center

Date: December 2-5, 2013

Federal Aviation Administration

Key Activities and Timeline

(2006) FAA approached by industry to discuss potential use of magnesium in aircraft

(2007) IAMFTWG Mag Task Group formed

(2007-2008) Initial Phase of Research

(2008-2010) Full-Scale Testing

(2010-Present) Final Phase of Research

Discuss Threats Potential Areas of Use Establish Need for Threat-Based Test Initial Lab-Scale Testing

Lab-Scale Test Development

Finalize Lab-Scale Test

Lab-Scale Test Into Fire Test Handbook

Final FAA Policy

FAA Policy Statement

Use of Magnesium in Airplane Cabins—Updated 10/2007

The FAA has had several recent inquiries regarding the use of magnesium in airplane cabins. Specifically, magnesium alloys have been suggested as substitute for aluminum alloys in seat structure, as well as other applications, due to the potential for weight savings.

The FAA's central concern regarding the use of magnesium in the cabin is flammability. The current regulations do not address the potential for a flammable metal to be used in large quantities in the cabin. Therefore, if such a material were introduced to the cabin, the FAA would have to be convinced that the level of safety was not reduced. Special conditions may be required to establish appropriate criteria. Different magnesium alloys have different susceptibility to ignition, however, magnesium remains a material that, once ignited, is very challenging to cope with using fire extinguishers currently available on aircraft.

The use of magnesium is currently the subject of a task group of the International Aircraft Materials Fire Test Working Group. Depending on the outcome of the task group's work, the FAA may support additional research in this area, to the extent industry can supply materials. This would likely include full-scale testing should the initial assessments suggest there is some potential for acceptable installations. Both the post crash, as well as in-flight, fire scenarios need to be addressed.

FAA Policy Statement

Use of Magnesium in Airplane Cabins—Updated 8/2012

Based on requests from industry, and considering the absence of recent research data, the FAA has worked extensively with industry to evaluate the potential use of magnesium alloys in airplane cabins. Specifically, magnesium alloys have been evaluated as seat structure.

The FAA's central concern regarding the use of magnesium in the cabin is flammability. The current regulations do not address the potential for a flammable metal to be used in large quantities in the cabin. Therefore, the FAA and industry research has focused on identifying the large scale performance of different magnesium alloys under realistic fire threats, and characterizing that behavior in a laboratory scale test method.

The work has progressed to the point where it appears that certain magnesium alloys may have flammability properties acceptable to be used in aircraft seat structure. Special conditions will likely be required to establish appropriate criteria. The development of a laboratory-scale test method is progressing and could be defined near the end of the year.

The use of magnesium is still the subject of a task group of the International Aircraft Materials Fire Test Working Group. Depending on the outcome of the task group's work, the FAA may entertain requests for approval using the special condition process.

International Aircraft Materials Fire Test Working Group

Meets three times per year...

- One meeting held in Atlantic City, New Jersey
- One meeting held at host organization in North America
- One meeting held at host organization outside the US

Issues and concerns in the area of aircraft materials fire safety testing are discussed with emphasis on the current test methods.

The WG is open to anyone in the international community, including industry, government, and academia with an interest in aircraft materials fire safety and testing

Magnesium Alloy Use in Commercial Aircraft

<u>Industry Question</u>: Why can't we use Magnesium-Alloy in the construction of an aircraft seat frame?

<u>Regulatory Response</u>: Current FAA TSO C-127 "Rotorcraft and Transport Airplane Seating Systems" makes reference to an SAE specification (AS8049), which bans the use of magnesium in seats.

Initial Laboratory-Scale Testing (2007-2008)

FAA Development of a Lab-Scale Flammability Test for Mag Alloys December 2-5, 2013

Federal Aviation Administration

Full-Scale Testing (2008-2010)

Method: Conduct baseline tests using OEM aluminum-framed triple seats. Tests will simulate a post-crash fire with fuselage rupture, allowing external fire to directly impact the cabin materials.

Then...

Conduct additional tests in an <u>identical fashion</u> using mag-alloy in the construction of the primary seat components. External fuel fire permitted to burn for 5 minutes, then internal fire permitted to burn for 5 additional minutes before applying water.

