The IMA study on Life Cycle Assessment (LCA) of Magnesium

Knowledge for Tomorrow

Gundolf Kopp

Simone Ehrenberger

Horst E. Friedrich

German Aerospace Centre Institute of Vehicle

Concepts

7th Triennial International Aircraft Fire and Cabin Safety Research Conference 2nd-5th December, Philadelphia

Contents

- Why do we need a Life Cycle Assessment (LCA) of Magnesium?
- Overview of the IMA LCA Study
- LCA of Primary Magnesium Production
- Life Cycle of Steering Wheel for Passenger Car
- Life Cycle of Aircraft Parts
- Conclusions

Why do we need a Life Cycle Assessment of Magnesium?

- Presenting the advantages of magnesium-specific design
- Update existing LCA data on magnesium production, processing and end-of-life
- Use a proactive discussion of the role of magnesium in sustainable development

According to ISO 14040 and 14044

Overview of the IMA LCA Study

Module 1	Primary magnesium production	
Module 2	Advantages of magnesium-specific design and parts manufacturing	
Module 3	Life cycle performance of magnesium in transport applications	
Module 4	End-of-life and recycling	

- Use of two exemplary components in a gasoline passenger vehicle and a midhaul aircraft and comparison with aluminium
- Included impact categories: climate change (CO_{2eq}), acidification, eutrophication and resource depletion
- Study follows cradle-to-grave approach
- Full accordance to ISO 14044 (including external critical review)

LCA of Primary Magnesium Production

02-1

Life Cycle Assessment of Primary Production Pidgeon Process - Overview

- Development of average dataset for Pidgeon process industry
- Covers more than 80 % of global Mg production
- Functional unit is 1 kg pure Mg
- Various fuels are used for calcination, reduction and refining Coke oven gas, Semi coke oven gas, Producer / Generator gas, Natural gas, Coal

Input

(Aggregation

Process

Product

Т

Transport

Life Cycle Assessment of Primary Production Pidgeon Process - Results for Greenhouse Gas Emissions

- Weighted result (according to production volume of fuel gas):
 25.8 kg CO_{2eq} / kg Mg
- Includes production of (semi) coke oven gas (allocation according to energy content)

Life Cycle Assessment of Primary Production Pidgeon Process - Results for Greenhouse Gas Emissions

- Credits for the use of waste gases (coke and semi coke oven gas) can be given
- Weighted result inlcuding credits: 19.9 kg CO_{2eq} / kg Mg

Life Cycle Assessment of Primary Production Electrolysis – Overview

- Natural gas is source for energy production
- R134a is used as cover gas
- Functional unit is 1 kg pure Mg
- Credits for by-products (liquid Cl2 and KCl) can be given

Life Cycle Assessment of Primary Production Electrolysis – Impact Assessment

- Result for greenhouse gas emissions
 - for process: 17.8 kg CO_{2eq} / kg Mg
 - including credits for by-products: 14.0 kg CO_{2eq} / kg Mg
- Main contribution results from electricity supply
- R134a as cover gas has minor relevance

Results for Primary Magnesium Production

Pidgeon process

- In 2011, all magnesium producers in China use gas as energy source for Pidgeon process
- Average weighted CO_{2eq} emissions for Pidgeon process 2011 is 25.8 kg per kg magnesium; when credits for use of waste gases are given, the emissions are 19.9 kg per kg magnesium
- Emissions have dropped significantly in the last few years
- FeSi contributes considerably to all impact categories

Electrolysis

- Greenhouse gas emissions for exemplary electrolysis is 17.8 kg per kg magnesium without credits for by-products
- Credits can be given for by-products (Cl2 and KCl): -3.8 kg CO_{2eq} / kg Mg
- The use of HCF 134a reduces greenhouse gas emissions significantly compared to the use of ${\rm SF_6}$
- → Widening the use of renewable energy sources will optimize the results for both processes

Life Cycle of Steering Wheel for Passenger Car and of Aircraft Parts

Picture sources: Kern GmbH for steering wheel

0 40 - 1

Life Cycle of Steering Wheel for Passenger Car Comparison of Mg and AI - Overview

Life Cycle of Steering Wheel for Passenger Car Main Parameters

- Steering wheel for the use in a passenger vehicle made from magnesium compared to steering wheel made from aluminium
- Parts are produced via die casting
- Primary AI world average used as reference (12.7 kg CO_{2eq} / kg AI*))

	Magnesium component	Aluminium component
Weight [kg]	0.55	0.74
Fuel reduction coefficient [I/100km*100kg]	0.35	
Mileage	200,000	200,000
Material recovery at vehicle end-of-life [%]	90	90
Material for further use [%]	90	90

Image source: Kern GmbH (http://www.kernmg.de/de/Gussbeispiele/site_174/)

Life Cycle of Steering Wheel for Passenger Car Recycling of Vehicle Components

 Recycling path for 		
magnesiur	n:	
1. mate	rials of end-of-life	
vehic	le are separated	
2. Mg e	nds up in light	
meta	I fraction	
3. Prod	uction of AI alloy is	
seco	ndary Mg use	
– Full credit	is given to recycled	
Mo which replaces primary Mo		

in AI alloy production (same

applies to recycled AI)

Life Cycle of Steering Wheel for Passenger Car Comparison of Mg and AI - Greenhouse Gas Emissions

- Difference in production stage depends widely on source of magnesium
- CO_{2eq} savings of 3.8 kg from the use stage
- Positive net balance for all magnesium scenarios can be reached

Life Cycle of Aircraft Parts Overview

Life Cycle of Aircraft Parts

Production of Parts and Calculation of Fuel Saving

- Parts (gearbox and seal closer) are produced via sand casting
- Production of sand moulds and casting process with highest impacts

Life Cycle of Aircraft Parts

Production of Parts and Calculation of Fuel Saving

- Parts (gearbox and seal closer) are produced via sand casting
- Production of sand moulds and casting process with highest impacts
- Weight reduction is 22 %
- Calculation of fuel reduction with DLR model VAMPzero
 - representative short and medium haul aircraft (A320)
 - flying distance: 4,100 km
 - fuel saving per flight: 4.7 kg
- Recycling not included

Life Cycle of Aircraft Parts

Overall Balance for Greenhouse Gas Emissions

- Maximum difference to AI reference production: 0.14 t CO_{2eq}
- Break-even points reached in an early stage of aircraft life: < 10 flights
- Annual savings during aircraft operation*): 8 t CO_{2eq}

DLR

Life Cycle of Aircraft Parts

Overall Balance for Greenhouse Gas Emissions

- Maximum difference to AI reference production: 0.14 t CO_{2eq}
- Break-even points reached in an early stage of aircraft life: < 10 flights
- Annual savings during aircraft operation*): 8 t CO_{2ea}

Conclusions for Life Cycle of Magnesium Applications

Use for passenger cars

- Results show beneficial aspects of magnesium use for green mobility
- Adequate vehicle design and process optimization needed to ensure benefits
- Crediting reuse of magnesium shows an important influence on LCA

Use for aircraft

- Magnesium parts in aircrafts show significant benefits in terms of greenhouse gas emissions
- Production and end-of-life are of minor importance compared to use stage
- The magnesium industry could use the results for further product strategies

→ Reliable and up-to-date data source for magnesium LCA is now available

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

German Aerospace Center Institute of Vehicle Concepts