Outcome: Determine if the use of mag-alloy poses additional hazard during the 10-minute event

Primary Seat Components

Full-Scale Testing

Full-Scale Test Apparatus

- Continuous Gas Analysis
- Temperature
- Heat Flux
- Video Camera
- Smoke Meter

water applied at end of all tests (not just magnesium), for similarity

OEM Coach Style Seats w/Modified Back Frame

Full-Scale Test Configuration

Typical Test Result

FAA Development of a Lab-Scale Flammability Test for Mag Alloys December 2-5, 2013

Federal Aviation Administration

Baseline Test Result

Full-Scale Testing Summary

Baseline, aluminum frames

WE43 in primary frame members

AZ31 in primary frame members

WE43 in primary and secondary frame members

WE43 in primary and secondary frame members (repeat)

Pan fire extinguished at 5 minutes using AFFF

Interior fire extinguished at 10 minutes using water

Cabin Survivability at Forward Station

Full-Scale Testing Summary

Magnesium alloy components had little/no effect on survivability

Slight flashing of burning mag-alloy during water application for WE43 test

Noticeable difficulty extinguishing burning mag-alloy during AZ31 test

Incapacitation results very similar for baseline and mag-alloy tests

- •slightly better for mag-alloys at forward location
- •slightly worse for mag-alloys at mid location
- •More severe fire condition caused more rapid incapacitation during "all-mag" tests

Development of a Lab-Scale Test

Evolution of the Lab-Scale Test

Horizontal Bar

Spring 2007

Horizontal Bar

Spring 2012

Summer 2011

Shorter cones Taller cones Stepped cones Rectangular stepped shape Horizontal cylinders Rectangular tubing horizontal Rectangular tubing vertical I-Webs horizontal **T-Webs** horizontal Inverted cones Cylindrical tubes horizontal Cylindrical tubes vertical

Various Shapes

Which Configuration?

repeatability issues:

- •Time of ignition dependent on resulting molten shape (random)
- •Duration of burning following burner flame removal also dependent on resulting molten shape

Cylinder vs. Bar Testing (Spring 2012)

Hollow Cylinders (vertical): 59 Tests

WE43: (15)	AZ80: (3)
EL21: (18)	AZ31: (1)
ZE41: (18)	EXP: (4)

Rectangular Bars (horizontal): 137 Tests

WE43: (18)	ZE41: (24)
E43: (25)	AZ80: (27)
EL21: (34)	AZ31: (7)
EXP2: (2)	

1 cylinder configuration tested

VS.

4 different bar thicknesses tested

Cyl	inders
-----	--------

			_
	EL	-21	
	Cylinder		
	Begins		
	to Burn	Cylinder	
	(Sec)	Out	
Average	108.0	310.1	
Std Dev	114.0	86.4	
% RS	105.5	27.9	Ν
	WE	-43	
	Cylinder		
	Begins		
	to Burn	Cylinder	
	(Sec)	Out	
Average	69.3	248.8	
Std Dev	67.3	34.1	
% RSD	97.2	137	\supset
701100	01.2	10.7	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10.7	VS
	ZE	-41	VS.
	ZE	-41	VS.
	ZE Cylinder Begins	-41	VS.
	ZE Cylinder Begins to Burn	-41 Cylinder	VS.
	ZE Cylinder Begins to Burn (Sec)	-41 Cylinder Out	VS.
Average	ZE Cylinder Begins to Burn (Sec) 167.9	-41 Cylinder Out 573.7	VS.
Average Std Dev	ZE Cylinder Begins to Burn (Sec) 167.9 43.3	-41 Cylinder Out 573.7 363.9	VS.
Average Std Dev % RSD	ZE Cylinder Begins to Burn (Sec) 167.9 43.3 25.8	-41 Cylinder Out 573.7 363.9 63.4	VS.
Average Std Dev % RSD	ZE Cylinder Begins to Burn (Sec) 167.9 43.3 25.8	-41 Cylinder Out 573.7 363.9 63.4	VS.
Average Std Dev % RSD	ZE Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 AZ	-41 Cylinder Out 573.7 363.9 63.4	VS.
Average Std Dev % RSD	ZE Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 AZ Cylinder Begins	-41 Cylinder Out 573.7 363.9 63.4 -80	VS.
Average Std Dev % RSD	ZE Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 AZ Cylinder Begins to Burn	-41 Cylinder Out 573.7 363.9 63.4 -80	VS.
Average Std Dev % RSD	ZE Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 AZ Cylinder Begins to Burn (Sec)	-41 Cylinder Out 573.7 363.9 63.4 -80 Cylinder	VS.
Average Std Dev % RSD	ZE Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 AZ Cylinder Begins to Burn (Sec) 90.7	-41 Cylinder Out 573.7 363.9 63.4 -80 Cylinder Out	VS.
Average Std Dev % RSD	ZE Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 AZ Cylinder Begins to Burn (Sec) 90.7	-41 Cylinder Out 573.7 363.9 63.4 -80 Cylinder Out 1140.0	VS.
Average Std Dev % RSD Average Std Dev % RSD	ZE Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 AZ Cylinder Begins to Burn (Sec) 90.7 1.2	-41 Cylinder Out 573.7 363.9 63.4 -80 Cylinder Out 1140.0 0.0	VS.

Bars									
	0.250-Inch EL-21			0.375-Inch EL-21			0.500-Inch EL-21		
	Bar Begins	Per Out	\\/ojaht	Bar Begins	Per Out	Woight	Bar Begins	Per Out	W/sight
	to Burn	(Sec)	vveigni	to Burn	(Sec)	l oss (%)	to Burn	(Sec)	vveigni Loss (%)
Average	196.8	288.6	1 1	66.4	111 4	07	35.6	67.5	0.8
Std Dev	10.9	28.4	0.8	113.5	190.5	0.7	100.8	126.0	0.7
% RSD	5.5	9.8	70.5	170.8	171.0	103.3	282.8	186.7	94.2
	0.25	0-Inch WE	E-43	0.37	5-Inch WI	E-43	0.	500-WE-4	43
	Bar			Bar			Bar		
	Begins			Begins			Begins	_	
	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight
	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)
Average	149.9	284.4	1.6	214.3	306.8	1.3	235.4	317.6	5.5
Std Dev	73.4	140.0	1.6	14.9	73.3	1.7	98.1	149.4	8.6
% RSD 🤇	49.0	49.2	102.3	7.0	23.9	136.2	41.7	47.0	155.5
	0.25	50-Inch ZE	-41	0.375-Inch ZE-41		0.500-ZE-41			
	Bar			Bar			Bar		
	Begins	_		Begins	_		Begins	_	
	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight
	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)
Average	193.4	323.4	33.1	59.3	80.0	27.5	250.3	364.8	17.6
Std Dev	49.5	60.5	12.3	118.5	160.0	2.0	201.3	207.5	8.7
% RSD	25.6	18.7	37.1	200.0	200.0	7.3	80.4	56.9	49.7
	0.2	50-Inch Az	2-80	0.3	75-Inch Az	Z-80	0.500-AZ-80		
	Bar			Bar			Bar		
	Begins	Der Out	\\/aiabt	Begins		VA/aistat	Begins		M/sisht
	to Burn			to Burn			to Burn		
Avorage	(Sec)	204.2	LUSS (%)	(Sec)	(380)	28 0	(Sec)	(380)	22.0
Average	152.9	594.3	27	12.7	407.3	30.9	194.3	439.0	33.9
	10.4	10.0	3.7	13.7	174.7	4.9	T04.9	315.9	11.0
% KSD	10.1	12.8	1.2	0.5	37.4	12.6	54.0	72.0	32.4

Cylinder vs. Bar Summary

Data indicates horizontal bar configuration more repeatable

Bar samples easier/less expensive to produce!

Sample Thickness Determination

Eliminate measurement of residue ignition & extinguishment time

When is it "Out"?

Burn Duration vs. Weight Loss .250-Inch Thickness Bars

Updated Horizontal Bar Testing Rig 2012

Systematic Development of Lab-Scale Test

Determine basic configuration: solid cone, vertical cylinder, horizontal bar

Make improvements to test apparatus: mounting mechanism, depth of talc

Determine which parameters to measure: e.g., time to melt, time to ignite sample, time residue burns, time sample extinguished, time residue extinguished, weight loss

Determine if weight loss is good predictor of residue burn duration

Select appropriate test parameters

Select appropriate thickness of sample

Determine interlab repeatability via Round Robin

Determine influence of exhaust ventilation on test results

Finalize all test parameters and details

Determine other sources of error and correct

Lab-Scale Test Logic

RRI & II Statistics

	Melt (Seconds)	Bar Begins to Burn (Seconds)	Bar Out (Seconds)	Initial Weight (Ibs)	Final Weight Bar (Ibs)	Final Weight Residue (lbs)	Weight Loss (%)
% RSD (RR I*)	16.5	49.8	48.4	1.5	9.4	17.2	116.7
% RSD (RR II**)	11.6	26.1	28.7	1.1	10.8	21.5	186.8
% RSD (RR II - no zeros)	11.6	14.9	18.8	1.1	10.8	21.5	166.0

*3 Labs, 60 Tests **7 Labs, 140 Tests

Planned Activities and Next Steps?

Complete analysis of Round Robin II

Complete final report on test method development

Finalize draft test method

Refine method of determining when sample begins to burn

Refine method of determining when sample self-extinguishes

Refine method of measuring post-test weights

Insert new test method into Aircraft Materials Fire Test Handbook

DOT/FAA/AR-11/3

Federal Aviation Administration William J. Hughes Technical Center Aviation Research Division Atlantic City International Airport New Jersey 08405 Evaluating the Flammability of Various Magnesium Alloys During Laboratory- and Full-Scale Aircraft Fire Tests

Timothy R. Marker

January 2013

Final Report

This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161.

This document is also available from the Federal Aviation Administration William J. Hughes Technical Center at actlibrary.tc.faa.gov.

U.S. Department of Transportation Federal Aviation Administration

FAA Development of a Lab-Scale Flammability Test for Mag Alloys December 2-5, 2013

http://www.fire.tc.faa.gov/pdf/AR11-13.pdf

Report not published yet